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The problem of plane wave diffraction by an impedance half-plane is considered. The
aim of the paper is to analyze how the solution depends on the complex impedance
parameter 1. The Senior solution is analytically continued from real positive values of the
parameter onto the two-sheeted Riemann surface #. It is shown that the result of the
analytic continuation has two branch points of the first order and one pole. The pole is
related to incidence angle of the plane wave. The proper choice of the branch is uniquely
determined from the outgoing wave condition. Different types of surface waves excited on
the impedarice half—p]ane are also discussed.

Praca dotyczy problemu dyfrakcji fali plaskiej na impedancyjnej polplaszczyinie.
Celem jej jest przeanalizowanie zaleznosci rozwiazania od zespolonego parametru im-
pedancyjnego 1. Rozwigzanie Seniora skonstruowane dla wartosci rzeczywistych parametru
przedhuzono analitycznie wzglegdem tego parametru. Otrzymano dwuplatowa powierzch-
ni¢ Riemanna n z dwoma punktami rozgalezienia i biegunem, ktéry jest zwiazany z katem
padania fali plaskiej. Korzystajac z warunku fali wybiegajacej wyznaczono jednoznacznie
galaz, dla kazdej wartoéci parametru nalezacej do plaszczyzny zmiennej zespolonej
z cigciem. Przedyskutowano wystepowanie i zaleznoé¢ fali powierzchniowej od parametru.

1. Introduction

This paper is concerned with qualitative study of the solution to the problem of
electromagnetic wave diffraction by an impedance half-plane. The analyzed solution
is here found by using the Wiener-Hopf method and is expressed by the Fourier-type
integral. The factorization is achieved by the Cauchy-type integrals. The function to
be factorized depends on the impedance parameter #, and so do the factor functions.
We examine the dependence of the solution on this parameter. The same solution
was found by SENIOR [1] in 1952. We shall henceforth refer to the solution as the
Senior solution.

The factor function is continued analytically with respect to n. A new
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representation of this function is obtained. It takes the form of a Cauchy-type
integral along a ray in the complex plane.

The result of the continuation is that the Senior solution is analytically
continued from real positive 5, onto a two-sheeted Riemann surface with two
branch-points and one pole. Thus, the continuation produces two possible branches
of the solution. The proper branch is chosen using the outgoing wave condition. The
solution is valid for both passive and active impedances. The analysis also shows the
possibility of excitation of different types of surface waves on the impedance
half-plane.

Formulation of the problem is given in Sections 2-3. Section 4 is concerned with
mappings of the Riemann surfaces on which the functions involved are defined.
Those mappings form a basis for further analysis. In Section 5 the method of analytic
continuation of Cauchy-type integrals is given. In Section 6-8 the method is applied
to the analytic continuation of factor function depending on two complex variables.

The extension of the Senior solution onto two-sheeted Riemann surface is
described in Section 9. Different types of surface waves that emerge from the analysis
are discussed in Section 10. Finally, in Appendix A index evaluation of the factorized
function is given, and in Appendix B explicit formulas for the factor function are
obtained.

2. Formulation of electromagnetic problem

An electromagnetic plane wave E”, H” is incident upon an impendance
half-plane at an angle @, to the x-axis, Fig. 1. The direction of propagation is normal

U (xz)

4, §2

X
42 FiG. 1. Geometry of the diffraction problem

to the diffracting edge. The incident plane wave satisfies the Maxwell equations
VxH = —iweE, VxE =iouH. (2.1)

A time dependence e is assumed and suppressed throughout.
The impedance half-plane is described by the Leontovich condition

nxE =nZ[nx @mxH)], ; (2.2)
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where n is the unit outward normal to the half-plane, Z = \/m is the intrinsic
impedance of free space, # is the reciprocal of the complex refractive index of the
half-plane relative to free space.

The impedance parameter is generally a complex number. If Re 5 = 0 then the
impedance is passive, if Re < 0 then the impedance is active. The value n =0
corresponds to a perfectly conducting half-plane.

The total field is a sum of the incident field and a scattered field E®, H®. It
satisfies the Maxwell equations (2.1) in the whole space, and the Leontovich
boundary condition on the half-plane. In addition the scattered field should obey the
edge condition and the condition at infinity.

For the purpose of this paper those conditions are formulated in the following
way:

(1) each scattered field component E{, H}, j = x, y, z, is an integrable function
of ¢ (where x = gcosf), z = gsin 0) in a neighbourhood of the point ¢ = 0, for every 0,
and

(2) the scattered field contains only outgoing waves at infinity.

The above formulation of the edge condition is equivalent to the well known
condition that [ (¢|E®|*+ u|H®|?)dr = finite, [2], provided that each field com-

ponent is of the form g?®(0), where @(6), y) is a bounded function and p is a real
number, 7 is a finite region of space surrounding the edge.

Splitting the field into TM (transverse magnetic) and TE (transverse electric) in
the edge direction, we split the problem into two separate cases: TM, called also
E polarization, where

E=(0,E,0), H=(H,O0,H,). (2.3)

and TE, called also H polarization, where
H=(0,H,0), E=(E,O0,E,). (2.4)

For each polarization the electromagnetic field (2.1) can be expressed by one
scalar function u satisfying the Helmholtz equation

VZu+k*u =0, (2.5)
where k? = w?ep.
For E polarization there is
f Omion i du
E = i H =——, = ——— .
7T T opoz H, o dx )
For H polarization there is
i du i du
HOw E.=—— L= — — 2.7
\ we 0x @7
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From the Leontovich condition we obtain

ou
u-—ig—a; 0~ for "o =" i e
- (2.8)
u+1g6—2=0 farcs gamobe xipnls
for E polarization, and
pdb By for 0 >0
“ Tk oz Sy o v
u iwl—@— fi =0 >0 i
ok 32 Ok 2 = 0csiio X

for H polarization.
b 1. o b
Thus, on replacing # by Em formulas describing the field for E polarization, we

obtain the field for H polarization, and vice versa.

