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ACOUSTIC MODELLING OF SURFACE SOURCES.
PART I. PISTON MODEL, DISCRETIZING ERROR, AXISYMMETRICAL PROBLEM

A. BRANSKI

Institute of Technology
Pedagogical College
(33-310 Rzeszow, ul. Rejtana 16a)

The paper discusses the application of irregular boundary elements in BEM method.
These elements were proposed in order to reduce the number of the elements in acoustical
model of surface source. The boundaries of irregular elements were introduced by optimizing
a mean square distance between exact directivity function and approximation one. The
constant vibration velocity on each element was calculated employing the definition of an
average function value. For simplicity as an example radiation axisymmetric problem
governed by Helmholtz—Rayleigh integral was considered. Examples are shown that
applying irregular discretization better model may be obtained.

The list of symbols

internal and external radius of surface S,
— Bessel function of the first kind and zeroth order,
— dimensioness wave number,
fundamental solution to the Helmholtz equation in the space E,,
— vibrating surface (driving surface),
baffle board (baffle),
— vibration velocity of the driving surface,
— velocity potential,
— polar coordinates.

1. Introduction

Boundary Element Method (BEM) is now a method frequently applied to solve
boundary value problem in regions with irregular surfaces [10]. This method is
also widely applied to the problems of sound radiation by a sources with a finite baffle
(source = vibrating surface+ baffle), or sound diffraction on irregular surfaces [8, 11].
The mathematical model describing the physical model both of those problems
includes, among others, boundary integral equation (BIE). There is a short review of

BIE applied to describe harmonic acoustic phenomena in time given in [6].
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In the problem of sound radiation by a source with a finite baffle the solution is
given by the Helmholtz— Huygens integral, where the acoustic pressure acting on the
surface of the source, as well as the vibration velocity of the vibrating surface, are
unknown. Both acoustic parameters are coupled with each other by a BIE. The
vibration velocity in selected points of the source can be determined experimentally,
whereas the acoustic pressure is the solution of BIE. Practically, the application of
numerical methods is the only possible way to solve these equations. Then, after the
discretization, the integral equation is replaced by a system of algebraic equations.

The number of unknowns and constans in the system of equations is proportional
to the number of discrete elements. Too many discrete elements complicate the physical
model causing it’s mathematical equations to be difficult in solving. Therefore it is
evident that the elaboration of a model having the minimum number of elements and
giving a good result (an optimal model) should be aimed at. The purpose of this paper is
to work out a model with minimal number of the discrete elements which ensures the
theoretical predictions to fit in with experimental observations and measurements.

The discretization including source geometry and acoustic pa,rameters should be
the first step in modelling.

In the examples of radiation and diffraction problems analysed and published so
far a constant value of acoustic parameters on a source of an arbitrary geometry was
assumed. Then, above all, the fundamental discretization is imposed by the source
geometry (e.g., the boundaries). An additional regular discretization, if needed, is
carried out between the lines of the fundamental discretization. The division to
smaller elements is carried out until a good model is approached. The model obtained
using this method, however, includes too many elements.

In this paper, addition irregular discretization was proposed in order to reduce the
number of model elements. In the literature concerning sound radiation and
diffraction, any additional irregular discretization of the source (any optimal model
problem) has not been discussed yet.

According to the publication [5], it appears that the regular discretization and all
irregular ones do not have any theoretical base.

Systematization of the difficulties appearing in source modelling problems
(including discretization) and providing the rules of finding their solutions is taken up
in the publication series Acoustic Modelling of Surface Source. This paper is the first
one in this series.

The irregular discretization problem is examined basing on the example of a plane
source where the vibration velocity function is not constant. The problem may be
simplified due to the fact that the discretization of the source geometry is no longer
needed and only the vibration velocity has to be discretized. The mathematical
description is also simplified. This case is not described by Helmholz—Huygens
integral with BIE but only by Helmoholz— Rayleigh integral.

In general, plane surface source modelling is carried out-in the following stages:

1 — the vibrating surface is discretized into j=1, 2,...,J elements;

2 — vibration velocity points (-points) are selected on each element, i=1, 2,...,I;
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3 — basing on the measured discrete values of the vibration velocity the vibration
velocity on each element is evaluated in one of the three ways:

3.1 — as the arithmetic mean of vibration velocity values measured in a large
number of the i-points. Then it is assumed that every point of the given
element is vibrating with the arithmetic mean vibration velocity. It is
assumed, therefore, that the element vibrates in the same way as a piston.
A set of all pistons generates a piston model of the source (PM™). It has to
be observed that the measurement of the vibration velocity values in larger
number of i-points will not affect significantly to the value of the average
vibration velocity. The quality of the model created in this way results
from only the discretization error, i.e. the error resulted from the

insufficient large number of i-points is not be included in the model.

