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The acoustic properties of the sitar string are studied with the aid of a physical model. The nonlinearity
of the string movement caused by the bridge acting as an obstacle to the vibrating string is of special
interest. Comparison of the model’s audio output to recordings of the instrument shows interesting
similarities. The effects dispersion and bridge have on the sound of the instrument are demonstrated in
the model.
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1. Introduction

The sitar is a stringed instrument from the South
Asia known for its very distinctive timbre which is
quite different from the sound of most Western plucked
instruments. Here a physical model of the sitar’s string
is designed to verify common theses about the instru-
ment’s sound formation as they are found in the litera-
ture. Sympathetic strings and the resonating body, al-
though beyond doubt important for its sound because
of their filtering effect and because of interactions be-
tween them and the vibrating string, are neglected.
The physical model could also be the first step in de-
veloping a sitar synthesizer, since with all its sympa-
thetic strings the sitar is rather difficult to synthesize
with other techniques such as sampling.
In Sec. 2 the sound of the sitar is analyzed and

important theses concerning the string movement are
summarized. In Sec. 3 the physical model is presented.
In Sec. 4 the model is analyzed by comparing its output
to recordings of the sitar. It is investigated if the theses
presented earlier can be applied to the modelled string
as well. Sample sounds of the model and the model
itself can be downloaded from www.talaash.at/sitar.
A part of this analysis was presented at the Vien-

naTalk 2010 (Siddiq, 2010).

2. Characteristics of the sitar

2.1. Sound analysis

The sitar sound analyzed was recorded in an ane-
choic room. All strings except the plucked string

(c with f0 ≈ 131 Hz) where damped. Comparison to
Western plucked string instruments, such as the guitar,
shows four major differences:

1. Descending formants are one striking feature of
the sitar sound which can not only be easily
heard, but is also very obvious in spectrograms
(see Fig. 1).

2. The envelopes of the partials of the sitar sound
are very complex (see Fig. 2) in comparison to
mostWestern plucked instruments. Since energy is
fed to the system only when the string is plucked,
the fluctuations in the partials’ envelopes must be
caused by an energy flow between partials or be-
tween the string and the body.

Fig. 1. Spectrogram of the sitar.
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Fig. 2. Envelopes of sitar partials.

3. On the ideal string, when plucked at one fifth of
its length, the fifth, tenth, fifteenth etc. modes re-
main silent, because the string is plucked at one
of their nodes (Fletcher, Rossing, 1998). This
rule, known as the Young-Helmholtz law, is not
valid for the sitar (Raman, 1921), as Fig. 3 shows.

Fig. 3. Spectrum of the sitar string plucked at one fifth
of its length.

2.2. The sound formation of the sitar

2.2.1. The effect of the flat bridges

Raman (1921) identified the flat bridges1 (see
Fig. 4) of the sitar as the main reason for its distinctive
sound (Raman, 1921). The bridge disturbs a free vi-
bration of the string which is resting on it varying the
length of the vibrating part periodicaly. Laws which
assume that the string has a constant length are thus
not applicable.

2.2.2. The importance of dispersion

Although commonly neglected in the literature de-
scribing string vibration, dispersion plays a key role
in the effects described above, as noted by Bertrand
(1992) and Valette, Cuesta (1993). If are looks at

1It should be noted that the bridges of the sitar are not really

flat. Their surface is rather a curved plane. The adjective “flat”

was chosen as a default prevalent term to emphazise that a string

segment of a certain length rests on that curved surface of the

bridge, or collides with it when vibrating.

Fig. 4. “Flat” bridges of the sitar.

one wavefront travelling towards the bridge the im-
portance of dispersion becomes clear: when the lower
frequency waves of the wavefront, which usually let
the string vibrate with a higher amplitude, cause the
string to collide with the bridge, a part of the higher
frequency waves will already have passed the point
of impact and thus do not die away when the string
and bridge collide (Valette, Cuesta, 1993). Further-
more, dispersion also alters the shape of the vibrating
string (Lieber, 1992), so that the contact of the string
and bridge is affected.

3. Physical modelling

3.1. Simplifications of the string vibration

In the proposed model the string is broken down
into a finite number of points, of which only vertical
displacement in a plane perpendicular to the bridge
is considered. Longitudinal waves, torsional waves and
transversal waves in a plane parallel to the bridge are
neglected, although especially the latter might be of
great importance for the sitar string. Such simplifica-
tions are, however, acceptable, because the coupling
between transversal waves perpendicular to the bridge
and the body is more effective than the coupling be-
tween longitudinal waves or transversal waves paral-
lel to the bridge and the body (Fletcher, Rossing,
1998). Additionally, the main interaction between the
bridge and string takes place in the modelled plane.

