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ACOUSTIC MODELLING OF SURFACE SOURCES
PART III. PISTON MODEL, ERROR OF THE MODEL, AXISYMMETRICAL PROBLEM

A. BRANSKI

Institute of Technology
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35-310 Rzeszow, ul. Rejtana 16a

Two piston models of a plane axisymmetric source were compared. In the first of them,
the constant vibration velocities of the elements were calculated as an integral mean value of
the assumed vibration velocity. However, in the other, as arithmetic mean value of discrete
values of vibration velocity. These models were compared for arbitrary discretization and for
optimal one. For both models numerical experiments were carried out, first of all, as
a function of the number of the discrete values of vibration velocity and the next as
a function of nondimensional wave number. Numerical examples pointed out the parameters
of such a source for which a “good” piston model may be built based on several discrete
values of vibration velocity.

1. Introduction

During the several past years the boundary element method has been applied to
various types of acoustic problems [4, 5, 6]. A considerable effort was made to develop
the computational techniques in the analysis of radiation and diffraction problems.
These problems, solved by the boundary element method, are closely linked to the
modelling of the source. The problem of modelling itself (discretization and the
methods of calculation of acoustic variables the elements) has no theoretical basis.

It seems that the first papers on modelling the acoustic surface sources problems
are [1, 2, 3]; this paper is their continuation.

The first step in modelling a plane source consists is the discretization of its
surface and of the vibration velocity. In the simplest model, the surface is replaced by
planar elements on which constant vibration velocity is assumed. Then the plane
elements of the model vibrate like pistons, and such a model of the source was called
the piston model [1].

The piston model of the source with surface of an arbitrary shape and constant
vibration velocity was considered in several papers, e.g.[4, 5, 6]. In such a case, only the
surface of the source is discretized, and portions of the surface are replaced by planar
elements. However, the vibration velocity of the planar elements remains constant.
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The piston model of a source with a plane and variable vibration velocity
on the surface was considered in papers [1, 2]. In the case of such a source,
only the vibration velocity was discretized and it was replaced by constant
values on the elements. In papers [1, 2] this constant value was as an integral
mean value of the vibration velocity v™.

The mean value is a rigorous one of an arithmetical mean value v of the values of
function given in an infinite number of points (I-points) see Refs. [1, 2, 3]. From
a practical point of view it means that in order to find the constant vibration velocity
in one element of the model, it is necessary to measure the vibration velocity in an
infinite number of i-points of the source (what is impossible) and next to calculate the
arithmetical mean value.

The first problem of this paper is to define the minimal number of i-points
necessary to calculate the v* which differs from v™ by an assumed values. It also means
that the model which has v* on the elements differs by an assumed value from the
model which has v™ on the elements. This difference was defined by analysing the
divergence of the directivity functions of both models. Assuming v™ on the elements
the model depends only on the discretization and not on the number of i-points. Then
the divergence between the model and the source may be interpreted as the
discretizing error [3], or the error of optimal piston model (M™E) whose elements
vibrate as ™.

To find the influence of i-points on the divergence of the directivity function, an
optimal piston model (M?%) [3] was considered. In this paper, the constant vibration
velocity of the elements were calculated not as v™ but as the arithmetic mean value v°.
Thus, the error of arithmetic mean value (v°E) will be added to the discretizing error.
The sum of these errors was called the error of the piston model (M*"E);
M7E+v"E=M"E. The errors mentioned above were analyzed for different numbers
of i-points as a function of shape vibration velocity, place of vibration surface in the
baffle and dimensionless wave number.

The second problem of this paper is to find the optimal piston model in which the
constant vibration velocity given on the elements depends on the number of i-points.
This problem, for the constant number of elements and i-points on the element means
finding the boundaries between the elements i.e. leads to optimal discretization. The
divergence between the directivity function of such a model and that of the exact
model depends on both the discretization and arithmetic mean vibration velocity.
Thus, it is a measure of the error of optimal piston model (M%E). Numerical
calculations, assuming constant vibration velocity, concerning the second problem
were made as a function of nondimensional wave number.

List of main symbols

M piston model .
M, (M,) optimal (regular) piston model
o™, (%) integral (arithmetic) mean value vibration velocity
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M™=M(@"™), (M“=M(1")) piston model of which elements vibrate at v"™(v%)

’E error of arithmetic mean value vibration velocity

M"E, (MTE) error of piston model (optimal piston model) of which
elements vibrate at v™

M°E, (MSE) error of piston model (optimal piston model) of which

elements vibrate at v°.

