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ACOUSTIC MODELLING OF SURFACE SOURCES
PART II. PISTON MODEL, ASYMMETRICAL FUNCTION OF VIBRATION VELOCITY,
DISCRETIZING ERROR, AXISYMMETRICAL PROBLEM

A. BRANSKI

Institute of Technology
Pedagogical College
35-310 Rzeszow, ul. Rejtana 16a

In the paper, by applying irregular discretization of the axisymmetrical plane source,
an optimal piston model was obtained. An asymmetrical function of the vibration velocity,
with regard to its zeros was assumed on vibrating surface. The vibration velocity of the
single piston was calculated as an integral mean value of the vibration velocity of the
vibrating surface. Then the model of the source consists of an array of driving pistons. In
order to select the optimal position of the boundary between the pistons, the measure of
the divergence/convergence between directivity function of the model and exact was
analysed. The least squares distance and uniform distance were taken as a measure of
deviation of the directivity function of the model from the exact one. Numerical cal-
culations showed that the irregular discretization gives particularly good results for
asymmetrical function of vibration velocity. It was also proved that the least squares
distance is a better measure of directivity functions of the model and exact one the uniform
distance. Its variation, as a function of vibration velocity or position of the vibrating surface
in the baffle or nondimensional wave number, is more regular than the variation of uniform
distance.

1. Introduction

Modelling acoustical source with arbitrary geometry is the subject of a lot of
articles, e.g. paper [5]; see also Refs. given in [5]. Mathematical model of such sources
contains, among other things, boundary integral equations (BIE). Boundary element
method (BEM) is applied to solve BIE. The first step of the modelling is disc-
retization. Both geometry surface of the source and the acoustic variables are
discretized.

In literature cited in [5], sources with arbitrary geometry were considered, however
constant, acoustic variables were assumed on the whole surface. In these papers,
planar elements of the surface were utilized, and in addition, the acoustic variables
were represented by the constant value on each element. In such case, discretization
applies mainly to geometry. Primary discretization is imposed by the singularities of
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the surface, e.g. sharp edges. More refined model may be obtained if the elements of
primary discretization are discretized again [4, 5, 6].

In paper [3] a planar source was examined, but vibration velocity function not
constant was assumed. In this instance, vibration velocity is discretized, but not
the surface of the source. Furthermore, in Ref. [3], general rules of primary
discretization of vibration velocity with nodal lines were given. In Ref. [3] as in
Refs. mentioned above, the secondary regular discretization was applied to
improve the quality of the model. As expected, if the number of regular elements
was increased very good piston model was obtained. However, it contains too
many elements. Using too many elements is a burden to the user and is also not
computationally efficient.

In order to partially remedy the difficulty, irregular discretization was suggested,
Ref. [2]. As an example, planar axisymmetrical source was considered which creates
axisymmetrical surface of the vibration velocity. Therefore, due to the symmetry of
the surface, only its cross section line has to be discretized. As it was pointed out in
Ref. [2], the irregular discretization gave a good irregular model which contained not
so many eclements as the regular model. The irregular model which contained the
minimum number of the elements and whose acoustical field fulfilled the assumed
boundary convergence to the exact acoustical field was called optimal model.

In Ref. 2, sinus function was chosen as the function of vibration velocity. This
function has the maximum halfway along the distance between zero points, i.e. it is
symmetric to its maximum. The absolute distance (in dB) was assumed as the measure
of the convergence.

In this paper, a planar axisymmetrical source was considered. But the shape of the
vibration velocity is not symmetric to its maximum. Two new measures of the
convergence were taken into account, namely (1) the least squares distance and (2)
uniform distance nondimensional between exact directivity function and the direc-
tivity of the model.

In the paper two problems were solved. First, the influence of asymmetry of the
vibration velocity, frequency of the vibration, place of the vibrating surface in the
plane baffle on the optimal piston was found. Secondly, it was pointed out that,
generally, the least square distance is a better measure of convergence between
directivity functions than the uniform one.

2. Acoustic field of the axisymmetric (AS) source

In this and the next section, an outline of the theory is presented upon which the
calculations are based. A detailed treatment of the theory can be found in Ref. [2].

