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VELOCITY DISPERSION AND ATTENUATION OF ACOUSTIC
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Theoretical considerations on critical ultrasonic dispersion and attenuation in binary
liquid mixtures based on the mode-coupling approach and frequency-dependent heat
capacity are presented. A general expression for the critical amplitude A (T) in terms of the
parameter d = (chx/Tm,)-(d?:/dP) is derived. It is shown that for specific values of d one
obtains expressions for A (T) equivalent to those of Fixman, Kawasaki, Mistura and
Chaban. Moreover, an experimental test has been carried out on the system met-
hanol-n-hexane showing good agreement between our general expression for 4 (T) and
experimental data.

W pracy zaprezentowano teoretyczne rozwazania odnosnie do dyspersji i absorpcji fal
ultradZwigkowych w mieszaninach krytyczny¢h na gruncie teorii modow sprzezonych.
Wyprowadzono ogdlne wyrazenie na amplitud¢ pochlaniania 4 (T) w postaci funkcji
parametru d zdefiniowanego jako d = (gc? /Tap)(dT,/dP) i wykazano, ze dla okreslonych
wartosci d uzyskuje sie wyrazenia na A (T) zgodne z teoriami Fixmana, Kawasaki, Mistury
i Czabana. Przeprowadzono rowniez weryfikacje uzyskanych wyrazen otrzymujac dobra
zgodnos¢ z danymi eksperymentalnymi.

1. Introduction

In the theory of critical phenomena, an important role is played by the
mode-coupling method, first formulated by KApanorr and Swirt [1] and thereupon
applied to the solving of various problems of the physics of phase transitions, i.a.,
that of the acoustic wave propagation in critical mixtures. The most important
theories in this field applying the mode-coupling approach are those of KAwASAKI,
[2, 3], Mistura [4] and Chaban [5, 6] and, to a lesser degree, that of Fixman [7].
These theories lead to expressions for the attenuation o, of the acoustic wave (per
wave length /) that can be written in the form o, /c* = n- A (T)- I (0*). The scaling
function I (w*) is in all cases the same, whereas the amplitudes A4 (T) differ essentially.
Our paper is aimed, ia., at the elucidation of the source of these differences.
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2. Velocity dispersion and attenuation of the ultrasonic waves

Within the framework of mode-coupling theory [4], it can be shown that the
excess specific heat at constant pressure related with relaxation of fluctuations in
concentration is given by the following expression

PTG 1\ N B i OO*
oot =2 (1-3) =(57) T oo &

with k; — Boltzmann’s constant, x = 1/ — the inverse correlation of fluctuations in
concentration, ¢ — the density of mixture, # — the critical exponent characterizing
the deviation of the radial correlation function from the Ornstein-Zernike ap-
proximation and y = k- £. The quantity w* is the reduced frequency defined as [8]

o* = w/op = 2nfllwee™™), 2

where wb is a temperature-dependent characteristic frequency, related with the
concentration- fluctuation lifetime in the critical point of the mixture and given by
Stokes-Einstein formula

wp = ks T/3nn&* = (ky T/3nné3)e™ ", ()

with ¢ = £,&7" for the correlation length and # = e~ 2" for the shear viscosity.
The function K (y) is related with the concentration-fluctuation lifetime 7 by way
of the following expression, resulting from dynamical scaling hypothesis:

112 = 120,K(9). )

The expression (1) enables us to write the total complex specific heat ép . at constant
pressure in the form

Cpx = Chxti{dcp(@*)) = cpx+ Aliw¥). )

In addition to the excess specific heat at constant pressure, we have to determine that
at constant volume. To this purpose, one can make use of the formula [9]

[(@V/0T),.]°
X = X 3 - 6
| V= T GVIERR. &
By the scaling hypothesis [10], the Gibbs thermodynamical potential in the
neighbourhood of the critical point is a homogeneous function and thus can be
written in the form [11]

G(T. x, P) = Go(T, x, P)+e(P)*~*f(®/le(P)| "), (7

where «, f are the critical exponents; &(P) = [T— T,(P)]/T, the so-called reduced
distance from the critical point on the temperature-axis; and @ = (x—x.(P))/x, the
ordering parameter. The Gibbs thermodynamical potential thus defined enables us
to dertermine various thermodynamical parameters, among which are (0V/0P)r ,
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(6V)éT)p.x and cp,. At x = x, we have f(®/|e(P)|~*) = const, whence
cpx = —T(@*G/0T?)p = Aile(P)| *+Chx, t)
(0V/aP)r.. = (8*G/dP?)y = A, (0T, /OP)|e(P)|~* +(8V/0P)7.x, ©
(@V/0T)p . = (0*G/0ToP)p x = —A1(3T:/5P)|8(P)|_‘“+(5V/3T)g,x, (10)

