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SCATTERING OF ELASTIC SURFACE WAVES ON A LOCALIZED
MECHANICAL LOAD OF THE SURFACE

A. DUKATA, J. KAPELEWSKI

Institute of Technical Physics
(00-908 Warszawa, ul. S. Kaliskiego 2/9)

This paper presents a model of scattering of elastic surface waves (ESW) on a single
reflective elements of dot structures loading the surface of a hexagonal structure with
a sixfold rotation axis, normal to the plane of propagation. Qualitative results obtained with
the use of TIERSTEN type boundary conditions [7] and reduced Green’s functions presented
by MARADUDIN and DoBrzYfski [14] are given for a rectangular dot. Resultant
components of the scattering amplitude were achieved with the utilization of an ap-
proximation of the stationary phase and approximation of far distances.

Przedstawiono model rozpraszania sprezystych fal powierzchniowych SFP na pojedyn-
czych elementach odbiciowych struktur kropkowych, obciazajacych powierzchni¢ osrodka
heksagonalnego z szesciokrotna osia obrotu w kierunku normalnym do plaszczyzny
propagacji. Podano jako$ciowe rezultaty dla kropki prostokatnej wykorzystujac warunki

- brzegowe typu TiErRsTENA [7] oraz zredukowane funkcje Greena podane przez
MARADUDINA i DOBRZYNSKIEGO [14]. Wynikowe skladowe amplitudy rozpraszania uzys-
kano wykorzystujac przyblizenie stacjonarnej fazy eraz przyblizenie dalekich odlegtosci.

1. Introduction

This paper is aimed at the study of the effect of scattering of an elastic surface
wave (ESW) on small mutually insulated loading centres considered as elements of
reflection lines (so-called dots). Here small means that the greatest linear dimension
of the centre is comparable to the length of incident wave. Such a dot is physically
made by applying a thin metallic film with required shape, by picking a shallow
groove, or by diffusion of another metal into the substrate, etc.

First devices applying the reflection of surface waves from dot arrays were
constructed in 1976-1977 in the USA [1-4]. In the first approximation these arrays
can be considered as discontinuous stripe structures, where the number of dots in
each line determines the reflecting power, i.e. causes amplitude weighting.
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In order to increase the efficiency of devices applying structures mentioned
above, theoreticians now investigate the influence of the shape of a single reflector
(dot) on the system’s response. Besides the classical paper [5] which applies the
method of partial waves to describe scattering on dots with circular symmetry
profiles paper [6] applies Born’s approximation for constructing a theory of
scattering on dots with arbitrary profile, on anisotropic substrate. Paper [6] also
contains a list of publications concerning mentioned above structures.

This paper contains a model of the scattering. It was built with the use of the
Green'’s function method, familiar from the mechanics of continuous media. It can be
applied to dots of arbitrary profile, located on the surface of a medium with
hexagonal structure or (after algebraic modifications) an isotropic medium (see
[14, 15]).

2. Formulation of the problem

Let us consider an elastic half-space loaded with a thin layer of material with
constant thickness h and a given shape. “Loaded” means that the velocity of an
acoustic transverse wave in the layer of material is lower than that of a transverse
wave in the substrate [7, 8]. Figure 1 shows the geometry of the problem.

%

X

a

FIG. 1. A rectangular dot located on the surface of an elastic half-space on which a plane surface wave with
wave vector kg is scattered: a, b, h — dimensions of the dot

In further considerations we apply the summation convention Differentiation
with respect to time is denoted with a dot above the symbol, and differentiation with
respect to the coordinates is donoted with a comma preceding the index. The
equation of motion for an elastic half space can be written as follows

Qﬁi = Tij,j+_fi’ (2.1)

where
T;; = Ciju(X)nu(x), (2.2)
Ciju(x) = 0(x3) Ciju» (2.3)