The acoustic field of the vibrating surface placed in an infinite plane and rigid
baffle is given by Huygens— Rayleigh integral. Assuming fully AS source (i.e. both
the source shape and acoustic variables are independent of the angle of revolution of
the source), an acoustic field is AS too, and Huygens — Rayleigh integral takes the
form [2]
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1 er
Py = 5 [ von(p) [ | G d¢]ﬂdp, (2.1)
where B 3
_expl—ikr(p.)]
G(r) T r(p,¢) ] (2.2)
von(p) = C, sin(mp) exp(— C,p), (23)

k — nondimensional wave number, vyy(p) — vibration velocity of the driving surface
asymmetrical to its maximum, C,, C, — coefficients, they have been selected to fulfil
the assumed asymmetry of the vo(p). General geometry of the radiation problem is
given by Fig. 1.

Fig. 1. Nomenclature for a radiation problem.

In the far distance away from the source, the Fraunhofer approximation is applied
(Ref. [2]).

o

1 _1 .
L= r = ro—pcos(p,ry) =r,— psiny cos(¢ — ¢p). (24)
0

Substituting Eq. (2.4) into Eq. (2.1) we obtain

Pon(1)=C, Qo) (2.5

where
C,= ﬂ(;_‘ﬂ ) (2.6)
OQon(?) = vox(p) J(kpsiny)pdp, 2.7

J(x) — Bessel function of the first kind and zeroth order.
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In a great distance from the source, the directivity function is usually analyzed. To
obtain directivity function the acoustic field Eq. (2.5) may be normalized by the
acoustic field Eq. (2.6), generated by the point source set in the origin of the
coordinates. Then, under these circumstances, the directivity function is given by
(2.3

3. Acoustic field of the piston model

The mean vibration velocity

The constant vibration velocity on j-element as the mean velocity — v over the
driving surface of the source has been calculated. If AS case is considered, the mean
velocity is given by the definition

1 Grz
U'}’=1‘ I von(p) dp, (3.1)

J G,

where L;=G,,—G,,.
The model with the constant vibration velocity on the elements of the surface is called
the piston model.

If the regular discretization is used, the dimension of each element is the same and
G, G,, may be given analitically, see Ref. [2]. However, in the case of irregular
discretization, the boundaries of elements are arbitrary chosen so that an optimal
piston model may be obtained. As shown in Ref. [2], the dimensions of elements in
optimal piston model are different.

If Eq. (2.6) is substituted into Eq. (2.7), the directivity function of the piston model
is obtained

J

Qi)=Y v} | J(kpsiny)pdp. (3.2)

Jj=1 P

4. Verification of the model

The quality of the piston model may be improved in two ways if:
1 — the discretization is increased,
2 — assuming that the number of pistons is constant the dimensions of the pistons are
changed.
To simplify the notation, the following labels are introduced:
M, — regular piston model,
M; — irregular piston model.
First of them consists of J equal elements and the second contains J different
elements.

To analyse the position of directivity functions in relation to each other
(convergence/divergence of the directivity functions) optimal methods may be used.
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Then, the optimal model ought to be built. The main problem of optimalization is the
minimization or the maximization of some function subjected to some constraints.
The function whose the least or the greatest value is being sought is called an objective
function and the collection of the values of the variables at which the least value is
attained defines the optimal solution.

To simplify an optimalization analysis, two element model (/=2) is chosen.
Assume that the constraints are given by

r,—G,=20, G =0, 4.1)
where
G,=G.

It is required to choose among the set of G such G that would minimize the objective
function.

The objective function may be:
» least squares distance between Qon(y) and Qgu(y,G) or
» uniform distance among the points of Qu(y) and Qa(y,G).
The directivity function Q& (y,G) is a function of G, Eqgs. (3.1) and (3.2), in which
G appears in boundaries of integrals. Then, the optimalization belongs to nonlinear
optimalization. Applying one of the methods of solving nonlinear optimization model
(Ref. [7]), an optimal solution is obtained. The model which is connected with an
optimal solution may be called optimal model.