3.2. — as the arithmetic mean of the values of the vibration velocity measured in
the finite number of i-points.

Similarly as in item 3.1., a piston model (PM?) is considered. The quality
of this model is caused by the discretization error as well as by the
insufficiently large number of the i-points.

3.3. — anappropriate shape of vibration velocity function is reproduced making
use of interpolation functions. The source elements with such built
vibration velocity functions constitute so called the interpolation model
(IM).

For the assumed vibration velocity function, the convergence of the model with
the source can be analysed. It can be done by examining the acoustic fields calculated
from the Helmholz— Rayleigh integral and from “discrete” form of this integral.

In acoustic the divergence of the model with the exact one can be defined, for
example, by the distance between their directivity functions (DFs) i.e.:

1 — an absolute distance;

2 — a relative distance;

3 — a mean square distance.

Applying the second or the third option and the irregular discretization a minimal
relative or mean square distance is sought for the given number of elements. The
problems outlined above belong to the optimization problems [12]. Therefore, the
source model obtained as a solution of these problems is called the optimal model.

In this paper, a plane axisymmetric source was considered where the vibration
velocity function is axially symmetrical, the source axis (the z-axis on Fig. 1) being the
axis of symmetry of the velocity function. A line of the source is the results of a cross
section of such source made by a perpendicular plane. The discretization of the source
reduces to the discretization of the line of the vibration velocity function. A vibration
velocity function without nodes was assumed on the vibrating surface. The value of
the constant vibration velocity was calculated as the average value of the vibration
velocity function (see item 3.1). Applying the irregular discretization, the minimal
number of elements was looked for by the analysis of the absolute distance between
the exact DF and DF of the model.
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2. Acoustic field of an axisymmetric source

The acoustic field of a circular vibrating surface located in an infinite and rigid
baffle is calculated using Hyugens— Raleigh integral [9]

1
Pux =3, [(pHIGCS, @
where in polar coordinates
dS=pdpdgp, (2.2)
G(r)_exp[r(;jgpﬁ)]’ 23)

Vibration velocity of an axisymmetric source will be denoted by vy(p). Such
source radiates an axisymmetric acoustic field, constant for each constant angle ¢,
and pp. This field can be considered in a plane crossing the source axis of symmetry
and described by angle ¢,=const. Acoustic field of the axisymmetric problem is
described by formula (1) for M=0 and for e.g. ¢, =0, that is

2x
¢m=%rj von(p) [I G(r)drﬁ]pdp- (24)
P 0

It is possible to calculate analytically the integral inside the square bracket. Thus the
evaluation of the axisymmetric field reduces to calculation of the integral (2.4) only
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Fig. 1. The geometry of the problem.
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over the source cross section. However the calculation of the integral requires the
separation of integration variables p, ¢ by expanding the integrand in a series of
special functions [7]. To calculate the integral in bracket it is convenient to apply the
numeric integration.

Formula (2.4) is valid for any distance of point P from the source. But only the far
field was considered in the present publication. In the far field the Fraunhofer
approximation is applied to formula (2.4), Fig. 1. In the far field:

; = ri » F=r,—pcos(p,r,)=r,—sinocos(p— ¢p). (2.5)
0

Inserting (2.5) into (2.3) and then to (2.4) one gets

Don(a)=C, Q(), (2.6)
where
Co=ﬂr:i_k;r_o) , 2.7
Qon(®) =27 [ ven(p) [? exp(ikp sina cosq&)dq&:lp dp. (2.8)
L 0

The integral in the square bracket is given by the following formula [7]
i
| exp(ikp sina cosg)d ¢ =2nJ (k p sinc). 2.9
0

Therefore,

Qon(®)=Jvas(p) Jy(kpsina)pdp (2.10)

Formula (2.6) expresses the acoustic potential in the far field and is the starting point
for the calculation of the cross section of the DF.