1
Nu(Xx) = i(uk.l +up4), (2.4)
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and
1, x3520
0(x;) = { .
0, x5 <0
Denotation T;; — stress tensor; n,, — strain tensor; u; — displacement vector,
o — density of the material of the half space, Cij, (X) — elast1c1ty tensor, dependent
on coordinates, C;;, — classical elasticity tensor, independent of coordinates,

f; — density of external forces acting on the half-space. Inserting (2.2)~(2.4) into (2.1)
and taking advantage of the symmetry of C;;, with respect to k, I, we have

oti; = 8(x3) Cizpathi +00x3) Cijratiy 1+ ;- (2.5)

3. Equation of the scattering

In order to determine the equation governing the scattering of elastic waves on
the described before type of disturbance, we will apply the method given in [9]. Let
us consider two fields, u; and v; in an undisturbed medium, which satisfy the
following equations of motion in the region R (elastic half-space, in our case)

oti; = 8(x3) Ciaggtty + 0(x3) Cijrthp 1 + f;- (3.1)
o¥; = 8(x3) Cizu Ukt + 0(x3) Cijua Vi + 9y (3.2)

where f, and g, as before are non-homogeneities in these differential equations.
If

u(x, t) = u,(x)exp(—iwt),
£(x, 1) = £ x)exp(—iw) i
v,(x, 1) = v;(x)exp(—iwi),
gi(x, 1) = g,(x)exp(—iw1),
then equations (3.1) and (3.2) are reduced to the following form
8(x3) Ciamtte, + 0(x3) Cijrathy 1+ 00w+ f; = 0, (34
8(x3) CiarVe1+ 0(x3) Cija vy 1+ 00’ v;+g; = 0. (3.5)

From a combination of these equations we have
v, f;i— ;9 + 6(x3) Ciapa(v; e — ;03 1) + 0% 3) Cja (036,15 — 4;01,1)) = 0. (3.6)
and further

v fi— ;94 0% 3) Ciara (030, — 1 0 1) + 006 3) Cigpa (0311 — 1 000),j + )
= 0(x3) Cijpa(v; jura—u; ; v)=0. (37
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The last term in this equation is equal to zero, because of the symmetry of C;j, with
respect to pairs of indices ij, kl.
Substituting now

g; = 0pm0(Xx—X'), (38)
v; = Giml(x, X'),
where G, is a Green’s function of equation (3.2) with the condition (3.8),, we reach
JiGim— ;00 (X —X') + 6(x3) Ciaa (Gl g — 1; Gimp) +
+0(x3) Cijia(Gimti t — ;Gim) j = 0. (3.9)

After integrating the above expression in terms of volume and taking advantage of
the Gauss theorem in region R we have: '

U, (x') = I‘s(x:;)CiJkI(G;'muk,I_ui Gim)dV+ Ci’jklj(G:Zmuk.I_ui Gim,)n;dS + I dVf, G,
R N R
(3.10)
where n; is the external normal to the region R limited by the surface S (Fig. 2). In

Fi16. 2. Coordinates system with the region R,
of interest to us, limited by surface § partially
contained in the plane of the surface

accordance with reasoning in paper [9], the first two'integrals depend on boundary
conditions only and can be substituted with a field of displacements u®(x’). This field
satisfies the following homogeneous equation:

0(x3) Cizauag, + 0(x3) Cijuattj+ 0w’ u? = 0, ; (3.11)

The boundary condition for S usually has the following form in the problem of
scattering

u2(x, 1) = ul exp [ikx)— wr)], (3.12)

ie. uf(x, t) is an incident wave with frequency w and wave vector k. In general the
amplitude u can be a function of coordinate x5. Finally, we can write:

Uy = up+ [ dVf,G,, for X' in R, ‘ (3.13)
R
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where Green’s function Gj, satisfies the equation
2

+0(x3) C juix S

0
(5_”9(9 +6( 3)C_r3lk

i )G:,,,(x X'; 0) = 8d(x—X). (3.14)

4. Thin layer deposited on the surface of an elastic half-space as a disturbance

In a case of thin isotropic films (h < 4) loading a substrate, the film can be
substituted with an equivalent stress pattern [10]:

26'121 cr122 3 Vo) .
T51(x; =0) = k s —o'w* Juy” rexplikx,), 4.1)
1
Tyy(x; = 0) = {—h(kﬁ%’:ﬁ—e’&)ua‘”} exp(ikx,), 42)
Tsy3(x; = 0) = {hg' 0*u} exp(ikx,), (4.3)

In general Tj;(x, = 0) = T;exp(ikx,). In above expressions, h is the film’s thickness,
k denotes the wavevector length, w — frequency of wave propagating in the direction
of x, in the elastic half-space, ¢’ — mass density of the film, ¢}; and ¢}, reduced
components of the elasticity tensor in Voigt’s notation [11] of the thin isotropic
layer.

In the case of a thin film, the disturbing force in equation (3.13) is equal to

fi = Tamy, (4.4)

where n, is the external normal n, = [0, 0, — 1] with the dimension of the surface. As
the disturbance occurs in plane x5 =0, so

filtx') = 6(x3) Ty (x')m O(R,), (4.5)
where

B(R)—{l (x1, ¥p)eRy,
0 g R

and R, — disturbance region in plane x', x3. Including (4.5) in equation (3.13), we
get

U (X) = U (X) + [ fi(X) Gim(x, X')dX' =
R
= uP(x) + [ 6(x3) Te(x') m O(R ) Gim(x, X')dX'.
R
And finally
Uy (X) = Uiy (x) + I Ti3(xy, x2, x5 = 0) Gim(X) — X, X5 = 0)dx dx}.
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The minus sign in the above expression is the result of the convention accepted in
equation (4.4), that the so-called “compressive” stress has a negative sign. In order to
shorten the notation, index | was introduced in expression (4.6). This sign denotes
the projection of a corresponding vector (e.g.x) on the plane of the half-space’s
surface.

5. Amplitude of ESW scattering on a single dot

The method of determining the Green’s function G, satisfying equation (S. 0), in
quadratures is presented in the Supplement. Comparing (3.14) and (S. 0) we see that
the sought function Gj, is equal to

1

G;m = Gim—' (50)
Y
Let us rewrite the equation (S. 1) in the following form
o« 2n
Ginl(x, X'; @) = | | exp(ikrcosy)dim(k, 0, w|x;x5)dykdk, (5.1)
0o o0
where r=x; —x|, v=0—-® — angle between vectors k and r, r =rcos®,

r, =rsin®, k; = kcos0, k, = ksin0.
We will take advantage of the approximation of the stationary phase (see e.g.
[12], page 46) in order to integrate with respect to angle v. This result in

/2 exp[i(kr+11/4)]
(2")2( ) I (Zk )1/2

Tensor d;, can be easily found if we write equation (S. 7) in the matrix form

d=813§

Gim(X, X'; ) = dim(k, @, 0|x;x3) kdk.  (5.2)

hence
cos?Pg,, +sin’Pg,,; cosPsind(g,;—g12); cosPg;

d= | cos®sin®(g;, —¢g12); sin’Pgy;+cos’Pg,,; sin®g;s | . (5.3)
' cos@gsy; sin® g,; 933

Including (5.0) and (5.2) in (4.6), and applying the theory of residua (for an analogic
approach — see [13]) we obtain resulting components of displacement vector for the
scattering wave

exp(il1/4) exp (ik,|x; —x 1)

(X) = —WZRS{IT-?,(XD"Z’“ O Tk~

1
X -éd,.,,, (ky, @, w|x3x5 = 0)k, d)'c]}, (5.4)
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where k, denotes a pole associated with every possible type of wave occuring in the
crystal and it is a solution to equation D (k) = O for surface waves or o;(kg) = 0 for
bulk waves (see “Supplement” expressions (S. 12) and (S. 13)).

Coefficients accompanying exp (ikgx)/(x,)"/? are the amplitudes of scattering for
individual modes.