4.1. Least squares distance between directivity functions

Optimalization of least squares distance is closely related to the least squares
method [1].

It is necessary to approximate the function Qu(y), i.e. the exact directivity
function, with the function Qf(y,G), i.e. the directivity function of the model. An
approximate function Q(y,G) may be written

J
oR (.G =Y v}(G) f1,6),

j=1

where the base functions are

1i0:6)= | Jo(kpsiny)pdp.

The number
w2 12
d(Qon: Qon)=d|(G)= { | [Qon(y)— Q7,6 d?} § 4.4)

is called the least squares distance between functions Qo (y) and Q(7,G).
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The main problem of the least mean method is to find such a function Q(,G) so that
the least squares distance ought to be minimal. Thus, the main aim is to find the
function Qg%, (y, G).

In fact, suitable coefficients v"/(G) are looked for. This means that suitable vibration
velocity on the elements are looked for. Analysing the least squares distance d(G)
between directivity functions, the acoustical field of the model is investigated directly,
however the vibration velocity on the elements of the model is investigated indirectly.

The problem mentioned above may be solved as optimalization problem, i.e. the
minimum of the d(G) is searched without regard to function Qg (y,G). As a result, an
optimal model is obtained which is the best approximation of the source in terms of
the least squares distance between directivity functions.

4.2. Uniform distance between directivity functions

Optimalization of the model may be carried out if the uniform distance between
directivity function as an objective function is chosen. The objective function is the
distance d,(y,G) between some point A (x,y,) of one directivity function and the
straight line which passes through neighbouring points 4 (x,,y,), A,(x,,y,) of the
other directivity function, Fig. 2. The distance d,(y,G) may be accepted as the measure

!

directivity function -y

|
I
1 1 I 1 | I 1 1 1 | | 1 I 1 l
0 angle gamma -x ’ 1

Fig. 2. Uniform distance d, between the lines as a function of angle gamma.
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of the distance between directivity functions at point 4. Let point B be a projection
on the straight line 4,4, of the 4 (x, y,). This measure will be the best if the
projection of B is the midpoint between points 4,, 4,. The distance d,(y,G) can be
expressed in terms of the coordinates of the points 4, 4,, 4, by the formula

al'x0+ a2y0+ aS
J ai+al

d,(y,G)= (4.5)

where
Q=Y 7Yy =X, Xy A= XY, VX,

It should be noted, that if the acoustical field of AS source is analyzed, the acoustical
pressure [Pa] or the directivity function [dB] are displayed along the axis of abscissa.
Therefore, the concept of the distance between directivity functions introduced above
is meaningless for two reasons. First, a unit of the distance d,(y,G) has no physical
sense. Second, because of the different scales of the axis the influence of the values of
ordinates and abscissas on the value of the distance d,(y,G) will be different. This
difference is particularly visible if the directivity functions are given in dB scales
considered.

In order to overcome these difficulties the directivity functions ought to be written
in normalized coordinates. These coordinates are nondimensional and they are
transformed so that they may take values {0, 1}.

For the directivity functions of which the ordinates and abcissas vary between
0 and 1 the nonlinear programming methods point out the boundary G of optimal
two-piston model (M, J=2).

Applying nonlinear programming methods to such complicated function as (4.4)
or (4.5) is very difficult [7]. It is convenient to calculate the value of objective function
for the discrete values of G, and next to chose that G for which the function possesses
a minimum.

If the least squares distance is the objective function, then for the set of G,, the set
of values d, , is calculated; the minimal value d; y;, points out the boundary Gy, of the
optimal model.