On insertion of (8), (9), and (10), into Eq. (6) we obtain the specific heat at constant
volume in the followmg form:

[4,(0T,/oP)e(P)|_*+(8V/aT)p, x]2
A4,(@T,/0P)*[e(P)|~*+(2V]OP )7 «

= A e(P)| "+ cp s+ — (11)
The expression (11) can be expanded in a series in (0T, /0P), restricting the expansion
to quadratic terms and omitting the term proportional to 1.9(P)| 22 which is much
smaller than the others. We thus obtain

@V/oT)}.. dT, [(awan%.x_dvz]Z}
(

med Pyt 12 e
Crs ALY { *2 Gvape., ap | @VjoP).. dP

[(@veT)s . 1*
et Gyapy., 12

On introducing the notation

CV.x = _CP,x (aV/aP)(%‘x ’ (13)
_ oy .0 dT,
TR dP (14
and applying the thermodynamical identity [12]
(OV/OT)p Boow o V0
o fPefialy 2L SRR P, O =l )= -2 (y-1),
PR~ T G = — =D (15)
we obtain
v A [1=d(y— DPe(P) "+ P« = Az le(P) ™" +cV . (16)

Comparing Egs. (8) and (16) we get the ratio of the excess specific heats at constant
pressure and constant volume, two quantities related with concentration-fluctuation
relaxation:

{Oey <(@*)) = (4,/A4,) {Scp (@0*)) = (4,/A4,)A(iw*), (17)
where
A, /A, =[1-dy-1)]% (18)
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Thus, the total complex specific heat at constant volume takes the form
Cyx = Oy x (A4, /A) A(iw*). (19)

With the complex specific heats available — Egs. (4) and (18) — we are in
a position to determine the complex propagation velocity ¢ of ultrasonic waves from
the formula

T £ |
&2 = = (2’:) = f”-_"_ M (20)
[ aT 2,x Cy x (CP,x P CV..:)

We are now able to determine ¢~ *, inserting the expressions (5) and (19) into (20) and
expanding the expression thus obtained in a Taylor series in A(iw*). On restricting
ourselves to the first-order terms, we get

. 8. (4,/4)y* =2(4,/A4)y+1 | .
s 1 *
¢ = e [1+ 28.0-1) A(iw*) |, 21
where ,
T (0P\? ' =hE
o D el P ) (R W7 TR
9 [92 (aT)w ca.x(cﬁ.x-ca.x)] | &
With regard to (18), the numerator of Eq. (22) takes the form
(Ay/A)y* =2(4,/4)y+1 = (y—1)*f(d), (23)
where the function f(d) is defined as the sum of the following two polynomials
Fi(d) = y*(d—1/y)? (24)
F,(d) = —=2dy[d—1/(y—1)]. - (25)

With f(d) defined as above, we can express the complex velocity of propagation of
ultrasonic waves in critical mixtures as follows:

d)(y—1
&l=co! [1 +M3;,—)A(fw*)} (26)
ZCP.x
On the other hand, the complex velocity is
~—1

T l=c"1tyin la, (27)

whence, with the real and imaginary parts, we finally obtain the following
expressions for the velocity dispersion Ac/c, and attenuation coefficient « of acoustic
waves in critical mixtures: :

ai/ct = nA(T)I(w*), (28)

Acje, = ——%A(T).I(w*), (29)
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with the coefficient A(T) and the functions I(w*) and J(w*) given by

2fny 2 0 2
A(T) =%(1—§) x(a—;) 1@, (30)
o1 [O=DI@AGN] % vy o*K0)
o= e |- T eore O
o o [O=DI@AG] % Sy @ ~
"“’"R"[ 3R A(T) ]_£(1+y2)2 Bty O

The coefficient A (T) determining the amplitude of the fluctuations in concent-
ration in the critical point, can be expressed in a different way making use of the
scaling relation

x={t =gl : (33)

for the correlation length of fluctuations in concentration [9]. This leads to the
following expression:

R W Y
n*ocgep xEo

A(T) = M(l—g)z fde . (34)