3. E polarization

The incident wave is in the form

u_(x, 2) = e—ik(xcns¢o+zsin¢o). (31}
We seek the solution of (2.5), (2.8), (3.1) as a sum of the incident wave u;(x, z) and
the scattered field uy(x, z; n) = u,

u(x, z; n) = u(x, z)+uyx, z; n). (3.2)

The scattered field satisfies the Helmholtz equation (2.5), where u, is put in place
of u, with boundary conditions for x > 0:

u —:Z%u —(1—nsind,)e™® for z=0,
o (3.3)
where
oy = —kcos®,. (3.4)

We seek the solution to the problem (2.5), (3.3) in the class of functions such
that, via (2.6), the edge condition and condition at infinity are fulfilled.
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3.1. The method of solution

We find the solution for a real 5 satisfying 0 < n < co. We assume that u (x, z; 1)
has the following plane wave spectral representation

uy(x, z; n) = A, n)e**e*da for z>0,
5 = (33)
u(x, z; ) = | B(o, )e™e”"da for z<0,
Q

where
y = Jk?—a?. (3.6)

For the unique and continuous relation between « and 7y, the variable « belongs
to the two-sheeted Riemann surface with branch points o = +k. The contour
Q extends from — oo to oo. The necessary condition of convergence of the integrals
(3.5) for every x and z has the form

Imo =40, Imy.>0..as . lelte0. (3.7

The Riemann surface « is cut along the lines I'y, I',, as in Fig. 2. The sheets are
distinguished by the choice

k*—a=k for a=0 on sheet a, (3.8a)
and
k*—o?>=—k for a=0 on sheet a. (3.8b)
@®
l

nﬂ Q £\ XL k
= K o .~

Q

I

FiG. 2. The a-plane cut along I'y, I', lines and the contour Q

The contour Q satisfying (3.7) is put along the real axis of «, sheet, except for
indentations at ¢ = +k and a = «,, as in. Fig. 2.

. Denote by Q; the domain above (to the left of) the contour Q, and by Qg the
domain below (to the right of) the contour Q.
Putting (3.5) into boundary conditions (3.3) and into the condition of continuity
of the total field and its normal derivative in the aperture x < 0, z = 0, we get the
following integral equations for A(x, 1), B(x, n):
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[ +gy)A(oc, e de = —(1—ysin®y)e™ for x>0 (3.9)
Q
f (1+%'y)B(a, n)eda = —(1+ysin®)e™* for x>0 (3.10)
Q
[[A(@, n)— B, n)]e™da=0 for x<0, (3.11)
Q
[y[A(@, n)+B(x, )]e™*da=0 for x<0. (3.12)
Q

There exists a solution of each of these equations according to the following
Lemmas:
LemMa 1. If the point o, lies in Qg, there exists a solution of the equation (3.9) ((3.10))
such that

¥ 1 1—nsin®,
(1+ gy)A(a, m=U,@ n=5- o AL (3.13)
1 SRR ol o8
n = 1 1+nsin®,
(L TINR  eDly e a8 3.14
( + kv) @, m =Vale, n)—o - (3.14)

where U, («, n) (U, («, 1)) is an analytic function of « in the domain Qg and it tends
to zero as || —oo in this domain.

LeMMA 2. Any analytic function L;(x, n)(L, («, 1)) in the domain 4, which tends to
zero as || - oo in Q4 is a solution of the equation (3.11) ((3.12)):

A(a, n)—B(e, n) = L, (o, 1), (3.15)
LA, n)+ B2, 1)] = Ly (e, n). ' (3.16)
From (3.15) and (3.16) we find the amplitudes:
| 1 1
A, n) = E[Ll(a, n)+;Lz (o, ﬂ)], (3.17)
11
B(a, n) = 5 [;Lz(m, n)—L,(, n)]- (3.18)

The functions L, («, n) and L,(«, n) are to be found by solving two Wiener-Hopf
equations obtained from (3.13)3.16):
ksin @,
U s =K s L ] _—0:
1(a, ) = yK (o, 1) Ly (o, 1) e

103 XRseof
nmi(o— o)’

(3.19)

U,(x, n) = K(a, n)L,(2, 1) (3.20)
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where

K. )1

U,(x, n) =E[U1(a, n)—U,(x n)]. (3.21)
k
U,le, n) = 5[ 1@, m)+ U, 1)]. (3.22)
k+n./k*—o?

K ’ it e~ — - — ——— 3,23
= e (323)

The function K(, n) fulfils all conditions of unique factorization on Q in the
class of the factors tending to 1 at infinity:

@i K(@,n7)-1 as |a|->o0,
(i) K 7)#0 onQ, (3.24)

(iii) 1nd Ko, n)=— jd [argK(x, n)] = 0 (the justification is in Appendix A).

Thus, in the cut a-plane there exists the unique representation

K(x, n) = Ky (o, n)Ky(a, n), (3.25)
where
1= ndk(t, b
K, (x,n)= exp{—ﬁj t—_(a@ dt}, xely, (3.26) '
Q
1 . InK(t,
Ky(o, n) = exp{E f T(a'l) d:}, neQf, (3.27)
Q

The function K, (a, #) is analytic and different from zero for aeQy, and is
continuous in Q5 U Q. The function K (x, ) is analytic and different from zero for
x€Qg, and is continuous in 25 u Q. Moreover, K, (¢, n)— 1 and K, (, n)—1 as
|e| = oo in the respective half-planes [3].

By the standard Wiener-Hopf method, we obtain the unique solution of the
equations (3.19), (3.20) in the class of the functions tending to zero at infinity.

The solution is

ksin®, 1 1 1 K (2. 1m)
j 4 3.28
1o n) = mi(o— %)\/k+rx0\/k aK(xg, n) Kp(a, ), ( )
PN o (e SRR LR Wi (3:29

nmi(e—og) K(etg, 1) Ky (1) °
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_ ksind, [k+a Ky, n)
Vi) = i —oty) [1 k+oa, Ky(xg, n) |’ )

. k KU(“} ’7)
Valti b S o) [1_ K (o, q)}’ i

Putting (3.28) and (3.29) into (3.17) and (3.18) and then into (3.5) we obtain the
solution to the diffraction problem:

k S
u(x, z; n) = uyx, Z)—EJ'F(G, n)e**e=ldo, (3.32)
0
where
1 : N n)[ z [k+a }
Fo, 1— sin®, |. (3.33
(o 1) = ./kz—m nK(og, n) Kp(x, n) !ZI k+ag olff (89

If n—0,, then (3.32) converges to Sommerfeld’s solution of Dirichlet problem

; 1 1 [k Ry
u(x, z) = uy(x, z)—ﬁ e —k{%e'“e"’"'da. (3.34)
0

The convergence is clearly seen if we show that there exists the limit

. Ki(2g,n) _ [k—ua
limhg = . 335
n—=0 KL(a’ ’7) k_ao ( )

This convergence will be verified in Section 9.