The DF is defined as a ratio of a field radiated in any direction to the field (2.7)
radiated by a point source located in the center of the coordinate system (2.7).
Therefore, the DF is given by formula (2.10) ‘
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3. Acoustic field of the piston model

3.1. The-average value of the vibration velocity function

A constant vibration velocity on j-element was calculated employing the definition
of average function value which, in polar coordinates, is given by the following formula:

=— I von(p) dp, (3.1

J‘G

where G, G, are boundaries of the discrete j-element and
Li=G,—-G,. (3.2)

This formula should be considered as the arithmetic mean of vibration velocity
calculated from the velocities measured in large number of i-points on the vibrating
surface (see “Introduction”, item 3.1).

If the discretization is irregular the boundaries G,, G, of the j-element are chosen
arbitrary. However, if any of the j-elements (or the whole vibrating surface) having
the boundaries G, G,, is divided into j=1, 2,...,J smaller elements equal to each other
than the new boundaries are given by formula

gl=G]+(j_ ])(Gz_Gl)/J:
(3.3)
£,=G,+j(G,—G)/J.

The formula for the DF of the considered model is obtained by inserting formula (3.1)
into (2.10). In this way one gets,

J
Of(@)= Y. v} [ J(kpsina)pdp. (3.4)
=1 p
If formula (3.1) is inserted into formula (2.4) then a “discrete” form of Helm-
holz— Rayleigh integral is obtained for both the axisymmetric as well as the far field
problem.

4. Numerical calculations

A piston model was analysed to establish dependence on:

» vibration frequency,

» shape of the vibration velocity function,

» place of the vibrating surface within the baffle.
The sinus function was chosen as the vibration velocity function. Three axisymmetric
sources were considered with axes:

* crossing the maximum of the sinus function (Fig. 2a)

» crossing the zero point of the sinus function (Fig. 2b)
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Fig. 2. The shape of the vibration velocity functions.

* outlying the sinus function (Fig. 2c), in this case a ring shaped source is
obtained.

It should be noted that sinus is involved in the free vibration modes of vibrating
plates and membranes. The discretization method given in this publication can be
therefore applied to the model of vibrating surfaces of this kind.

The piston model with the DF fulfilling the criterion of concidence with the exact
directivity was sought in two ways:

* by increasing discretization,

» for a fixed discretization the sizes of some pistons were changed.

The following symbols were introduced:
PM; — a piston model composed of J — regular pistons,
OPM; — an optimal piston model composed of J — irregular pistons.

While searching OPM, numerically the boundaries between the pistons were
changed with 0.01 step. Decreasing the step requires long calculations. For the
practical purposes it was recognized as the OPM, gives approximate DF (by shape
and value) to the exact DF has minimal number of pistons. The difference between
shorp minima of the exact DF and approximation one may be described by an angle
Ax while the positions of both patterns maxima are approximately described by the
values ADgy (4o = 0.025 [rad] = 1.43°, AD,,(x) = 2 [dB] were assumed).

The results of the calculations are presented in figures that present:

I — the cross section of the vibrating surface,

2 — the plots for the following DF (or their fragments):
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2.1. — calcualted exactly,

2.2. — PM; for the number J of pistons that makes it possible to find
OPM ,* fulfilling the assumed requirements,

2.3. — OPM;,

24. — PMy, with the number of pistons J,> J, for which the DF is close to
the DF of OPM p,.

3 — a table giving an explanation to the abbreviations on the section and
diagrams.

The advantage resulting from the irregular division of the vibrating surface can be
seen from the presented results. Sharp minima were cut from some curves to make the
remainder of them more legible. The DF were expressed in [dB]. Regardless of the
shape of the vibration velocity function, the reference field was sought as constant

value field with the cross section v (p) =cos(mp/2b), existing in the axis of symmetry
(z-axis).
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Fig. 3. The influence of the vibration frequency on the directivity functions for the source vibrating with the
-velocity v, (p) = cos(np/2b): curve 1 —k=2.5 (v = 130 Hz), curve 2 — k=5 (v = 260 Hz), curve 3 — k=10
(v = 520 Hz), 2 € {0,/2).
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In the first group of numerical calculations the influence of the vibration
frequency (expressed by wave number k) on the number of pistons in the model was
considered. It was assumed a fixed position of driving surface in the baffle and the

following vibration velocity function

The DF for different vibration frequencies were presented in Fig. 3. From this
figure it follows that vibration velocity influences strongly on the shape of the DF.
Then for each of the frequencies mentioned above an optimal model was sought.
DF for k=2.5 was presented in Fg. 4, for k=5 — in Fig. 5 and for k=10 — in

Fig. 6.

directivity function [(dB1]

von(p) = cos(mp/2b),
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Fig. 4. The directivity functions for k=2.5, v =cos(np/2b)
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The figures show that the optimal model was obtained for different number of
pistons depends on the frequency. For k=2.5 the optimal model has two pistons, for
k=5 — three pistons, for k=10 — four pistons.