By using the uniform distance as an objective functions the searching for the
boundary Gy, of optimal model overlooking nonlinear programming method is fairly
difficult. It can be done by using the following approach described below. For the
constant G, a finite number of u points A(y,) of the directivity function Qg is
determined. For each point A(y,) the distance d,(y,,G,)=d,,.(y,) from the directivity
function Qgi(y,G,) is searched. In this way the set of values d,,(y,) is obtained from
which the maximum of d, ,, suitable to G, ought to be chosen. This procedure outlined
above ought to be repeated for the set of G,. From the set of d,, ,, the maximum value
of d, mia is chosen which is pointing out G,, of the optimal model. Using the uniform
distance as a measure of divergence of the acoustic field has such an advantage that
for constant G, it is possible to investigate d,,(y,) as a function of the angle y.
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It is obvious that for separate values of G,, regions of three dimensions
space described by angle y, can be found where the divergence of directivity
functions is the biggest. As shown in Fig. 2 the biggest divergence is at
minimum or maximum and it is equal dym=d,>d >d,>d, It is not necessary
to investigate d,,(y,) the full interval of the angle y. Only maxima or minima
of the directivity functions pointed out d,,(y,). The jump of discontinuity
from d, to d, should be noted.

5. Numerical calculations

The numerical calculations were performed to solve two basic problems: 1 — to
establish the influence of the asymmetry of the vibration velocity function, frequency
of vibration and the place of driving surface in the baffle on the optimal model,
2 — to point out a better method of investigation of the convergence (divergence)
between directivity function of the model and exact one. Furthermore it was shown,
assuming asymmetrical function of vibration velocity, that the irregular piston model
gives a better result then the regular one if the number of elements in the both models
is the same. To simplify the numerical calculations a two-elements model was
considered, i.e. J=2. Further in the paper, to simplify the notation, the subscript
J has been dropped out.

The aim of the first calculation is to show which measures of divergence should be
optimized to obtain a better optimal model. These calculations consist of three steps
marked L1, 1.2, L.3.

L1. For fixed position of the vibrating surface in a baffle, a=0, =1 and
k=2.5, the place of maximum of the vibration velocity »,,, p., was changed. For
p.=1{3, 4, .5, .6, .7} the detailed results were presented in Figs. 3, 4, 5, 6,
7 respectively.

Each figure consists of part A and B.

Part A presents:

1 — a picture of vibrating surface,

2 — plots:

— least squares distance 4,
— uniform distance d,, ,
— table which explains the symbols.

Part B presents:

1 — cross-section of vibrating surface and M,, which is obtained as a result of
optimalization of d,
2 — directivity functions:

— exact (solid line),

— of the model M,,

— of the model M,, .

— of the model M,, which is obtained as a result of optimalization of d,,

— table which explains the symbols.
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Curves d,,, d,, in Fig. A and directivity functions M,,, M,, in Fig. B respectively are
marked by the same number and were plotted by the same dashed line so that the
figures should be better read.

Examination of Figs. 3—7 gives two conclusions:

I — optimalization of least squares distance d;, gives somewhat better optimal
model than the optimalization of uniform distance d,. The difference between
directivity functions of the both models is particularly seen near the axis of the source.
2 — both models, M, and M,,, give directivity functions better than M,. The
exception is M, of the source of which vibrating velocity is symmetrical, see Fig. 5 line
2, and which gives better directivity function but only near the axis of the source.

The discrete values of G,; and G,, as a function of the position of maximum of the
vibration velocity v, (p,) are presented in Fig. 8 where a=0, b=1, k=2.5. The solid
line indicates the position of maximum p,, dashed line 1 — the positions of G,;, dashed
line 3 — the positions of G,,. The discrete values p,, G,;, G,, were marked by light
points. In Fig. 8 the horizontal line gives the values of p,, G, G,, for one source.

" et — ; e LS
u‘;_x
N
L s
bRy
- . lli‘x‘ I—
\ 3\\
__....Q\ - e
\"T \
N ‘
&
‘-3“:“*\\
T-di(G) b B
3-du(G)
ST T Y T T O A A O 0 OO AN A O A AT
0 02 04 06 08 10

G? ’ Gd

Fig. 8. Places of the p, — solid line, G, — line 1 and G, — line 3; a=0, k=2.5.

Examining Fig. 8 the following conclusions may be drawn:

* the plot of G, is more regular than G,

* near p,=~.5, i.e. for a little asymmetry of the vibration velocity, the boundaries
G, G,, pass from one side of the maximum v_,(p,) to the other. That means that
such p, exists for which one-piston optimal model may be found.

» surface of the piston which contains the maximum of the vibration velocity
decreases if v,,,(p.) removes from p.=.5 to both directions.