In order to isolate them we will proceed as in the quantuum mechanics theory of
scattering and apply the following approximation in the expression in the exponent

ks|X” —X'” | ~ kst —ks_x’” 7 (55)

(k| x,) when at the same time x/, neglected in the denominator in expression (5.4).
Angle @ will now be the angle between vector x; and the Ox, axis. Our
considerations result in an expression for scattering of ESW on a localized stress
pattern

U = ¥ A%, ) %;‘;‘“) (56)

with amplitudes of scattering

in/4
= SO g 1B, i = DYk X

An(®, ) = W "

x | Tia(x), x5 = 0)exp(ik,x)d*X) }. (5.7)

The asymptotic expression (5.6){5.7) is a solution to the problem of scattering of
ESW on localized thin films loading a crystalline half-space of one of the types listed
at the beginning of the “Supplement”. The complicated form of relation D(ks) = 0
requires numerical calculations. For particular case of isotropic substrate only (see
[15]), an analytical solution can be found [16]. Qualitative relationships can bé
relatively easily obtained for a case when an elastic surface wave with vector kg
incides onto a rectangular dot (Fig. 1) with dimensions a and b. In such a case the
components of the amplitude of scattering for a surface wave associated with vector
kg can be determined. The integral in expression (5.7) assumes the following value:

abSa[(1+cos®)kga/2] Sa[sin®kg b/2], (5.8)
where Sa(x) = sin(x)/x.
Components of the amplitude of scattering are expressed by
D, kg) = A(P, kg) {cos? @Gy Ty +cos@sin® Gy, T, +cos® Gy T3},
AR(D, kg) = A(D, kg) {cos@sin® G, Ty +sin*® G, T, +sin P G, T3},
A (D, kg) = A(D, k) {cos®@G,3 Ty +sin® G,3 T+ G353 Tz},
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where

__abexp(ill/4)

A@, k) == iz *aSall +cos®)kya/2] Salsin @k, by2]

’

1
Gim(kg) = 'é kfiis [gim(k)— gim (K)].

Quantities g;,, and G}, are explained in the “Supplement”

Supplement

The Green’s function for a half-infinite hexagonal crystal

In order to understand given above considerations it is necessary to present in
short at least, results of DOBRZYNSKI'S and MARADUDIN’S paper [14]. It presents
a method of finding Green’s function G,, (x, X; w) for a half-infinite hexagonal
crystal in quadratures.

This function satisfies the following equation

1
; (51:'602 + 5 5("3)% ij + Z Jlik Pxox

As previously, latin indices accept values from the set (1, 2, 3), which denote
directions in the cartesian coordinates system.

2

) Gim(X, X, @) = djn(x—x). (S.0)

a) Bivariate Fourier distribution G, (x, x’; w). Green’s function G,,, (x, X’; w) for
an elastic medium with arbitrary symmetry which occupies half-space x, > 0 can be
distributed according to the Fourier distribution as follows:

2

d*k
GunlX, X'3 @) = [ 5 €xp [k ()~ i (koo: 05, (S.1)

where x| and k are vectors with components (x,, x,, 0) and (k,, k,, 0), respectively.
If equation (5.1) together with representation

d(x—x) = —x5) j s exp [ik(x ) —x)] (S.2)

(211')
are included in equation (S.0) and the resulting equation is specified for a case of
a hexagonal crystal structure with a sixfold rotation axis in direction x,, i.. structure
included in one of crystal classes 6, 6, 6/m, 6 mm, 6m2, 62,6/mm in the Her-
man-Maugin’s notation, then the equation fulfilled by Fourier’s coefficients
dim(kw; x3x3) assumes the following form

Y Lij (ko X3)djm(Kw: x3%35) = Sim(x3—X3). (S.3)
|
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b) Transformation of the set of equations (S.3) Elements of the matrix of the
differential operator L;(kw: x;) have very complicated form [14]. It can be
simplified, if we take advantage of the isotroppy of the hexagonal structure in the
plane perpendicular to the sixtuple axis of rotation (plane x, =0, in this case).
We will transform the set of equations (S.3) with respect to matrix S (k), noted as:

ky, k,, 0
Sk = | —k,, k,, 0],
0, 0,1 .
(S.4)
k., —k,, 0
S'®= |k, k,, O],
0, 0, 1

where k, = k,/k and k, = k,/k. This real, orthogonal matrix is a matrix which
rotates vector k into vector (k, 0, 0). Equation (S.3) has the followjng form after the
transformation:

Zgij(kw: x3) gjm(kw: x3x3) = Oim0(X3—X3), (S.5)
j
where L AT, -
E P(kw: x3) = S(k) L(ko: x;) S~ 1(k) (S.6)
dim(kw: x3x5) = ESj:(k) Sim(K) 9k (kaw: x3x3). (8.7)
Jk

The above transformation eliminates certain elements of the matrix of the differential
operator, and makes other elements dependent on the modulus of vector k, only.

¢) Solution of the set of equations (S.5) The solution of the set of equations (S.5) is
reduced to a solution of the following set of equations noted in matrix form

( a i d "
wz"_Clez cL‘ﬁ_z 0 —(C13+Cas)k=—
0 ¢ dx3 0 dx,

3. ¢ Clzkz 044d_ 0 y
0 = 29 o dx3

i d Caa ¢33 d*

8 = 0 > B iy e B

L 9(013+C44)kdx3 W ; + S Bl

gi1 912 913 100)

X | g21 g22 g23 | =0(x—=x)|010|. (88
9g31 932 933 001}



266 A. DUKATA, J. KAPELEWSKI

Elements of matrix § have to satisfy noted below boundary conditions on plane

3 =0.
%%391;‘4'5%"93-':0,
%Efc_agz,:o, | (59)
aﬂkglﬁc”a%gsr 0,

where i = 1, 2, 3. We will omit rather complicated calculations and write the final
form of the matrix of reduced Green’s functions gj, (kw: x3x3) for a hexagonal system
described above [14]

g1 0 g4
g == 0 gzz 0 7] (S.IO)
g31 0 gi;

Elements not equal to zero assume values given below. Quantities g,, and g,
gr1(kor: x3x3) = [D(kw)] ™' [A;; (ko) exp { —a, (x3+X3)} +
+ A1z (ko) exp { —o; x3 —ayX3} + Ay (kw) exp { — oy x3 —a; X5} +
+ Az (kw)exp { —a,(x3+ x5)] + g5 (kw: x3x3),  (S.11a)
g1 (ko x3x3) = —i#( e )[D(k i
(cy3+caa)ay k Caa Caq
X (Ayy (kw)exp { —a, (X3 +x5)} + Ay (ko) exp { — o, X3 — 0, X3 })—

Cag (z Shiga. @ )[D(kw)]'

o S . W
(c13+caa)oyk Caa Caa

X (A1 (kw)exp { —a,x3—ay x5} + A5, (kw)exp {—ay(x3+x3)})+

+ g3 (kow: x3x5).  (S.11b)
In these expressions

Ay =M;3;,C —M;Cyy,
Az = M;, Clz—Mizczz,
Az = =My Cy 1+ My, Cyy,
Ay = —M;;Ci,+M,,C,,
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all quantities are functions of k and ®, where

C11

2
b ow

M ,2)(kw) = [(c13+cas)2q,2] 1i:—(cw'f'¢44)9€:1!,2'5'0-4.4 (ai’.z——kz +—>:|,
Caa Caa

c33¢ ¢ w?
Mo, z(keo) = [{e13 +Cas)k] ™ [(cn+c44)k2+%(a%,rﬁk2+g—)],

13 Caa Caa

C13+Caa Caa 0w’
Ci1,2)(kw) = —""“( jit——k——k+—),
2044 al 2 0‘2.1 C33 C33 C33
Qk 1 Caa 2 2 3
Cra.pkw) = x[clii(al 2—**" —(c13+caa)ai,s |-
e 2C44C13 0 2 (‘1%.2 —“%,1) C33 C33