2. Directivity function (DF) of axisymmetric source (AS)

The acoustic field of a circular driving surface placed in an infinite rigid baftle was
considered. Assuming an axisymmetric vibrating velocity function, the axisymmetric
acoustical field is obtained whose acoustic potential is given by Helmholtz — Rayleigh
integral [3]. Directivity function of such an acoustic field normalized with the field of
point source placed at the origin of coordinates is determined by formula [3].

Oon(y) = | von(p) J(k psiny) pd p, 2.1)
where
von(p) = C, sin(mp) exp(— C,p), (2.2)

von(p) — asymmetric function of vibration velocity with regard to its zeros, C,, C,
— constants, they are so chosen that the function vy(p) should fulfil assumed
asymmetry, J,(x) — Bessel function of first kind and zero order, k — nondimensional
wave number, p, ¢, y — spherical coordinates.

3. Directivity function of the model

3.1. Arithmetic mean value of vibration velocity (v*)

For AS problem, the discrete data of vibration velocity given in i-points are described
only by coordinates p;. Arithmetic mean value of these data on J-element is defined by

1 I
u?=} > v(p). {3.1)
i=1
However, an integral mean value is
1 G
vi=— | vu(p)dp, (32
T

where L;=G,,—G,,.

The piston model of AS source is composed of sectors of the straight lines
vibrating at either »™ or v”. Directivity function of the model which consists of =1
2,....J elements is defined by Eq. (2.1). Substituting Eq. (3.1) or into Eq. (2.1) gives
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J
Oon(y)= _Zl v; [ Jo(kpsiny) pp (3.3)
where
v,-={';i QON(w)={gz,:$. (34)

4. Modelling errors

As mentioned in the introduction, the modelling errors arise at the stage of
discretization (discretization error — M™E or M™E) or at the stage of calculation of
arithmetical mean value vibration velocity on the elements (error of mean value
vibration velocity — v°E). Thus, it was assumed, that if integral mean value v™ on the
elements is calculated then the error v°E is equal to zero.

The deviation between exact directivity function and the model is the result of
modelling errors. There are a lot of measures of this deviation. In practice two of them
are applied:

* least squares distance: dj(...)

* uniform distance; d,(...)
where dy(...), d,(...) are functions of the number of elements (/) and of the boundaries
among the elements (G,, G,,...). In this paper, the analysis of modelling errors is based
on the investigation of d(...). A general definition of least squares distance of function
J(x) from g(x) is given by formula [3].

X3 1z
d,(f(x),g(x))=a’,(---)={ Lf(x)—g(x)]zdx} ; 4.1

where x,, x, — boundaries of integration.

In Ref. [3] it was pointed out that minimization of dy(...) belongs to optimalization
problems. In the paper minimization of d,(...) is taken as a condition for obtaining an
optimal piston model (M7%). The directivity of M™ assures the best convergence with
the exact directivity in the least squares distance sence.

4.1. Discretizating error (M™E)

Let the elements of the model vibrate at constant velocities which are calculated as
v, Eq. (3.2); to simplify, the index /" will be dropped out. If the directivity function
of the model Q™ is compared to exact directivity function 0, then

M™E=p(Q".Q), 4.2)

where 0"=Q"(/,G,,...). .
Because v™ does not depend on the number of i-points, then only discretization leads
to M™E.
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The error M™E may be reduced by

» more refined regular discretization; the number of j-elements (of the same shape
and dimension) is increased [1],

» irregular discretization; the number of j-elements is constant but their shape and
dimension are changed [2, 3].
Minimization of 4(Q™ Q) leads to an optimal piston model M7 for which the
discretizating error is marked as M7 E.

4.2. Error of mean value vibration velocity (v°E)

Let elements of the model vibrate with the constant velocity calculated as v, Eq.
(3.1). If the directivity function Q° of such a model is compared to directivity 0" (in
both models the same discretization is assumed) then

"E=d (0, Q") 4.3)

where 0°=0%J, G,....).