L.2. In this case, the value of k was changed while the fixed position of the
vibrating surface in the baffle (a=0, b=1) and constant vibration velocity (p,=.3)
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Fig. 9B. Directivity functions of the source, M, M, and M_; k=10, a=0, b=1, p.= 3.

were assumed. The analytical directivity function (solid line) and next directivity
functions of the M,, M, and M,, are displayed in Fig. 9A, B for discrete values of
k=5, 10. As can be seen in Fig. 9 the models M, and M,, give better results than M.
In Fig. 9B, it can easily be seen that the plot of the directivity function of M, is even
other than the exact one. In Fig. 10, the discrete values of G,; and G,, as functions of
wave number k are shown for a=0, b=1, p,=3. The curve of G, is more regular than
the curve of G,,. For wave number k> 7 these curves coincide to each other.
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L3. The position of vibrating surface in the baffle a (h=a+ 1) was changed where
p.=3, k=2.5 were asssumed. Due to the axisymmetry of the problem, the assumption
of a>0 changes the circular source into a ring-shaped one. For values a={0.5, 1.0}
the directivity functions, the same as these appearing in 1.2, are presented in Fig. 11A,
B respectively. In Fig. 11 it can easily be seen that for both values of a directivity
functions of M,, and M,, are somewhat better than that of M..
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Fig. 11A. Directivity functions of the source, M, M and M_;a=.5, p.=23, k=25
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In Fig. 12, the discrete values of G,; and G,, as a function of ’a” were presented.
The variation of G, is more regular than that of G,,.
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Fig. 12. Values of G, and G, as a function of a; p,=.3, k=2.5.

The aim of the second part of calculations is to show that for the same number of
elements M,, gives better results than M,. It was proved by giving the number of
elements J of the model M, whose directivity function is more similar to exact one
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than the directivity of M,,. In the case under discussion, the numerical calculations
were done in three steps marked II.1, I1.2 and IL.3.

IL1. On the base of data of Fig. 8, the number of elements J of the M, was found
as a function of the position of maximum of the vibration velocity. The results are
given in Table 1.

IL.2. On the base of the data of Fig. 10, the number of elements J of the M, was
found for the different values of the wave number k. The results are given in Table 2.

IL3. On the basis of Fig. 12, the number of elements J of the M, was found as
a function of the position of the vibrating surface ion the baffle. The results are given
in Table 3.

Tables 1—3 show that for each investigated case model M, which consists of
J elements may be replaced by a better optimal model M,, which contains less than
J elements.

Table 1
P, 2 i3 4 5 .6 T 8
J 3 4 3 3 3 4 3
Table 2
2 3 4 5 6 T 8
4 4 3 3 3 3
Table 3
a 2 3 4 .5 6 7 8
J 4 4 4 4 4 4 4

6. Summary and conclusions

The calculations performed in this paper point out the advantages of applying
irregular discretization to solve radiation acoustic problems. In all test cases
considered the irregular piston model gave better results than the regular model
assuming the same number of elements in both models, see Tables 1 —3.

It was proved, see Fig. 3, 4, 5, 6, 7, that the irregular discretization gave
particularly good results for an asymmetrical function of the vibration velocity.
However, for symmetrical vibration velocity the irregular discretization gave worse
results near the axis of the source, but it simultaneously gave better ones near the
baffle, see Fig. 5. Thus the irregular discretization ought to be applied to the source
with asymmetrical vibration velocity.

The main conclusion is that the irregular discretization ought to be applied to
discretization of a source with arbitrary geometry and constant acoustic variables as
well as to source with arbitrary geometry and arbitrary acoustic variables.
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In the paper it was pointed out, see Fig. 8, 10, 12, that the least squares distance
was a better measure of convergence/divergence between directivity functions of the
model and exact one than the uniform distance. Optimalization of both measures
gave quite similar optimal models. However, dependently on the vibration velocity or
position of the vibrating surface in the baffle and the vibration frequency, the least
squares distance which assured the optimal model was more regular than the uniform
distance.

Other problem of irregular discretization of the plane sources are being inves-
tigated now. The results will be published.
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