4. Conformal mappings. The location of zero-points of the function K

For every n # 0 the function K(x, #n) given by (3.23) is defined on the
two-sheeted Riemann surface o described in Section 3.
Every solution of the equation

k+n\/k2—-»o:2 =0 (4.1)
is a zero-point a, of K(x, n). There is
Ty S
ad=l—\/1—n2. (4.2)
n
Thus, for a fixed # # 0 and n # +1, the function K(a, #) has two zero-points on the

Riemann a-surface. Both lie on either the sheet o, or the sheet «,;, depending on 7.
Sometimes it is convenient to use the parameter a, instead of #. In such a case,
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we need one-to-one correspondence between 5 and «,. The relation (4.2) expresses
one-to-one correspondence (mapping ) if and only if n belongs to the two-sheeted
Riemann surface with branch points # = +1, and o, belongs to the two-sheeted
Riemann surface with branch points o, = +k.

The mapping n 2 o, is shown in Fig. 3 abed. Each surface is divided into sheets,
and every sheet is shown separately. The division is arbitrary, but here it is done in
the way suitable for further investigations. The sheets #, and #,, are chosen in such
a way that the passage from one sheet to the other is through the branch cut along
the interval [—1, 1] of the real axis, Fig. 3 ab.

The sheets n, and n, are distinguished by the choice

ol = k\/i for =i on #;, and (4.3a)
P = —k2 for n=i on ny, (4.3b)

By the choice of the number (4.3a ) we define the branch of the function (4.2) which

we also will denote by af'. The second branch we will denote by «f.
There is

a? = —alt  for every n¢[—1, 1], (4.4)

and

Reai’ >0, Rea??>0 (4.5)

Now we present the Riemann surface a, divided into sheets as in Fig. 3 cd.
~ The sheets o, and o, are chosen in the same way as the sheets o, and a,
described by (3.8). The passage from one sheet to the other is through branch cut
lines" -y '
By the function (4.2) with chosen branches of", o), sheet n,, is mapped onto Re
g = 0, Re ag;; = 0in Fig. 3 cd, and sheet 7, is mapped onto Re o5 < 0, Re ozpy < 0.
The corresponding domains are denoted by the numbers 1-6 and 7-12 respectively.
From (4.1) we have the relation

k
P (4.6)

where y, = \/k*—oj.
. The mappings n=7y, and a,27, are shown in Fig. 3 abef and Fig. 3 cdef

respectively.
The function

By = cos” ‘(%) (4.7a)

defines one-to-one mapping of the two-sheeted Riemann surface o, onto a cylinder
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FiG. 3. The mappings
nea,: (a), B)=(), (d) by a, = (ik/n)/1-n%
neyy (a), (B)=(e), (f) by ya= —k/n;
n=p,: (a), (b)=(g) by By =sin™'(—1/n);
227, (), [@d=(e), (f) by y,= /k*—ai;
w2 fy (), @d=(g) by By =cos™ (x,/k)
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surface f3,, as is shown in Fig. 3 cdg. In Fig. 3 g the cylinder is cut along a generator

3
denoted twice: Re f, = —g, and Re f8, = 3%

The cut cylinder can be also unfolded to the plane

B =cos” ‘(;) (4.7b)

which will be used in asymptotic evaluation of the solution (3.32). The lines S(0) and
S(IT) are the steepest descent paths for ® =0 and 6 = IT respectively. In the
transformation (4.7) I'y is mapped onto S(0) and I'(IT) onto S(IT). The sheet o, ()
is mapped onto the domain contained between S(0) and S(IT).

The function
B, =sin~! (_3_1) (4.8)

defines one-to-one mapping of the Riemann surface n onto the cylinder f,, Fig.
3 abg.

The mappings contain valuable information needed for the analysis of the
solution as a function of 5. Some of them we mention here:

1. Let us treat n as the plane of the complex parameter. If we put sheet 5, on
sheet #,, the curves I, and I, cover each other. We denote the resulting single curve
by Sg; the domain above S; by Q; ; and the domain below S, by Qf respectively.
These domains have the following properties:

(i) For neQ; the zero-points of", of® lie on the sheet w,.

(ii) For neQ; the zero-points of!’, of?’ lie on the sheet a,.

2. Let the function K(a, ) be factorized on a contour Q fulfilling (3.7). We
denote by L(Q) the set of the points on the n-plane for which the zero points af,
af) lie on Q. Then we can check the following facts:

(i) For Q put as in Fig. 2 (dotted and crossed real axis in Fig. 3c), we have L(Q)
consisting of imaginary semiaxis and a part of negative real semiaxis (dotted and

-

()

Lo

L(Q)

xN
1
8

f

oo

FiG. 4. The n and a-planes, (a) the Line L(Q), and (b) corresponding to L(Q) location of the contour Q

11
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crossed line in Fig. 3 ab)
L(Q) = {n: (Ren =0, Imp Z0)U(Ren £ —1, Imy =0)}. (4.9)

(ii) Every contour Q which passes through «;, = 0 and o, = o is mapped onto
L(Q) with endpoints n = —1 and n = 0.

(ii)) For L(Q) which joins the points 7 = — 1 and n = 0 in the simplest way, as in
Fig. 4a, the contour Q is put along the imaginary axis of «,. To fulfil the condition
(3.7) it has the ends put on the real axis, Fig. 4b. This location of Q will be used in
Section 8 and 9.

5. The method of analytic continuation of the factor function

In the following analysis we will treat the parameter n as a variable. Let us
return to the solution (3.32) and answer the following questions:

1. For which 5 does the formula (3.32) have sense?

2. What is the domain of the integrand treated as a function of two complex
variables a and #?

3. Is the integrand an analytic function of n there?

Let us focus our attention on K, («, 1) . All the remaining functions are easy to
analyze. The function K, (a, n) is given by the formula (3.26) which has a sense for
every n for which the conditions of unique factorization (3.24) are fulfilled. For such
1 there exists the Cauchy-type integral which is an analytic function of 5 and analytic
function of a in the domain Q. The condition (i) is fulfilled for  # 0. The condition
(i1) is fulfilled for u ¢ L(Q). The condition (iii) is fulfilled for n # 0 and 5 # 0. So we
can claim that the function (3.26) is the analytic function of « and # in the Cartesian
product (xe Qg ) x (n¢ L(Q)).

