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In the paper, a kinetic model of interactiona of optical and acoustical phonons
is discussed, basing on four life-times. Equations of non-diffusive transfer of heat
perturbations, induced by an external field acting upon an assembly of optical phonons, are
derived form the proposed model. :

1. Introduction

In phenomenological description of heat conduction, the Fourier law of heat
conduction is usually applied. According to this law, heat flux is a linear function of
temperature gradient. Processes of heat transfer may be also described by micro-
scopic models, deduced from solid state physics. They lead, in the case of dielectrics,
to description of heat transfer in terms of mutual interactions of elementary
excitations, called phonons [1, 2]. In this paper, we limit ourselves to discussion of
a model in which dynamics .of a phonon gas is described by the kinetic Boltz-
mann-Peierls equation [2]. As it is known, the Fourier law of heat conduction may
be deduced from kinetic equations for phonons if the relevant modification of
Chapman-Enskog method is applied. This derivation is based on the search of such
solutions of phonon kinetic equations which may be expressed in the form of
asymptotic expansions in terms of temperature gradients [2]. The scope of
applications of the Chapman-Enskog method is, however, limited to those states of
the system only which differ insignificantly from local thermodynamical equilibrium.
For states significantly different from local thermodynamical equlibrium, conditions
required by Chapman-Enskog method are not satisfied and heat transfer due to
phonon interactions may not be approximated by the Fourier law of heat
conduction. Conditions in which the state of phonons assembly is far from local
thermodynamical equilibrium may correspond to situation in a dielectric treated, for
instance, by laser radiation. Strickly speaking, description of heat transfer in such
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conditions requires solving kinetic equation. In the limits of approximations stated
further and based on a relaxation model of phonon interactions, it is possible to
deduce equations of heat transfer in the form of a closed system of differential
equations. In the paper, we consider a dielectric in which optical, as well as acoustic,
vibration modes exist. For simplicity we limit ourselves to the case when only one
branch of each type of vibrations exists. For such a system, the kinetic Boltz-
mann-Peierls description reduces to a set of two coupled kinetic equations for
one-point distribution functions for optical and acoustic phonons.

We assume that energy is transmitted from outside directly to the assembly of
optical phonons and then, as a result of mutual phonon interactions, transformed
into phonon excitations in the acoustic branch. We also assume that the dominating
contribution to energy transport processes comes from the assembly of acoustic
phonons. It is known, from solid state physics, that interactions of phonons, ocurring
under the influence of electromagnetic radiation, depend on radiation frequency.
These effects may be taken into account by assuming that collision integrals in
phonon kinetic equations depend on history of external fields. From the processes of
phonons interactions, we can separate processes of mutual energy exchange between
optical and acoustical phonons assemblies, relaxation processes in optical phonons
gas and relaxation process in acoustical phonons gas. The description of these
processes by four life-times is introduced, and conformance of the model to the
second principle of thermodynamics is shown. Next, basing on moment equations,
a set of field equations is educed, which couples energy densities of optical and
acoustic phonons with heat flux of acoustic phonons. In the limits of the proposed
model, influence of external field reduces to apparition of a time-dependent source in
energy balance for optical phonons. From the relations obtained, a set of two
equations which connect densities of optical and acoustic phonons, follows.

The microscopic model of transport phenomena, used in this paper, is based on
description of phonon interactions in a rigid dielectric. Hence, it does not give the
possibility of discussion of effects of coupling thermal and deformation fields.
Discussion of such effects, based on microscopic description of phonon assembly and
deformation field interaction, will be the subject of a separate paper.

2. Relaxation model of phonon heat transfer

Let us consider a microscopic model of heat transfer in a dielectric, based on the
following system of coupled kinetic equations for optical and acoustic phonons

dwy(k) fy(x, k, )
ok; ox; 19

do, (k) f,(x, k, t)
ok, ox,

0
afo(x: k: t)+ Jo(fo(xa k, t):fa(x! ks t)a Es(t))

(2.1)

%L(x, k, )+ = J(fox, k, 1), f,(x, k, 1), E,(1))
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where x is a space variable, k is a phonon wave vector, t mean time, fy(x, k, t) is
a distribution function of optical phonons, f,(x, k, t) is a distribution function of
acoustic phonons; @, (k) and w,(k) are dispersion curves for optical and acoustic
phonons, respectively; J,(/o(X, k, 1), f,(x, Kk, 1), E((t)) is the collision integral in the
kinetic equation for optical phonons, J,(fo(x, k, t), f,(x, k, t), E(t)) is the collision
integral in the kinetic equation for acoustic phonons; E (f) = E(t—s), s 2 0 describes
history of an external field acting upon the whole system; x; and k; are cartesian
coordinates of vectors x and k. In the above model, it is assumed for simplicity that
there exists only one branch for each type of phonon excitations.