The error v*E may be reduced by:

» increase the number of i-points on the element (which are regularly located on
it). To investigate the effect of the number of i-points on the error v“E and,
consequently, on M°E, is the main object of this paper.

s irregular location of i-points on the element assuming the constant number of
these points. Here, this possibility will not be investigated.

Note that for constant discretization, i.e., for a constant number and size of the
elements, v*E(i=o0)=M"E.

4.3. Error of the piston model (M°E)

Let elements of the model vibrate with a constant velocity v* If the directivity
function Q° is compared to the exact one, then

M*E=p(Q".0). (4.4)

It can be seen that the error M°E depends on the discretization and on the number of
i-points to be taken to calculate the constant vibration velocities of the elements.

It should be noted that each of the mentioned errors may be expressed by
the other two

ME=v"E+M"E. (4.5)

5. Numerical calculations

The error M°E has already been discussed throughly in paper [3]. A model was
found for which d(J=2,G) takes the minimum. This model was called the optimal
model (M7%).
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In the first part of numerical calculations, based on M™, two errors are evaluated,
L.e. ME and v"E of the model M*. In order to find the influence of the number of
i-points on the model, assuming constant G™ of the model M™, the errors M°E and
V'E of the model M* were analyzed. The values of these errors are given for several
i-points as a function of:

I — asymmetry of vibration velocity; p,€{.2,.8), a=0, k=2.5 where p. — place
of the extremum of vibration velocity, a, b — inner, outer radius of driving AS surface
(b=a+1).

2 — place of the driving surface in the baffle; =3, ae (.1, 1), k=2.5,

3 — nondimensional wave number; p.=3, a=0, ke {1, 10).

The results are presented in Figs. 1, 2 and 3 respectively. The Figures consist of
three parts part (a) shows the picture of vibration velocity, (b) cross-section of
vibration velocity and ¢ error of the model M°E, (v*E).

Because of Eq. (4.5) the calculations concern only M“E error. The error v*E may
be read from Figs. 1—3 as a difference of ordinates M°E and M™E. In F igs. 1-3
based on Ref. [3], M™E is plotted by a solid line. However, error M°E, for different
number of i-points is plotted by dashed lines.

Regardless of the number of i-points assumed on one element, the following
conclusions may be noted:

Fig. 1: for p, = 0 the least error M“E is obtained. Next, the better model can be
obtained for i=3 rather than for i=o00 (p,=0 gives AS source whose maximum of
vibration velocity is at z-axis,

Fig. 2: the error M“E increases as an annular driving surface with a constant width
retreats from the z-axis,

Fig. 3: the error v"E decreases with the increasing nondimensional wave number k.
To verify the last conclusion for a larger range of k, in Fig. 3 the value M“E was given
for k=20.

Numerical calculations show, that for i=15 the relative error

_ | M°E(i=15)— M*E(i= o0)|

N M°E(i=0)

is equal to 37.5% for k=10 and 34.2% for k=20.
Table 1. Boundary G; of M, versus the number of i-points and the shape of vibration velocity (p.)

v'E

-100% (4.6)

I T L 5 7 9 11 13 | 15 | 3 ®
p. e

0 61 | 51| s6 | 56 | 56 | s6 | 55 | 55 | s
) a1 | 4| | 61| 64| 62| 61 | 57| w55

3 | 3 | a1 | a3 | 8 | 84 | 83 | 82 | 18 | 75 |

| 5 45 | 35 | 29 | 24 | 2 | a9 | a7 | o | 01 |
A 65 | 54 | 45 | a1 | 39 | 37 | 36 | 32 | 29

8 76 | 8 | 5 | s3] s | a0 [ a8 [ a5 | a3 |
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Fig. 1. (a) Picture of the driving surface, (b) Cross-section of the driving surface, (c) Model error (ME)
versus the shape of vibration velocity (p,).
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Fig. 2. (a) Picture of the driving surface, (b) Cross-section of the driving surface, (c) Model error (ME)

versus a place (value ,,a”) of the driving surface in the baffle.
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The second part of the numerical calculations is concerned with an optimal
two-piston model Mj. The vibration velocity of its elements was calculated as an
arithmetical mean value v*. The boundary G° of the model M? is presented in Table
1 as a function of assymetry vibration velocity and the number of i-points, k=2.5. In
the last column of Table 1, based on the paper [3], the boundary G” of the model
M7 was given whose elements vibrate at the integral mean vibration velocity v™.
Comparing values G; and G7 it may be noted that for a large number of i-points these
boundaries will be equal to each other.