We are now going to continue K, («, 1) analytically with respect to o, which is
necessary to study the physical properties of the solution. Usually this is done by
evaluation of the Cauchy-type integral in (3.26). Aa this integral cannot be expressed
by elementary functions, it is much more convenient to work with Cauchy-type
integral than with any other representation. The analytic continuation of the integral
will be accomplished by deforming the integration contour.

5.1. Deforming the contour Q in a finite domain

We investigate the function K, (2, 1) = K, (a, 1, Q) defined by (3.26), where
n¢ L(Q).

Let us take two contours Q and Q*, shown in Fig. 5. Denote by G the domain
contained between the contours, and by G its boundary.
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@

a0

FiG. 5. The contour Q and its deformations for analytic continuation of the factor function

Let us take difference of the integrals

InK(t, 1) nK (&, n) ,,
j Lz O dt_j t—o §
Qo* Q G

InK (t, 11) (5.1)

If xeQ, and K(t, n) is analytic and different from zero for te G, then § =0
oG
and we have

InK (¢, q) an (t r;)

| = [ ———dt for neQy. (5.2)
o t—ua A :
As a consequence
K (@ n Q) =K, (an Q) for aeQy. (5.3)

Since the function K, (a, 7, Q) is analytic in the domain Q5 U G, K (2, 1, Q")
is an analytic continuation of the function K; («, 1, Q).

By deforming the contour, we obtain the analytic continuation of the function
K, (a, n) with respect to « for a fixed # (for a given location of zero-points a3"), af*)) or
we obtain the analytic continuation with respect to both variables, if n changes and
hence the zero-points move.

5.2. Deforming the contour Q for |o| — o0

Let the contour Q be deformed so that its ends detach from the real axis and
move up, as in contour Q** in Fig. 5.
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The equality
InK (t n

InK (t,
jn(n) Ll

t—a )
o 2

holds if | tends to zero as ¢ — co, where R is shown in Fig. 5. Since for |o| — oo the

R
approximation holds

—— 1———-, (5.5)

K, n)=1+
'F\/kz—oc2 no
therefore
k
R loe® o] = jol—jaf %" o
R 0 020
n#0
As a result, we have the equality
K;(@n, Q) =K, (x,n0*) foraeQg. (5.7)

Corollary. The function K| («, 1) can be continued analytically by deforming
the contour Q towards Q7 into a domain which contains neither a branch-point nor
a zero-point of the function K(oc n). The ends of the contour Q can be moved above
the real axis.

For neQg we can deform the contour Q to the contour Q,, Fig. 5. For ne Q}
the zero-point af" does not allow us to shift Q so far. In this case we will use different
representation of K; («, #).

6. The alternative representation of the factor function

Let us introduce the function K (x, ) defined by the following identity with
respect to o and #:

K (2, n) (2 +k)(x—k)

K, n)= Py (6.1a)

o N/ k*—a?

R, iy =cdid & 3n o 6.1b
n) v kot —k (6.1b)

The function K (a, 1) has the same branch points « = +k as K («, 1) does, and
has two poles a = af", & = ), which unlike the zeros of K (&, ) are located for
neQg on the sheet «;, and for neQ; on the sheet o.
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The function K (a, ) fulfils the conditions of unique factorization on Q in the
class of factors tending to 1 at infinity, therefore, the factorization can be given by the
use of the formulas (3.25)3.27), where K (o, n) replaces K («, n), and where
K, (2, n) and K, («, n) replace K, («, n) and Ky («, ), respectively.

Using the identity (6.1), we obtain the second representation of the function

KL (CI, ?])

i 1 (t—af)(t—a@)K (t,n) | dt
K, (o, q)—exp{—%({ln[ Py :lt—oc} (6.2)

for xeQq, n¢ L(Q).

We will use the first or the second representation depending on the domain
being investigated. ;

Let us notice that the function K («, ) can be factorized in many ways, and yet,
by the theorem on unique factorization, the obtained factor functions are always the
same, irrespective of the representation applied. In particular, making use of the
identity (6.1a) and the properties of the factor functions, we can write

—ag! oa— o 1 InK(t, n)
K, (a, ’1)— 1B Ky (@, n)= AT TR me‘;?

(6.3)
for n¢ L(Q), xeQy, where af'eQj.

a—a® _ o—al? InK (t, 11)
Ky, n) = mKU (@, 1) = TR 2m£_t_—__ (6.4)

for n¢ L(Q), xeQy, where af® e Q.
The functions (6.3) and (3.26) are equal as well as the functions (6.4) and (3.27)
are.

7. Analytic continuation of K, (o, 1) onto the Cartesian product (xé 1) x(n¢ L(Q))

Theorem 1. There exists the analytic continuation of the factor function K, («, 1)
given by (3.26) onto the Cartesian product of cut a-plane and cut n-plane. For a ¢TI,
this analytic continuation has the representation in the form

InK*(t, n)
= A —dt 7.1
K, (a: n) = exp{ by } (7.1a)
for neQg, and
Ca—ad 1 . InK*(t, n)—2ni
K, (@ n)= _; exp{——ﬁj (t_';) dr} (7.1b)
I'o

for (ne Q)N (n¢L(Q)),
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where
k= +k
K* (o, ) = e, 7.2)
(@ n . g (

m (InK*)e(—mn, n, for ne Qg the line I'y is directed as in Fig. 5, af"eQg.

Proof. Let e Q5 . According to the Corollary in Section 5, for ne Q5 , aef, we
have the equality
InK (¢, InK(t,
= ( ")dt=jn t.n,
Q t i 0! Ql t_ o
In the neighbourhood of « = k we have K («, ) = O[(k—a)~'/?] and, therefore, the
integral on a half-circle CD, Fig. 5, tends to zero as its radius tends to zero. Thus, we

have
InK(t, 11) K., (t, n)
(j;w—trﬁ-ﬁ jl K f-’?)] (7.4)

The subscripts “+” and “—" denote the values of the function K (¢, n) from the right
hand side and left hand side of I',, respectively. According to (3.8), we have

(Vkr=t2), = Jk*—t?, (Jk:*=t})_. = —Jk*—t2, (7.5)

and, therefore,

(7.3)

K+(t’ '?)
K_{(t n)

Substituting (7.6) into (7.4), and then into (3.26) we obtain (7.1a).
Let neQf . We use the representation (6.3). In exactly the same way as above,
we obtain the equality:

= K*(t, n). (7.6)

InK (t, n) K, (t.n)
({, —a T Il [K (t, n)]f— o
From (6.1b) and (7.5), we have
K+ (t, ’1) e 3 *
i g .