3.2. Difficulties in modelling the sitar string

As the bridges damping effect on the strings move-
ment increases with the amplitude of string vibration,
the amplitudes of the input and output signals are not
related in a linear way. Therefore, the string cannot be
described as a linear system.
Dispersion is not a trivial problem either, and

most works about vibrating strings with constraints
tend to neglect it. Burridge, Kappraff and Mor-
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shedi (1982), as well as Vyasarayani, Birkett and
McPhee (2009), describe the movement of the sitar
string with sets of equations, while Taguti (2007) de-
scribes the vibration of a biwa or shamisen string (with
similar vibrational constraints as caused by the sitar’s
bridge) with finite differences. In all these works dis-
persion is neglected, which causes a huge difference
that we shall see below.
Valette and Cuesta (1993), who consider dis-

persion and vibrational constraints (for the tanpura,
which is slightly different), mention a simulation of the
string vibration but do not tell the reader how they
do it.

3.3. Design of the model

Waveguides are a fast and efficient way to model
the string vibration and will be used in the sitar string
model. However the string’s interaction with the bridge
is difficult to model in waveguides since they are based
on the wave equation of the ideal string, and nonlin-
earities cannot be inserted into the model directly. The
part of the string colliding with the bridge is therefore
modelled using finite differences and coupled to the
model as described in the work by Krishnaswamy
and Smith (2003).

3.4. Waveguide modelling

In waveguides (Smith, 1992) the travelling waves
on a string are used to model the string vibration. One
right travelling and one left travelling wave determine
the string’s shape according to the simple relation

y(x, t) = yl(x, t) + yr(x, t), (1)

which is based on d’Alembert’s solution of the wave
equation (Smith, 1992)

y(x, t) = yr(x− ct) + yl(x+ ct). (2)

The pitch of the modelled string is determined by the
length of the waveguide L according to the formula
(Smith, 1992)

f0 =
fS
2 · L

, (3)

where fS is the sampling rate.
After the initial shapes of the travelling waves are

derived from the strings initial displacement accord-
ing to the relation above (1), they are shifted by one
sample into their direction each step. To model the re-
flection at the fixed ends of the string, samples shifted
out of the waveguide are appended to the end of the
wave travelling in the opposite direction with an in-
verted sign (see Fig. 5).
Damping can be modelled by integrating filters into

the travelling waves’ loops. Using filters with low-pass
characteristics can account for a stronger damping of

Fig. 5. Two travelling waves determine the shape of
the string in a waveguide model.

higher partials, as it can be observed in real strings
(Smith, 1992).
Dispersion means that the propagation speed of

waves changes with frequency. The travelling waves’
higher frequency components travel faster than the
lower frequency components. The effect of dispersion
can thus be imitated by inserting all pass filters which
cause delay for higher partials into the travelling waves’
loop (Smith, 1992). As proposed by Rauhala and
Välimäki (2006), a cascade of several first order all-
pass filters is used.

3.5. Finite Difference Modelling (FDM)

The displacement y of a vibrating string with linear
density µ and tension T at time t can be calculated
with the well known wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, (4)

where c2 = T/µ. In FDM (Karjalainen, 2002) this
equation is solved approximately with finite differ-
ences. The first derivation of a function f(x) is ap-
proximated as

f ′(x) ≈
f(x+∆x/2)− f(x−∆x/2)

∆x
. (5)

The second derivation is therefore

f ′′(x) ≈
f ′(x+∆x/2)− f ′(x−∆x/2)

∆x
(6)

or

f ′′(x) ≈
f(x+∆x) − 2f(x) + f(x−∆x)

∆x2
. (7)
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Neglecting inaccuracy application on the wave equa-
tion yields

y(x, t+∆t)− 2y(x, t) + y(x, t−∆t)

∆t2

= c2
y(x+∆x, t)− 2y(x, t) + y(x−∆x, t)

∆x2
, (8)

where y(x, t) is the displacement of the string at posi-
tion x and time t.
If we now define ∆x = c ·∆t, the vertical displace-

ment y at position x of the string in the next time step
t+∆t can be calculated from the current displacement
of the neighbouring points and the previous displace-
ment at x (Karjalainen, 2002):

y(x, t+∆t) = y(x+∆x, t)

+ y(x−∆x, t)− y(x, t−∆t). (9)

Figure 6 shows this relation schematically. If outermost
points are fixed, the movement of a whole string can
be calculated.

Fig. 6. Calculating one point in the FDM.