From solid state physics, it is known that functions hw,(k) and hw,(k) have
a meaning of energy of a single phonon from the corresponding branch (2zh is the
Planck constant) [2]. After multiplying Eqs. (2.1), and (2.1), by hwy(k) and ho,(Kk),
respectively, integrating equations obtained with respect to k and changing the order
of integration and differentiation, we obtain energy balance equations for optical and
acoustical phonons

0
—go(x, 1) +divqe(x, t) = Py(x, t)

ot
(2.2)
%aa(x, ) +divq,(x, t) = P,(x, t)
where
d*k
go(x, 1) = [hay(K) fo(x, K, t)(zTP
d’k
Qo(x, 1) = [ [ho, (k)Y 00 (K)] fo(x, kK, t)@b—a (2.3)

3

Pk
Py(x, 1) = [ hoog®)Jo(fo(x, K, 1), fulx, K, ), Es(t))W

are energy density of optical phonons, heat flux carried by the gas of optical
phonons, and a source in the energy balance for optical phonons, while

g,(x, 1) = [ ho, (k) f,(x, k, t)gjt—l)z
a3k
q.(x, 1) = [ [ho,&)V, 0,K)] f(x, k, t)(z_n)_:" (24)

3k
P, 1) = [ ho,0)(fo(x, K, ), f,%, K, 1), Es(t))é—n)i

are energy density of acoustic phonons, heat flux carried by the gas of acoustic
phonons and source in the energy balance for acoustic phonons.
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In Egs. (2.3), (2.4) we make use of the convention of normalization of phonon
distribution functions which in usually applied in solid state physics [2]. Symbols ¥,
and div mean gradient in respect to k and space divergence, respectively.

Adding the two balance equations (2.2), and (2.2), gives the balance equation
for the total energy.

%s+divq =P (2.5)
where
€= égyt§,
q=qo+4q, (2.6)
P=P,+P,

are total energy density, total energy flux and a source component, respectively.
Let us assume that collision integrals in Egs. (2.1),, (2.1), have the form of the
following sums

Jo(fo(x, k, t), f.(x, k, 1), E () = Jo.x(fo(x, k, t), E(1)
+‘IO.R(f0(x, k5 t))+"0.!(f0(x! k, t),fa(X, k, t)) (27)
Ja(fo(", ka t)sf;(xs k! t)a Es(t)) - ‘Ia.R(j;J(xs k, I))+Jﬂ.f(f0(xs k! t)af;r(xa k! f))

The component Jo g(fy(x, k, t), E/(t) of the collision integral (2.7), describes
processes in which an external field transmits energy to the assembly of acoustic
phonons. We assume that these processes may depend on the form of optical
phonon distribution f;(x, k, ?).

Expressions Jo ;(fo(x, k, 1), f,(x, k, 1)) and J,;(f,(x, k, 1), f,(x, k, 1)) describe
processes of mutual energy exchange between the assemblies of optical and acoustic
phonons. The principle of conservation of energy requires that the sum of
contributions of these processes to the total energy source is equal to zero

hay (k)J K k. Lk
[ harg () Jo 1 (fo (x, K, 1), f,(x, k, ))W
d*k

G =0 29

+jhwa(k)"a.l(f0(xs ks I)’fo(x’ ks E))

Expression Jo g(fo(x, k, 1)) describes relaxation processes in the optical phonons
assembly; i.e. processes in which acoustic phonons do not participate, and which
describe the tendency of optical phonons assembly towards thermodynamical
equilibrium if only processes of mutual transmutations of optical and acoustic
phonons are eliminated and if Joz(fy(x, k, 1), E,(t)) equals zero.
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It follows, from the principle of conservation of energy, that the energy source
related to relaxation processes described by Jo g(f,(X, k, 1)) must be to equal zero

d*k
Jhero(®)oa(fo(x, K, ) 5 = 0. 29)

Expression J, g(fo(x, k, 1)) describes relaxation processes in the acoustic phonons
assembly and, like Jo z(fy(x, k, 1)), satisfies the identity corresponding to energy
conservation

d’k

[ hog ()T, r(f,(%, K, D) =5 = (2.10)

According to the general rules of constructing relaxational models for multiple
“competing” dissipation processes, we substitute the components of collision
integrals separated above by their relaxation equivalents, in which processes of
mutual phonon trahsmutations are approximately described by life-times dependent,
in general, on the wave vector k [3].