Substituting (7.8) into (7.7) and then into (6.3) we obtain (7.1b).
The branch of logarithm is chosen such that the function K, («, n) is as singular
at the point « =k, as the function K (a, #) is:

K, (x,n)=0O[(@=k)""2] at a = k. (7.9)

Then the integrals in (7.1) are convergent.
The values of K (x, ) for ne S can be obtained as a limit in the formula (7.1a)
or (7.1b) as n—S;
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8. Analytic continuation of K, (o, n) onto the second sheet of the Riemann surface #

Theorem 2. For fixed o the function K (x, ) has two branch points n = —1,
n =0 of the first order. ,

Proof. As far as the point n = —1 is concerned the conclusions follows
immediately from (7.1b). Since the exponential function is regular at n = —1, the

function K (a, 1) is as singular as "’ is and, therefore it behaves like \/1 —n?. This is
illustrated in Fig. 6 a, b. As 5 circulates twice round the point = —1 along a closed
line C, on the plane n (Fig. 6a), the zero point a, circulates once round the point
o, = 0 along the line C, (Fig. 6b), and returns to the initial position, so that the value
K, (2, n) returns to the initial value.

It is much more difficult to prove the thesis at # = 0. For # = 0 the formulas
(7.1a, b) do not hold because the Cauchy-type integral is divergent. Moreover, there
is no “uniform” description of the function K, (, 1) in the neighbourhood of n = 0.
This neighbourhood is cut by the lines S; and L(Q) which are the branch cuts of the
logarithm and of the function o, respectively. We will show, however, that the
analytically continued function K (x, ) returns to the initial value after n has
circulated twice round the point n-= 0 along a closed line C,, as in Fig. 6a. In the
first circulation # goes from the point 1 to 6, and in the second circulation from 6 to
1 (11).

The line C, encloses also the point # = + 1 (a regular point of K, (o, 1), because
the neighbourhood of # = 0 is cut from 7= —1 to 7= +1 by the transformation
nea, (4.2). In fact, the line C, is put on the two-sheeted Riemann surface #; the
continuous line on the sheet #,, the dashed on the sheet #,;. In the n—plane these two
parts of the line cover each other.

Using the mapping presented in Fig. 3 abcd, we find the trajectory of the
zero-point «, on the Riemann surface «, for n moving along C,. This is the line C, in
Fig. 6b. It begins at the point 1 on the sheet oy, and it returns to the initial point
1 (11), Fig. 6b. The dashed line indicates the part of the trajectory on the sheet oy,
the continuous line on the sheet a,,. The line C, is also mapped into the f;,—plane
— the line C, in Fig. 6c.

Having determined the trajectory o, we can find the analytic continuation of the
function K (a, ) (defined by (3.26)) in the neighbourhood of 1 = 0. Three contours
selected from eleven ones Q = Q,, i = 1, 2, ..., 11, that result from pushing Q by the
moving point «, are shown in Fig. 7. The contour Q; corresponds to the location a,
in the point i =1, 2,..., 11, as in Fig. 6b. This is the realization of analytic
continuation of the Cauchy—type integral on Q. The af", «{?’ points are additional,
dependent on 1 branch points of the logarithm in this integral.

Looking at the trajectory of oy, Fig. 6b, we can draw the contour Q. Although
it is in the form of a very long loop it can be shown that the Cauchy-type integral on
Q,, is equal to the Cauchy-type integral on Q,, since the integral along a part of the
contour “pushed” by o{!in first circulation is reduced by the integral along the same
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a) @ b) @ c)

Q Q@ 1)

k k x K % /
\) NS

s

(122} Ty W

F1G. 7. The deformed contour Q as a realization of analytic continuation of K, (x, 1) in the neighbourhood
of n =0, (a) @, for n=n,, (b) Q, for n =n,, (c) Q, for n = n,. The chosen points are denoted by the
numbers 1, 2 and 4, respectively in Fig. 6

part of the contour “pushed” by af? in the second circulation and vice versa.
Therefore the equality

K, (%, ny4) = K (2, 1) (8.1

holds.

The analytically continued function K; («, #) can be described in the following
way:

Let us denote by 4 and B two parts of the domain QF cut by L(Q) in the
neighbourhood of zero, see Fig. 6a

A= {n:(1eQ) n(mn > 0)n (| < 1)}, (82)
B = {n:(7€ Q) n (Imn < 0)n (In] < 1)}. 83)

Then the neighbourhood of n = 0 is divided into three sectors: 4, B, Qz . When

n goes around n = 0, each sector is traversed twice. For the starting point #, placed

in Qg the first three formulas below describe K, (2, #) in the first circulation, the

remaining three — in the second circulation. In the third circulation (8.9) passes into

(8.4), (8.4) — into (8.5) and so on. The superscripts I and II denote the first and the

second branch of two-valued function K, (a, 1), respectively. We have for a¢r,
1 . InK*(¢t, n)

Ki(x,n) = exp{—% .Wdt}for neQsg, (8.4)
I'o

B Dusk o
Ki(a, '1’)=a . exp{—i w

A 3
- 2111',:'; o dt}for ne (8.5)

—af? 1 . InK*(t, n)—2mi
KU S i | L3 R, 1= ;
L (@, n)=——-exp i) e dtpfor neB, (8.6)

Lot (h)( —wl2)
K@, ) == a:auz)za" ) 8.7)
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" o
xexp{——l— i InK*(t, n)—4mi

-2 t—a

dt} for ne Qg (8.7)[cd.]

cx—cx{,z’ 1 . InK*(t, n)—2mi
B e A, :
K¥a, n) = - ex { =t -y dt yfor ne (8.8)
oc—af,” 1 . InK*(t, n)—2mi
= o— . RN TS . SRR i iy B i
Ky m)=—— exp{ 2 S dtpfor neB, (8.9)

In the formulas above the line I'y is directed as in Fig. 5, K*(a, #) is given by (7.2),
and of" and o are described by (4.3)-(4.5).
The derivation of the formulas (8.4)48.9) can be found in Appendix B.
This procedure of analytic continuation gives for K, («, n) exactly two branches
which proves Theorem 2.