Quantities ¢,3 and gi3

gralkom: x3x5) = [D(km)]"[B”(kw)exp { =, (x3+x5))+
+ Bz (kw)exp { —o, x3 —azx5)} + Byy (kw)exp { —op x3 —ay x5} +
+ By (kw) exp { — o, (x3+x3)] + gla(kw: x3x3), (S.11¢)

2
gazlkw: x3x3) = —iL(af——cﬁkz—}-ii) [D(kw)] ™! x
44

(c13+caa)kay Caq

x (B (kw)exp { — o, (x3+x3)} + Bya(kw)exp { —o; x3— o5 x53}] —

2
fiae (cx% _114a +%“L) [Dko)] ™ +

Ll PO g
(0;3 +c4a)ka, Caa 44
+[B;, (kw)exp { —a, x3 — oy X5} + By (kw) exp { —a,(x3 + x5)} ]+

+¢gh;3(km: x3x5).  (S.11d)
In these expressions

Byy = M5, Cyy—M,, Chy,
By, = M;;Ci,— M, C,,
Byy = =M, Cyy + My, Cyy,
By, = —M,, Cy,+ My,
Cia.zko) = fok : Y l)xl}u(il 2—":‘1—1"(2 2) (C13+C44)a§.2i|-

2
2044033 0y 2 (27,2 — Cqq Caa

2
g 1 2 C13+Caa,, C11,, QW

Ch1,2)kw) = af s +cj3———kf——k*+—).
2C13 o51 2"052 1 C33Ca4 Caa Caq
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While quantities g71, 31, 913, 953

_gleyztca)k 1

P P '
= = ex =W ] Xqa— X i
931 = g13 2033 Cas af—aﬁ[ p{—aylx;—xil}
—exp{ —aslx3—x4|}]sgn (x3—x5)
= g (-2 Jenp (sl +
200 Cqq 007 — 03 C33 C33
0 1 3 Caxy’ Pl

— | ——k+— - iyt

205204405%—0!%(2 €33 +033 exp { —aalxs —x)
2
P Q 1 2 C11,, QW 3
=—— N aj—k*+—|exp{— -
g33 ZGIC”“%_G%(l e +c44) p{—ailx3—x5/} +
Q 1 2 €11, ow?

—s| s ——k*+— - —x

2“2C33 a%_a%( 2 c“ +C44 exp{ a2|x3 xal}p
where
2=1 2 _4y2)i2 z=1 —(x2 —4y2)1/2
oy 2[x+(x i wad IR 2[x (x*—4y*)"#]
with

X = (c33€44) " [(caa+c11€33) kK> —(cy3+Caa)* k2 —(ca3 +Cq4) 0007],

}’2 = (C33C4a)” ! (caa k? —Q(UZ) (c1q kz"sz)-

(S.12a)

(S.12b)

Functions «,, ®, are defined by equations (S.12) with the following limitations

resulting from boundary conditions for x; = +

Reallz > 0 Imal'z < 0.

Quantity ga2
g22(kw: x3x3) = —

5o exp { —a (x5 + X3)} + g5 (keo: x3x3)
Caqa %

2= — exp { —a, |x3+ x5},

204,4 CC;
where

2c44 Caa

R w?\1/2 1
( 11_12kz_9_) for "-‘5('5'11—C12)k2 > ga?,

2 1/2
[QW™ C11—Cy2,,4 g & 2
—i|———k fi > — — .
’( o 2oae ) or gw 2(C11 c12)k

(S.12¢)
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In the above equations

D{k(l')) = M| 1 (kCU) Mzz(kCU)“M;z (kw) MZI (k(})). (S.13)

Conclusion

The presented model can be used for detailed analysis of scattering of elastic
surface waves on a single centre of a dot array, i.e. evaluation of energy radiated in
‘the form of ESW, as well as losses in the form of bulk waves, in hexagonal crystals
with a sixfold rotation axis in the direction normal to the surface.

The results can be applied for piezoelectric crystals with good approximation
although the electric component of interactions is neglected. Detailed considerations
can be found in [6].

This work was supported by the Problem CPBP 01.08.
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