The relaxation model of the Jog(fo(x, k, t)) component of the collision integral
(2.7), is described by

Co.r(fo(x, k, 1)) = _(To.k(k))_l(fo(x’ k, t)— @ p(x(x, t))) (=11)

where 1o x(k) is a life-time, modelling dissipation processes described by
Jo.r(fo(x, k, 1)); function «(x, t) is given as the solution of the following identity

ha)o(k) 1 d3k %
ITO.R(k) |:fo(x, k, t)_ea(x.nhwo(k)__ 1:|(211:)3 =0 (2:12)

while
1

¢0.R(°5(xs t)) = X xDhoo(k) _ |

(2.13)
(Because the life-time is positive, it follows that the above definition of a(x, t) is
unambiguous).

It can is seen that the expression (2.11), defined in such a way, satisfies condition
of conservation of energy. Similarly, dissipation processes described by
Jor(f,(x, k, 1)), which are responsible for relaxation to thermodynamical equilib-
rium of the acoustical phonons assembly, are modelled by the life-time 7, z(k)
dependent on the wave vector. The relevant contribution to the collision integral has
the form

Carl(fax, k, 1) = —(zar®) ' (£,(x, K, )= Po r(B(x, 1))) (2.14)
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where
1
Por(BX, 1) = e (2.15)
and the condition of energy conservation
ha,(k d’k
R U k. 0= @us(Bix. 0) s 2.16)
a.R(k ( )

determines the value of f(x, t) which appears in (2.14) and (2.15) as a parameter.

Expressions Jo ;(fo(x, k, 1), f,(x, k, 1) and J, ;(fo(x, k, 1), f,(x, k, t)), describing
mutual transmutation processes of optical and acoustic phonons, are approximated
by

CO.I(fo(xa ks I),fa(X, k3 t)) " _(TO.I(k))_I(fo(x’ k, f)—d’o.:(}’(?‘, t)))

2.17)
Ca.f(fo(xa kv t)!.fa(x: k: t)) 7 _(Ta..l'(k))_l(f::(x! k1 t)_¢a,l(?(xa t)))’
respectively, where
1
Do.1(1 (%, 1)) = w1
(2.18)

1
'pa.lb’(x’ t)) i T Dha) _ |

while the condition of energy conservation in energy transfer processes between the
optical and acoustic phonons assemblies. takes the form of equality

hw,(k d’k
% 5 ot )(fo(xa —®o1(y(x, 1) 3)) 3
To,1(k) (27) (2.19)
ho, (k) d*k :
j Tn,I(k) (f.a( ’ k t) Qa I(?(x L )) (2 )3

This equality determines the value of y(x, ¢). It is easily verified that, for any pair of
distribution functions f,(x, k, t) and f,(x, k, t), the quantity y(x, t) is determined
unambigously.

Hence, the proposed system of kinetic equations takes the form

dw,(k) 0 K
fo( k, 1)+ (00( ) fO(’a‘x_ t) (To,n(k))_l(fo(x» k, t)—‘po,n(“(xa t)))

~(rb.1(k))*‘(fo(x, k, 1) — P 1(y(x, 1))+ Jo.e(fo(x, k, 1), E((1))  (2:20)

dw, (k) of,(x, k, t)
ok, ox,

B == (ra,R (k)) e (j; (X’ k’ t) St qja.R (ﬁ(xs E)))
R (ra-f(k)) o (j;i(x! k! t) BT QG.I(Y(xs t)))

i
afa(x, k, )+
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The functions @ g, Py, 1, Pur, Pa,r are given by the formulae (2.13), (2.18) and (2.15),
while their arguments, functions «(x, t), y(x,t) and B(x, t), are defined as the
solutions of Egs. (2.12), (2.19) and (2.16).

The functions @, g, Py, Por, Por have the form of local equilibrium Planck
distributions in which the inverse of product of temperature and the Boltzmann
constant is identified with the functions a(x, ), y(x, t) and B(x, t), respectively.

Hence, a(x, t) may be assigned such a temperature field which determines the
local equilibrium state to which the distribution of optical phonons tends if all the
interaction, but optical phonon relaxation processes, are “turned off”. The functions
B(x, t) and y(x, t) may be interpreted in a similar way.