9. The solution of the diffraction problem as the analytic function of 7

Theorem 3. The solution to the problem of plane wave diffraction by an impedance
half-plane, treated as a function of the impedance parameter 1, is a branch of the
analytic function defined on the two-sheeted Riemann surface with branch points
n = —1,n =0 for E polarization, and n = — 1, n = oo for H polarization, except for
one pole connected with the incidence angle.

The proof consists in constructing the analytic function on the Riemann surface,
and in choosing the branch that fulfils the imposed conditions.

9.1. The construction of the analytic function u(x, z; n) on the Riemann surface n

The two-valued function u(x, z; ) described in the thesis of Theorem 3 is
defined by the integral formula (3.32) for E polarization and by the same formula for
H polarization, where n is replaced by 1/5.

The contour Q is put on the two-sheeted Riemann surface with branch points
o = + k, where the sheets are chosen as described in Section 3. The condition (3.7)
requires that the branch cut pass through infinity, but its location Iy, I',, as chosen
here is directed only by the convenience of writing formulas for the amplitudes
A, ), B(x, n) which makes the asymptotic analysis of the integral easier.

We impose two conditions: o, € Qg , and (3.7) for a location of Q. The condition
(3.7) places the ends of Q on the real axis of the sheet a,.

By fixing the contour Q, we get the first branch u, of the function (3.32), where
the integrand F'(a, n) is described by (3.33), (8.4), (8.5), (8.9) in the domain || < 1 for
E polarization, and in the domain |5| > 1 for H polarization (if n is replaced by 1/nin
the formula (3.32)).

In the second bfanch to be denoted by u", the contour of integration is
a function of #. It is “pushed” by the pole «{ of the integrand. It can be reduced, .
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however, to Q by “picking up” the pole at & = o,
Thus

1 pid
ul(x, z; n) = uy(x, z)-—k{—__[F"(fx, n)e* el do 4
2ni
+res [F'@, m)]ee’ e 2}, (9.1)
where F'!(a, n) is described by (3.33), (8.6)~(8.8) in the domain Inl < 1 for E polariza-
tion, and in the domain |y| > 1 for H polarization when 1/n is substitutied for #.
This two-valued function on the n-plane, is single-valued on the two-sheeted

Riemann surface, as shown in Fig. 8. We pass from one sheet to the other through
the branch cut L(Q).

(85) ;5 @)
E
_._'éu'“ g nior

(89) solution
/ (84)

@

(84)
(f's)“\.. Senior’s
SH

Sommerfeld's
solution
-raw/ @) )
E P

7

————Oty -J ,i> 4l
¥ 0 ” o\
(8.6) (87) 5
a) b)

F1G. 8. The Riemann surface of the function u(x, z; n) treated as a function of #, (a) for E polarization, (b)
for H polarization

Senior’s solution lies on the sheet I below the line S, for E polarization and
above the line S, for H polarization, where Sy is described by the equation

Ren

The lines S; and S; map one onto the other by the function w = 1/n.
The location of the contour Q corresponding to L(Q) lying on the real axis is
presented in Fig. 4b. {

9.2)
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9.2. The properties of u(x, z; 1) as an analytic. function of n

LeEmmA. The point

1
= — 9.3
7 sing,, O)
is a pole of the function u(x, z; ) for E polarization, and the point
No = —sin @, (9.4)

is a pole of the function u(x, z; ) for H polarization.

Proof. We show the thesis for E polarization. Let us examine the function F(a, #)
KL(mOa ?])

K(“Os '?)
u(x, z; n) in the sector A.
From (8.5) and (6.1a) we obtain for branch I

as given by (3.33) and extract the quotient in each branch of the function

K} (2, 11) oy +k 1 . InK*(t, n)—2mi .
- dt>. 9.5
K(og, 1) ap—af® Sidor 1) 1P " on If[o L= ' -
From (8.8) and (6.1a) we obtain for branch II
K¥(ag, ) gtk _ 1 . InK*(t, n)—2mi :
L oL ottt Vel gl 9.6
) ot R o R g

The branch u'(x, z; n) = u'(x, z; «{*’) as described by (3.32), (3.33) and (9.5), and
treated as a function of the parameter «,, has the pole

ES TN 9.7)
The branch u"(x, z; n) = u'(x, z; «{") as described by (3.32), (3.33) and (9.6),
and treated as a function of the parameter o,, has the pole
ol = a, 9.8)
Let us come back to the parameter n. From (9.7) the equality (9.3) for
< ¢, < E results, and vice versa. From (9.8) the equality (9.3) for E <Py €

results and vice versa (this can be seen in Fig. 3 abg).
Since u(x, z; n)— oo as n—1, on the first or on the second sheet and since it is
an analytic function in a ring neighbourhood of 5,, the point n =15, is a pole.
Summary: 1. The function u(x, z; n) treated as a function of the impedance
parameter has two algebraic branch points of the first order and one pole. These
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singular points are n =1, n =0, n =n, = —1/[sin¢,] for E polarization, and
n=—1,n=o00, n=1n€,= —sin¢, for H polarization.

2. Sommerfeld’s solution is the limit of u(x, z; n) at the branch point n = 0 (the
limit (3.35) exists as » tends to zero in every section of the neighbourhood of n = 0).

3. If ¢, ;ég then there exists a finite limit of u(x, z; ) at the branch point

q=-4.nn¢o=gﬂwumnmimmm

9.3 The properties of u(x, z; n) as a function of x and z

1) The edge condition: Each branch of u(x, z; ») treated as a function of x and
z belongs to the same class of functions, which derivatives (2.6) have the Fourier
transforms tending to zero at infinity. From the half-range Fourier transforms (3.28),
(3.29) we find

uy(x, 0,)—uyx,0_)=0(x""?) as x—-0,, (9.9
and
3 du ou 2ik K, (o, 1)
1 == A IR g e % e s Sl 1
xlr;1+ {az (x,0,) r (x,0 )} . Kabo) B (9.10)
From the half-range Fourier transforms (3.30), (3.31) we find
lim u,(x, 0) = 1 (9.11)
Loght ) Ky(2g, 1) .
if the limit exists, and
Ou -1/2
—(x,0)=0(x"1? (9.12)
0z

as x—0_.