3. Analysis and discussion

The formulae (31), (32) and (33) derived by us are general expressions for the
propagation velocity and attenuation coefficient of acoustic waves in critical
mixtures. The expressions for the attenuation of acoustic waves derived within the
framework of the theories of Fixman, Mistura, Kawasaki and Chaban can be shown
to represent particular cases of our expressions. To this aim, we have to investigate
the properties of the function f(d). As already stated, f(d) is the sum of polynomials
of the second degree F, (d) and F, (d). Their graphs have the form of the parabol as
shown in Fig. 1, the analysis of the latter enables us to ‘distinguish three cases:

i) d =0, implying (6T,/0P) = 0. In this particular case we have F,(d) =1,
F,(d) = 0 and f(d) = 1 thus obtaining an expression for A(T) in accordance with the
theories of Fixman and Kawasaki;

ii) d =1/(y—1), implying (6T,/0P = Tap/[o(cp—cP)]. We thus have
F,(d = 1/[(y=1)*], F,(d) = 0 and f(d) = 1/(y—1)*]. The expression for A(T) is in
this case in accordance with the theory of Mistura.

iii) 0 < d < d|p,@» Faa)> 81VIng f(d) = F,(d) = (1 —dy)*. The expression for A(T)
now takes a form in agreement with the theory of Chaban.

The relations thus obtained are assembled in Table 1.
For the theories of Kawasaki, Mistura and Chaban the form of K (y) is given by
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it £ (d)
3 -
2 -
; £ (d)
| 1 1 1
0 Q5 5t 1 yime B0 15 20 i1
FiG. 1. Shape of the functions F,(d) and F,(d) for y= 1.4
Table 1
Theory d K(y A(T)
FIXMAN kg(y—1)v?
0 214y?) | —me"
7 A v
KAWASAKI kgly—1)v?  _
0 K —_
[2] G rrrr
M 1 kgv? 2
ISTURA Ko 0) i) 3”3 (1__?) o
(5] i n*ocpepaSoly—1D\ 2
CHABAN kg(y—1)v? ecd . 0T \?
0<d<001| K = 1 Z_cl. g8
(6] i 7 7k s )

the Kawasaki function [4]

3
Ky(y) = Z[l + y*+(y* —1/y) arctan y].

(33)

In order to check the relationships derived by us, we made use of the
experimental results for acoustic wave attenuation in the methanol-cyclohexane
critical mixture published in Ref. [13]. The literature [9, 13-15] moreover contains
experimental data for ¢ ., ¥, ap, (6T./0P), &, and g for the above mixture. The
parameter d determined with these data amounts to 1.11. For @, we assumed
1.64 x 1012 Hz after the authors of Ref. [13]. Figs. 2-5 show the experimental data in
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FIG. 2. a,/(nc* A) vs. w* for the critical methanol-cyclohexane mixture, for A(T)
calculated according to the theory of Fixman. The experimental data are taken from
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FiG. 3. o, /(nc® A) vs. w* for the critical methanol-cyclohexane mixture, for A(T) calculated according to
the theory of Kawasaki. The experimental data are taken from Ref. [13]

the form of «, (mc3 A) versus w*, with values of A corresponding to the theories of
Fixman, Kawasaki, Mistura and Chaban, respectively. The results shown in Fig. 6
are those obtained with our formula (34). Everywhere, the continuous curves show
the scaling function given by Eq. (31). Obviously, agreement between the theories of
Fixman (Fig. 2), Kawasaki (Fig. 3) and Chaban (Fig. 4) on the one hand and the
experimental results on the other is very weak, this is by no means surprising in the
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FIG. 5. 2, /(nc? A) vs. w* for the critical methanol-cyclohexane mixture, for 4(T) calculated according to
the theory of Mistura. The experimental data are taken from Ref. [13]
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FiG. 6. m;/(nczA) vs. w* for the critical methanol-cyclohexane mixture, for A(T) calculated with our
formula (34). The experimental results are taken from Ref. [13]

light of our preceding considerations, since the parameter d differs from zero
markedly. Agreement is better in the case of Mistura’s theory Fig. 5 since d has
a value close to 1/(y—1). The best agreement is achieved in Fig. 6, where A (T) has
been calculated on the basis of our formula (34). For a lack of sufficiently exact data
(espacially for 6T,/0P) we have as yet proceeded to no verification for other critical
mixtures. Nonetheless, it would appear that our present paper goes for to explain
why the theories of Fixman, Kawasaki, Mistura and Chaban fail to agree with
experiment in some cases but describe the experimental results correctly in others.

Work carried out within the framework of Project CPBP 02.03
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