Based on Table 1 containing only some of the results, for chosen number of
i-points, the error of the model M7 (marked as M;E) was calculated as a function of p,.
The results are shown in Fig. 4. Comparing the ordinates in Figs. 1 and 4 it is clear that,
for the same number of i-points, the error M? (Fig. 4) is considerably smaller than M°E
(Fig. 1). Furthermore, examining Fig. 4, it is interesting to note that for p, = 0 the
best results assures a smaller number of i-points identical conclusion arises from Fig. 1.

Figure 5 shows the effect of the number of i-points on the M“E for chosen values
p.- This figure shows that the increase in the number of i-points decreases the error
MGE only in the case p,#0. Otherwise, for p,=0 the error M2E also slightly increases
with the increasing number of i-points. It confirms the conclusion implied from
Figs. 1 and 4.

In the last part of numerical calculations, the boundary G? of the model M* was
found for different values of k and different number of i-points (p.=.3, a=0 were
assumed). Some of the results were presented in Table 2.

In the last two columns of Table 2, based on paper [3], the boundary G™ of the
model M7 was given. A comparison of the boundaries at the last two columns
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Fig. 4. Error of the optimal piston model (M ,E) versus the shape of vibration velocity (p,)
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Fig. 5. Error of the optimal piston model (M E) versus the number of i-points

Table 2. Boundary G of M® versus the number of i-points and the nondimensional wave number (k)

k\\‘“\‘ o3 5 7 9 | n | 13| 15 | 3 o
1 | 4 | a6 | a7 | a8 | s6 | s | &2 | 6 | ;|
2 | 30 | a1 | 43 | a4 | 88 | 86 | 84 | 9 | 75
5 41 | 56 | 63 | 65| 68 | &7 | &1 | 61 | &7
9 43 | 49 | 50 | 52 | 6 | 6 | 6 | 6 | 6
10 43 | 50 | 53 | 67 | 68 | 68 | 68 | 68 | .68

indicates that, for lower values of k, the covergence between G5 and G is rather weak.
However for higher values of k, several i-points on the element lead to G;=G7.

For boundaries G% and chosen values of i-points, given in Table 2, the error
M%12E) is plotted in Fig. 6 as a function of k; note the jump of k from 10 to 20. To
point out better advantages of an optimal discretization, the errors M“E (depicted in
Fig. 3) and M? (Fig. 6) were compared. Examining the ordinates in the two figures,
for particular k and i, it is clearly evident that M{E<M“E. Both MGE and M°E
decrease if k increases, but only M3 decreases if k<4.

In the last numerical example, for several values of k, the error Mj, (v E) was
investigated as a function of the number of i-points. Figure 7 shows the results; note
the jump of i-points from 15 to 31 and from 31 to co. Examination of the data shows
that the increase in the number of i-points ensures the decrease in the error ME but
the decrease is little for a big number of i-points.
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Fig. 7. Error of the optimal piston model (M,E) versus the number of i-points

Conclusions

From the example performed in the first part of the numerical calculations it
follows that, for arbitrary discretization, the error of vibration velocity »*E decreases
if the number of i-points increases (Figs. 1, 2, 3). This conclusion is not right if the
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maximum of vibration velocity is in the axis of the source (p,=0). In this case, the
smaller number of i-points on the element rather than greater one may be used to
build a better model; Fig. 4.

In the second part of the numerical calculation, first of all the boundaries G of the
model M% were looked for. Considerations show that G% depends on the number of
i-points on the element, nondimensional wave number k and on the shape of the
vibration velocity function. It was proved, quite similarly as in the first part, that vjE
decreases if the number of i-points increases except the case when p,=0; Fig. 5.

Furthermore, in the third part of the numerical calculation, it was pointed out
(Fig. 6) that, for low and high values of nondimensional wave number, several
i-points on the element are necessary to build a good piston model.

The numerical examples show that, for axisymmetric vibration velocity of the
plane source and for high wave number k, the good piston model may be build based
on several (but not arbitrary) known values of vibration velocity in i-points. The last
conclusion is confirmed by the fact that in all the investigated cases an optimal piston
model assured better results than the regular one.
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