2) The condition at infinity: In order to verify the condition at infinity, we
change the contour Q in the formula (3.32) to the steepest descent path § (0), Fig. 9,
where 0 < 0 < 7.

According to the Cauchy theorem and by applying Jordan’s Lemma we have in
the domain 0 < 6 < 7: -

1

= Yi(x, z; n)+ H(n— ¢y —O) res F'(x, n) e"‘“°'“’j| (9.13)

ug(x, z; ) = —k[
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FiG. 9. The steepest descent paths. S(0) for 0 <0< in a-plane cut along 5(0), S(n) paths

for neQg, and

1
uy(x, z; ) = -—k[—

2ni

for ne Qg .

2ni

ul(x, z;n) = _k[—l—

for neQ;, and

s (x, z; 1) = —k[

1

2mi

Pi(x, z; )+
+ H(n— ¢y —0) res F'(a, n) ™ + (9.14)

(1)

8 ot
+H(0,—O)res F'(o, m)e” "2 @' -m]
B

Pi(x, z; n)+
+H(n— ¢, —0)res F'(a, n) ™+ (9.15)

(2)

5 s H(92 —0)res ' (e, n) e MivQ el’(n(??).m]
a@
Pi(x, z; n)+

+ H(n— ¢o—0)res F'(a, ) & + (9.16)

(2) =443)
+res F“(oz, q)e_(““ -e)e:(np-n)]

a®
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for ne Qg , where
Yix, z; ) = | Fo@, n)é*e"da, L=1,11, 9.17)

3 5(0)
H(+) is Heaviside step function,
0,=RepP—gd(Imp”), 1=1,2, where f®=B(x),

gd(0) is the Gudermann function:
gd(0) = —sgnfOcos™'(1/[cosh0]), 0 <cos ()< m;
ny = (acls ?0)5 e=(x, Z),

nf = (Imaf), ImyY),
nf = (Reaf’, Reyf)

for I=1,2. : (9.18)
On evaluating (9.17) for large ko we obtain

o 2 ;
[ FL(a, n)e™ " do ~ /k—:FL(kcos O™ for L=T,1I.  (9.19)

S(8)

Each function represents.the cylindrical wave which decays exponentially at infinity
if small positive imaginary part is inserted in k.

~ The residue term at o, gives rise to the reflected wave. The residue term at o,
I=1, 2 gives rise to the nonhomogeneous plane wave called here a surface wave.
The surface wave propagates in the direction defined by n,, and its amplitude decays
in the direction defined by n,.

For some selected points of the n-Riemann surface, as in Fig. 6a, the

corresponding pairs of the vectors n,, n, are shown in the f-plane, Fig. 6c. The
components of the vectors are found using (9.18) and the mappings in Fig. 3.

A surface wave generated by the pole lying in the strip —g < Refi = ?23 belongs

to ui. It is an outgoing wave, It propagates in an angular domain from the edge into
the half-space x >0. A surface wave generated by the pole lying in the strip
3 : :
g< Ref < 7 belongs to uy and can be treated as an incoming one. As could be
expected, the outgoing wave condition is fulfiled for ul only.
In conclusion we state that the branch «' of the function as shown in Fig. 8, is
the solution to our diffraction problem for every #. This completes the proof of
Theorem 3.
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10. Surface waves excited on the impedance half-plane

The pair of the vectors n,, n, which characterize the surface wave is shown in
the n-plane, Fig. 10. We have deplctcd different types of surface waves there. For
each wave field the pointing vector lies in the xz plane. The real part is of the form

1 §
ReS = —(Req,, 0, Rey,) e~ 2ma'® (10.1)
2mu

a) @

oo/

b) l@

{
W/// iy

T e

Sy

FiG. 10. Impedance plane showing the surface waves: (a) for E polarization, (b) for H polarization, —n,
shows the direction of wave propagation, —n, shows the direction of wave amplitude decaying

which implies that the power flow vector is directed along n,. Thus, the wave carries
energy towards the half-plane for passive impedances cxcept Re#n = 0, and it carries
energy away from it for active impedances except for 5 # oo for E-polarization and
n # 0 for H-polarization. In these exceptional cases, the power-vector is parallel to
the half-plane.

The direction of n,—vector shows, that the amplitude of the surface wave
exponentially decays in the directions of both x and z-axis for passwe impedances,
Ren =0 excluded, while for active impedances the situation is different. The
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amplitude exponentially grows in one direction and decays in the other direction.
One vector component is negative, the second one is positive, and they change the
signs on the real negative semiaxis.

One more difference between passive and active impedances is, that no surface
wave exists for passive impedances belonging to the domain bounded by S, and S},
lines (see also BowMAN {6]). On the contrary, for active impedances belonging to the
domain bounded by Sy and Sy lines there exists a surface wave of E polarization as

well as that of H polarization.

11. Concluding remarks

1. The solution to the diffraction problem by an impedance half-plane treated as
a function of the impedance parameter is the analytic function in the cut y—plane
except for a pole singularity.

2. The branch cut which runs along a part of the real negative axis in the
complex n—plane is determined by the outgoing wave condition.

3. The location of the pole depends on the incident plane wave angle ¢,. The
pole n = n,, after being mapped into the complex plane of the Fourier transformed
solution, coincides with the pole of the reflected wave. The value #, can be regarded
as a resonant value, and the relation (9.3) or (9.4) can be called the resonance
A

condition. If 3

< ¢po < m then the resonance condition is not fulfiled for any

impedance.

4. As n— 0 in the case of E polarization and 5 — oo in the case of H polarization,
the solution tends to Sommerfeld’s solution.

5. The discussed solution is obtained by analytic continuation of the Senior
solution from the real positive impedances. The crucial step is the analytic
continuation of the factor function regarded as the function of two variables. This is
done by deforming the integration contour of the Cauchy-type integral. Earlier, the
same idea was used by Hurd to derive Wiener-Hopf-Hilbert equations.

6. Analytically continued factor function (8.4)8.9) is also an analytic con-
tinuation of the solution of the Wiener-Hopf-Hilbert equation on I',, onto
two-sheeted Riemann surface #. Another representation of analytic continuation of
this solution from @ into Qf is given by NasALsKI [8]. Analytic continuation of the
factor function was first done by MarciNkowskl [9] in application to numerical
calculations.