3. Entropy balance

We will show that the proposed system of kinetic equations (2.20) conforms to
thermodynamics in the sense that its solutions satisfy entropy balance. In the
entropy balance, the source term is a sum of two components; the first, always
non-negative, describes dissipation processes inside_the assembly while the second
describes an entropy source due to the influence of external field. The entropy source
related to external field depends only on processes described by the component
Jo,e(fo(x, k, 1), E(t)) of the collision integral. The term is non-negative if the source
of optical phonons described by Jo £ (f,(x, k, t), E(1)) is non-negative for any values
of the wave vector, i.e., if interaction with the external field does not diminish the
number of optical phonons, independently of their spectrum range.

It is known from solid state physics that entropy densities of optical and
acoustic phonons are given, respectively, by the formulae

SR
So(x, t) = [ {(fo+ Din(fo+ 1) —foln fo} 2n)°
3.1)

d*k
8,06 0 = U+ DInCf+ D =foln £} 555

(From now on, to simplify the notation, arguments on which phonon distribution
functions depend will not be written explicitly.) Total entropy density S is a sum of
expressions (3.1); and (3.1),

S(x, 1) = Sy(x, )+ S,(x, ). (3.2

It can be seen, on differentiating (3.2) with respect to time and using Eq. (2.20), that
the total entropy balance of the assembly being considered has the form

;%S(x, t)+divS = Pg (3.3)
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where
d*k
S(x, t) = 5{(fo+ Din(fo+1)—foln fo} kao(k)(z—n)g
+ [ {(f,+ DIn(f, + D —fIn f,} Vo, (‘; ')‘3 (3.4)
is the total entropy flux, and
+1 i
Pslx; t)=_[( fofo )Con (fo) on )3 _[(1 ff,, ) aR(f)(z 3
fo+1 f+1 d’k
+I(h‘l =% )Co I(foaf)(z )3+j(ln ;3 )Ca.l(fO’,j;)(zT);;
d’k
+f( )Jo (fo, E (I))(Z E (3.5)

is the source of entropy. To investigate signs of components appearing in (3.5), we use
the well-known identity stating that, for any positive numbers y, z, the following
inequality holds [2]

(y=2)n% > 0. (3.6)

On substituting y = (fo) "(fo+1), z=(Pos) ' (Pos+1) and y= ()t D)
z=(®,;)" (P, ;+1) we obtain, after multiplied by ®,, f, and @, f,, respectively,

(fo+ 1) Pos i

Jo(@or+1)

(fatDPar

f ((pa I+ 1)

After multiplying the inequalities (3.7), by (27)7 3 (to,,(k))™' and (3.7), by

(2m)~3 (1,,(k)) "', adding the results, integrating the sum in respect to k, and taking
into account (2.19) we arrive at the inequality

(Po,1—fo)In
(3.7)

(Do, /o) In

fot+1 d’k fi+1 @k
I Vo= @on 77— I Ua = udIn T Gy = a8
d*k 2
I( )Col(fo,f) I( ffl) a:(fo,f) )320

From (3.8) it follows that the sum of the third and fourth components of (3.5) is
non-negative. It testifies that, in the scope of the model assumed, processes of mutual
transmutations of optical and acoustic phonons give a non-negative contribution to
the entropy source. In a similar way, it can be is demonstrated that the contributions
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from the first two components on the right side of (3.5) are non-negative, as well. The
last component of the sum (3.5) describes the entropy source due to external
interaction upon the systems. As we mentioned, if the external interaction,
independently of spectrum range of optical phonons, increases the number of
excitations then their contribution to the total entropy source is also non-negative.

4. Education of field equations

In order to derive the system of field equations describing heat transport
processes, we additionally assume that the life-times 7, ;(k), 7, ;(k), 7o z(k) and 7, z(k)
do not depend on the wave vector, and that dispersion curve of acoustic phonons is
described by the formula

@, (k) = c[k| (4.1)

where c is interpreted as the velocity of sound [2]. On multiplying Eq. (2.20), by
(2m)~*hw, (k) and integrating it with respect to k, we obtain an equation for energy
balance of acoustic phonons

0
7 %0 +divg, = —(70.1) ™" (60— &0 (y)) + Pg (4.2)
where ¢, and q, are described by the formulae (2.3), , while
d*k
PE o Ihwo JD E(fU! E )(2 )3 (4'3)

Next, after multiplying (2.20), consecutively by (27)”*hw,(k) and
(27) " *hw,(k)V, w,(k), integrating with respect to k and substituting (4.1), we obtain
equations for energy balance and heat flux of acoustic phonons

i} ,
a;t g+ dlvqn i (Ta.l) . (aa —& (?))