It has been shown that for the same number J of pistons OPM 7 gives far better
results than PM. The divergence between these models can be better observed for
higher frequencies. By the model optimization it is possible to get DF quite similar to
DF of PM j, for less number of pistons. The number of pistons in PM , depends also
on frequency.
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Fig. 5. The directivity functions for k=35, v, =cos(np/2b).
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Fig. 6. The directivity functions for k=10, v, =cos(np/2b).

II. The second group of calculations concerns the influence of the shape of the
vibration velocity function on the number of pistons in the model. The function

von(p) = sin(np/2b), (4.2)
was chosen.
It should perhaps be noted that this is a symmetrical function with respect its
maximum. The calculation results obtained for function (4.2) were compared with
that obtained for function (4.1). The results are shown in Fig. 7 — for k=5 and in
Fig. 8 — for k=10.

Comparing the Figs. 5 and 7 and afterwards the Figs. 6 and 8 it can be observed
that the number of pistons in OPM; as well as in PM,, does not depend on the shape
of the examined function. For the same frequency, however, the dimensions of the
pistons are different for different function shapes. In this case the number of pistons
also depends on the vibration frequency (Fig. 7 and 8).
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Fig. 7. The directivity functions for k=35, v, =sin(np/h)

II1. The last group of calculations concerns the influence of the position of the
vibrating surface in the baffle on the number and dimensions of the elements. The
function

von(p) =sin(n(p—a)/(b—a)), 4.3)

as vibration velocity was chosen. The source having such vibration velocity is a ring.
Its internal and external radii were assumed to be a=1 and b=2, respectively. The
calculation results were shown in Fig. 9 for k=5 and in Fig. 10 for k= 10. The figures
show that for the chosen position of the ring the number.of pistons increases with
increasing frequency.

It may be observed, comparing Figs. 7 with 9 and next with the Figs. 8 and 10, that
the boundaries of the pistons in OPM, depend on the position of the ring with respect
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Fig. 8. The directivity functions for k=10, v, =sin(np/b).

to the source axis. It turns out that the number of pistons also depends on the ring
position. E.g. OPM,_, fulfilling the assumed requirements has not been found for
a=4, b=5. Any OPM, for />4 has not been sought because of the fact that such
a consideration is rather tedious.

The influence of the changes the boundaries of OPM,_, on the shape of DF was
presented for function (4.3) for k=10. For fixed G, and G, boundary G, was changed
with the step 0.01. The results are presented in Fig. 11.
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That figure shows that changes the boundaries in the OPM, both the im-
provement of the DF in one place and its deterioration in the other place. For
example, the increase of the optimal boundary from G,=0.8 to G,=0.81 makes
approach close together the DFs (the solid line and line 2) near the baffle at the cost of
pushing the minima away each other for G,=0.79, the result is inverse. The changes
in the boundaries of G, and G, similarly influence on the DF.
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Fig. 9. The directivity functions for k=5, a=1, b=2, v, (p) =sin(n(p—a)/(b— a)).
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Conclusions

A general conclusion resulting from this publication is that, for a constant number
of elements, an optimal piston model gives the directivity function better than any
piston model obtained as a result of regular or irregular discretization.

In the examples of vibration velocity functions examined above, the number of
pistons in the optimal piston model does not depend on the shape of these functions.
The piston boundaries in the model, however, varies.

For any vibration velocity function the position of the vibrating surface influences
on both the pistons dimensions and on the number of pistons in the optimal model.
For slight changes in the vibrating surface the number of pistons does not change.
Their dimensions, however, do change.

The conclusions given in this publication may appear to be useful for modelling
the source with a finite baffle and with a vibration velocity function of varying form
on the vibrating surface.

In view of the time needed for calculations, it seems that the source regular
discretization, of the source which was proposed by many authors for solving
boundary integral equations, does not appear to be a preferred one.
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