By applying finite differences to the enhanced wave
equation describing the movement of the dispersive
string (Fletcher, Rossing, 1998)

∂2y

∂t2
= c2

∂2y

∂x2
−

E · S ·K2

µ

∂4y

∂x4
, (10)

where E is the Young modulus of the string, S the
string’s cross-sectional area, K the radius of gyration
and µ, as earlier, linear density, we can calculate the
movement of each point of the dispersive string as

y(x, t+∆t) = y(x+∆x, t) + y(x−∆x, t)

− y(x, t−∆t)−Q[y(x+ 2∆x, t)

− 4y(x+∆x, t) + 6y(x, t)− 4y(x−∆x, t)

+ y(x− 2∆x, t)], (11)

where

Q =
E · S ·K2

c4 · µ ·∆t2
. (12)

By introducing constraints for the movement of
some points at one end of the string the effect of the
sitar’s bridge can be imitated in FDM. Since those
points lose their kinetic energy when colliding with
the bridge the string is damped. Further damping
is achieved by introducing additional coefficients in
Eq. (11) as proposed by Karjalainen (2002) for the
non-dispersive equation:

y(x, t+∆t) = g · [y(x+∆x, t) + y(x−∆x, t)]

− a · y(x, t−∆t)−Q[y(x+ 2∆x, t)

− 4y(x+∆x, t) + 6y(x, t)− 4y(x−∆x, t)

+ y(x− 2∆x, t)]. (13)

Karjalainen (2002) calculates g and a from the two
constants b and d by

a = 2bd− 1, (14)

g = 1− d, (15)

where 0 ≤ d ≤ 1 and 0 ≤ b ≤ 1. Proposed values for
the sitar string’s model are b = 0.97 and d = 0.00005
to avoid a too fast decay.

3.6. Sound output

In acoustic string instruments the resonator, which
is coupled to the strings through the bridge, serves as
an amplifier and radiates sound waves into the air. The
audio output of the string models is therefore a force
exercised by the string on the bridge.

4. Analysis of the model

4.1. Graphical output

The effects of dispersion and the flat bridge are best
seen in stroboscopic images of the string movement.
Figure 7, depicting the vibration of an ideal string and
a dispersive string, both without flat bridges, shows
how dispersion alters the form of the vibrating string
over time. The effect this deformation would have on
the string’s interaction with the bridge is obvious, es-
pecially when closely examining the snapshots taken
at t = 84 ms and t = 126 ms, where the form at the
left end of the dispersive string, where we would insert
the flat bridge, is quite different.
The importance of the flat bridge can be seen in

Fig. 8. Since each snapshot is taken several periods
after a preceding one, even the first snapshot after the
excitation in the right image already shows the effect
of the string’s periodic collision with the bridge.
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Fig. 7. Stroboscopic images of the ideal string and the dispersive string; time interval between
the snapshots ∆t = 14 ms.

Fig. 8. Stroboscopic images of the dispersive string without vibrational constraints (left)
and with the flat bridge (right), ∆t = 14 ms.

4.2. Sound analysis

When the string’s interaction with the bridge and
dispersion is modelled the same phenomena which were
observed in the sitar can be observed in the model.

1. Descending formants
The importance of dispersion can be verified in
the model: descending formants, as in the sound
of the real instrument, can only be observed in
dispersive models. The flat bridge’s effect on the
sound spectrum is much weaker if dispersion is
neglected (see Fig. 9).

2. Energy flow between partials
In a non-dispersive model with a flat bridge en-
ergy flow between the harmonics can only be ob-

served at the very beginning of the sound. A sim-
ilar complexity in the structure of the harmonics’
envelopes to the one observed in the sitar sound
can only be found in the model with a flat bridge
and dispersion (see Fig. 10).

3. Young-Helmholtz law is not applicable
Different modelled strings have been “plucked” at
one fifth of their length. Only in the case of ideal
strings the Young-Helmholtz law is fully applica-
ble. Even dispersion introduces some limitations
because the ratio between the fundamental fre-
quency and the frequency of the higher partials is
not an integer. In string models with flat bridges,
the Young-Helmholtz law is not valid, as it is in
the case of the sitar (see Fig. 11).
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a) dispersion and flat bridge b) only flat bridge c) only dispersion

Fig. 9. Spectrograms of different models.

a) dispersion and flat bridge b) only flat bridge c) only dispersion

Fig. 10. Partial’s envelopes of different models.

a) dispersion and flat bridge b) only flat bridge

c) only dispersion d) ideal string

Fig. 11. Spectra of the output of different models when the string is plucked at one fifth of its length.
Note that only in the ideal string every fifth partial is absent.
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5. Conclusions

A real time physical model of the sitar string has
been proposed. Audio output of the model shows im-
portant characteristic features that are also found in
the sound of the sitar. Not only the flat bridge but also
the dispersion on the string plays an important role in
the sound formation of the instrument. Neglecting dis-
persion when describing the vibration of strings peri-
odically colliding with objects is an oversimplification
and abstraction with a very restricted validity.
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