A (4.4)
0+ divQ, = —q,[(F0r) !+ (0r) ]
where
d*k
Q, = [ ho,K)[V,0,K]S[V,w,K)] f, (2 )3 3j|kl® kf, o
1 d’k
50(}’(3‘: f)) = Ihwﬁ(k)ey(x,r)hwo(k]__l (2n)? (4.5)

1 d*k
En(}’(x’ t)) = th'lk] y(x nhclk 2?.,:)3
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while, as it follows from (2.19), the value of y(x, t) is related to energy densities of
optical and acoustic phonons by the formula

Ta1 (80(X, 1)) —20(3(X, 1)) = To.r(Ea(X, D=, (((2(x, 1)) (4.6).

(It can be easily verified that, for any pair of non-negative values &, &,, the formula
(4.6) determines unambigously the value of y).

To obtain a closed set of equations from the relations deduced above, we
assume that the heat flux transferred by optical phonons is negligibly small as
'~ compared with the heat flux transferred by acoustic phonons, and that the
dominating contribution to the change in time of energy density of optical phonons
is related to processes described by the source component in Eq. (4.2) (this
assumption conforms to estimates known in literature, eg. cf. [4]).

The tensor Q,, which has a meaning of a heat flux tensor may be umquely
expressed as a sum of a spherical and a traceless tensors

Q, = 4I-TrQ, +<Qy (4.7)

where I is the unit tensor, Tr means trace operation, and {Q,> is the traceless part of
Q,. We assume that the dominant part of the tensor Q, is the spherical one and that
{Q,> may be neglected we repeat the argumentation used by Peierls [5]. This
assumption holds when the dominant part of the distribution function is invariant in
respect to rotations of k. In particular, it is true when the distribution function of
acoustic phonons has the shape approaching that of local equilibrium Planck
distribution.

The above approximations imply a closed set of relations, describing propaga-
tion of perturbations in a coupled system of optical and acoustic phonons:

d
6t£° = —(t0,) " (eo—20(¥)) + Ps

0 ; .
a &+ dlvqa il (Ta.R) ! (an —& (}’))

: @8
S0+div(3cte) = — g0 + )7

Tn,r(go o 80(?)) = To.I(Ea = 8a(V))

where g,(y) and ¢,(y) are determined by the formulae (4.5),, (4.5); and (4.6). In the
above description, the function P, describing velocity with which an external field
transfers energy to the optical phonons, is regarded as given. It is seen that the
life-time 7, g, describing relaxation velocity of optical phonons to an equilibrium
state, does not appear in the set (4.8).

Taking divergence of Eq. (4.8), gives

2
%divqa+%deﬂ = —divg,((tan) " + () ) (49)
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g :
After substituting in (4.9) expressions for divq, and a—tdwqa determined from (4.8),

and its time derivative, we obtain a set of two equations, relating space densities of
energies of optical and acoustic phonons

i c? 0
( _FEG + ? Asa = (("':IAI,R)_l +(Ta..l’)_ 1) [55 Ea T (TG,R)_ l(aa_sa(’)"))jl
d
3 Tt | b?(sa_aa(Y)) (4.10)
L“é}‘go = _(TO.I)“I(EO_EO(?))','PE

Processes of heat transfer, described by (4.10), have a different character than
processes described by the Fourier law of heat conductivity. We may notice that in
the set (4.10) we can assume different primitive fields which can be easily physically
interpreted. Namely, one of the variables may be taken to be the field y (proportional
to the inverse of the (temperature to which the system relaxes locally), while the other
one may be the &,—¢,(y) (or, equivalently, &,—¢,(y)), describing the measure of
deviation of the system from local thermodynamical equilibrium.

References

[1] J. A. RessLAND, The physics of phonons, John Wiley, London 1973.

[2] V. L. Guriewicz, Kinietika fononnych sistiem, Nauka, Moskwa 1980.

[3] C. CerciGNANL, Mathematical problems in the kinetic theory of gases in: Mathematical models and
methods in mechanics, Banach Center Publications, vol. 15 PWN, Warszawa 1985.

[4] G. P. SRIVASTAVA, Acoustic-optical phonon interactions in solids, in: Phonon scattering in condensed
matter. International Conference on Phonon Scattering in Condensed Matter, Brown University
1979, Proceedings Ed. H. J. Maris, Plenum Press, New York 1980.

[5]1 R. E. PeErLS, Quantum theory of solids, Clarendon Press, Oxford 1955.

Received November 29, 1989