7. The function K, (x, ) can be expressed in terms of Maliuzhinets function
[10]. Such representation is suitable for computations which are performed in
different ways by several authors. The most complete information can be found
in [11].

8. It should be noted, that the function K(x, 1) used in this paper differs by the
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factor 1/n from the function K (o) introduced by SENIOR [1], that is K(x, ) = %K (),

1 1 1
hence KL(O.', ?]) = —ﬁK_(CI), KU(G'., q) = ﬁK—M

9. It should be also emphasized, that while the solution to the diffraction
problem for the impedance half-plane tends to Sommerfeld’s solution as n—0, the
factorized function used here does not tend to the factorized function in Sommer-
feld’s problem. The same refers to the factor functions. That is:

S

= as n—0, and then K,(a, ) ~ —"—

k
n/k*—a \/E\/E’
Ji

Ky, n) ~ —=— as n-0.

\/r_; k+o

K, n) ~

Appendix A. The index of the function K(x, ) on Q

We are going to, evaluate the following expression: ind K(a, )=
; Q

=21_1z [ d[arg K (a, n)], where the function K(x, #) is given by (3.32) and the contour

0
Q is shown in Fig. 2.

By introducing, in accordance with (4.2), the new parameter a, instead of n we
have

K | =i S ¥l Al
(x, n) = K(2, &) = +m (A1)

The directed line Q in Fig. Al represents the mapping of the contour Q by the
function w = K(a, o).

@)

2
weKla,a,) =1+ Yo -%g
Vi -a?

FiG. Al. The directed line § as the mapping of
the contour Q by the function K(z, n) = K(x, «,)
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The increase of the argument of K(a, @,) on the contour Q is equal to the
increase of the argument of the vector w(Q), the initial point of which is (0, 0), and
the end-point moves along the directed line . This increase can be easily read from
the picture, and is equal to zero. In conclusion iréd K(x,n) =0

Appendix B. Derivation of the formulas (8.4) — (8.9)

The first two formulas (8.4) and (8.5), are already known as coinciding with
(7.1ab). We shall derive (8.5) once again by using a different method which also works
in each of the remaining sectors of 7.

For K («, 1), we use the representation (6.2), where the contour Q shifted to the
location Q, is shown in Fig. 7b. We write the Cauchy-type integral as a sum of three
components

[ ln[(t—aa”)(t—asz’)K(t, n)} dt
t

Il(aa ’?)+Iz(°‘, ")'{"13(“’ '7)’ (Bl)

4 (t+k)(t—k)
where

t—aol] dt
I (e, n)=QIlln[ i }—t_a, (B2)

_ t—aP ] dt
I,(x, ) = Q];hll: Tk ]E, (B3)
7 P (B4)

Q2 l—a

and where ae€Q,, in every integral above,
We evaluate these integrals succesively.

—ait t—a)] dt a—oaf"
I(2,n) = jl[ ]E—_ §In [ — [ =-mni=, @)

where C is a closed loop traversed in the positive direction, containing both branch
points of the logarithm. The point « lies outside of C.

I(a, ) =0, (BS)
InK(t, In K(t, In K*(¢,
Lz, w = § t( m 4 — | ( n) ( m 4
Q2 e Q1
From (6.2) and (B1), (B5)(B7), we obtain (8.5). The branch of the logarithm is

chosen accordmg to the criterion (7.9), such that the function K, («, 1) is continuous
for neSg in the part continuous the sector A, Fig. BI.

ai= | (B7)
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replace K(e,n) by Klo,n)
according to (6]a) in (%),

reduce f to _f
Q, Q,

Kﬁm,q):exp[—% M%%Md!/(t)
Q2

cht\mge
@4 branch

replace K(e,n) by K(e,n) according to(61a)
change: 1) v/ k?-tZ branch,

2) the direction of integration on Q,
reduce f to f .
@ Q

FiG. BI. The scheme of evaluation of K, («, #) in the neighbourhood of # = 0, while 5 goes around n=0,
starting from the point (1)

The formula (8.6) is obtained from (8.5) by changing the branch o, thus leading
to the continuity of the function K, («, n) for ne[—1, 0), Fig. Bl.

For neQg now, the contour @ partially lies on the sheet a,, Fig. 7c. We are
going to continue analytically the function (8.6)

If we change \/k*—t* to —,/k®—t? in (8.6), we have to change the direction of
integration on I, according to the equality

* o b ., 2_ 42 4
J.an( K22 g Ian( t,/t 2, @8)

I'o I~ =TIo

We rewrite the formula (8.6) in the form (6.3) (where a4 is replaced by a?), and
continue it analytically by deforming the contour of integration Q to Q,:

a—oaP 1 . InK(t,n)
K (o, n) = it exp{—ﬁi—?dr (B9)

When 5 passes from B to Q; (Fig. B1), the pole of K(t, #) passes from sheet II to
sheet I. It pushes the contour Q, to the position Q, shown in Fig. 7b. The
analytically continued function K (x, #) is expressed by the formula

a— o { 1 InK(—./k*—t% 1)
Kp(a, n)= exps —— | de}. (B10)
¢ a—k 27i g, t—o

We replace the function K(—./k*—t?, ) by K(—./k*—t? 1) according to
(6.1a), and rewrite the integral as a sum of three components as in the formula (B1).
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Evaluating each of the components, we finally obtain

WL MR 7T *
f BB W) e g g +jmK G2y 81
S t=o x+k £ f it

Putting (b11) into (B10), we obtain (8.7). The branch of the logarithm is chosen
according to the criterion (7.9).

Similarly, each of the remaining formulas is obtained from the preceding
formula. The scheme of the procedure is presented in Fig. Bl.

As a result, each time n crosses the line Sy in the first circulation, the factor
a—of

2 is created in K, (a, #), and this jump is compensated by replacing the branch

of the logarithm in the Cauchy-type integral with the branch defined on the

neighbouring sheet below. Each time # crosses the line S; in the second circulation,

al

the factor is cancelled, and this jump is compensated by replacing of the

branch of logarithm with that defined on the neighbouring sheet above.
After the two circulations the value of the analytically continued function
K, (x, n) returns to the initial value.
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