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Introduction

In the present paper we compute the acoustic potential in the nearfield of
a circular source placed in an infinite rigid baffle. Two cases of distribution of
velocity amplitude of harmonic vibrations are considered for which high directivity
of emitted acoustic field is obtained. As it has been proved in paper [6] such
directivity is obtained if one of the following two distributions of velocity amplitude
is applied: distribution according to the Gaussian curve and distribution defined by
the Bessel function of first order divided by its argument. The first distribution gives,
in the farfield, the directivity coefficient also according to the Gaussian curve, while
the second produces radiation only in a defined cone. In view of practical
applications it is important to investigate also the nearfield in these cases.

Theoretical basis of calculation of the nearfield of radially symmetric sources has
been presented in paper [8] and here we limit ourselves only to presentation of
general formulae. ‘

We choose the cylindrical system of coordinates such that the polar axis r lies in
the plane of the baffle (thus also in the plane of source being at rest) with the origin of
the system at the centre of the source. We assume that distribution of velocity
amplitude, and therefore the produced acoustic field, is independent on the polar
angle ¢. The z axis crosses the origin of the system perpendicularly to the baffle plan.

We denote by u(r) the considered distribution of velocity amplitude on the
source. The acoustic potential of resultant field can be expressed by the following
integral formula [8]:
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Jo() denotes the Bessel function of zero order.
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In Eq. (1) k denotes the wavenumber of the emitted harmonic wave, and
Hy[u(r)] = Hy(g) is the Hankel transform of zero order of the considered dist-
ribution of velocity amplitude of vibrations. As the baffle is at rest by assumption,
thus denoting by a the source radius we have [8]

Ho[u(r)] = Jru(r)Jo(er)dr. (2)

Considering H,[u(r)] in the above form we cut the u(r) distribution curve at r = a.
This is a realistic assumption, but it leads to serious mathematical difficulties.
Calculations can be simplified by the following approximation: we choose the u(r)
distribution curve such that its ordinates for r > a are negligible so that one can
assume that u(r) is stretched to infinity. Obviously the crucial criterion of validity of
such approximation is the condition that with inreasing r the product ru(r) under
integral must tend to zero. This condition is obviously satisfied for both distributions
of velocity amplitude considered in this paper. The form of expression (1) for the
potential remains the same, but the transform (2) is now given by

@

Ho[u(r)] = l[ ru(r)Jo(er)dr. 3

As we will see below, in both cases considered here integral (3) can be calculated
analytically while the exact formula (2) can be integrated only numerically. In this
paper we present results of both methods, the exact (“strict”) and the approximate.

The references are quoted here in two different manners. Everywhere we refer to
the whole item or to its greater part, we give only the number of its position on the
reference list. On the other hand, quoting specific formulae from tables, we add also
the appropriate page number. :

1. Distribution of velocity amplitude of vibrations given by the Gaussian curve

We assume the following distribution of velocity amplitude of vibrations:
uge” " - 0<r<a
u(r) = ()

0, r>a.
The coefficient n appearing in the exponent is called the coefficient of contraction.
We choose the value of this coefficient such that the value of the velocity amplitude is
sufficiently small on the edge of the source, what is specially important in
approximate cases. We will perform numerical calculations for n =2 and n = 3. In
the first case we have for r=a

u(a)/u, = e™* = 0.018316, (5
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and in the second
u(a)/u, = e~ = 0.000123. (6)

On the other hand, considering the approximate case we have the amplitude
distribution in the form

u(r) = uge ™, 0<r< oo, (7)
In the first case (4) the Hankel transform reads
Ho[u(r)] = u [re™ ™" J o (or)dr (8)
0 "
and must be computed numerically. Instead, in the second case we obtain
Ho[u(r)] = ug { re™ ™" J(or)dr. 9)
0
We find this integral in tables of integrals [1, p. 731] and we get
2
Ho[u(r)] = 225 ¢ teai2n? (10)
2n
This result is consistent with the well known fact that the Hankel transform of the
Gaussian function of argument r is also the Gaussian function of argument g.
In the first case considered (Eq. (8)), we will not write explicite the formula for the

potential (1) as it can be computed only numerically. On the other hand, in the
approximate case (10) we get the acoustic potential in the nearfield in the form

_gla?

an? g=2Ve =k oy (11)

Jolor)

T

When integrating over variable ¢ we have to distinguish between two cases. For
0 <¢ < k the square root has imaginary value, and for ¢ > k it is real. Taking this
into account and separating real and imaginary parts we write Eq. (11) in the form

‘ i d® [ o) s
® Y 0 F 7_ 3
(r, 2) 2 [g kz_gze sin (z,/k* —@?) odo +

}D J"(_" lze o exp(—z./e? —kz)ede] (12)

k JO(Q) . e
k*—g?

TS 4n* cos(z/k*—0?) edp.

The integrals in the above formula must also be calculated numerically.

D(r,2) = _f
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On the axis, ie. for r =0, we obtain the potential in the nearfield as

oa?

uaz k e*4n2
@0, z) = > [ sin (z./k? —0?) odo +
0,2)=—- gm (z/k*— %) odo

02 a2

© 4n2

€ T 73
— | ——=exp(—z./0*—k gdg]+ (13)
ij;~/gz—.'c2 p( € )
e
4n2

e
\/fgz cos (z./k*—0?) edg.

One can simplify the integrals in the above formula removing at the same time
singularities of the integrand, by means of substitution in the first and in the third
integral

k
+i
0

k*—g? =1 —pdo=tdt, (14)
and in the second integral,
e*—k*>=1t%, odp =tdt, (15)
Fixing limits of integration and arranging terms we get finally

wg? _Berk ea o _12a?
—O—Ze 4n? [Ie“”z sin (tz) dt + _[e an’o=tzdy 4
2n 3 4

®(0, z) =

k t%a?

+i[e*” cos(tz)dt.  (16)
0

These integrals are much simpler and more convenient for numerical calculations.
Let us note that the second of them can be expressed by means of the probability
function. It should be mentioned here that the formula for the nearfield on axis of the
source with Gaussian velocity amplitude distribution have been given in paper [7] in
the form of a series.

2. The distribution of velocity amplitude of vibrations given by the first order Bessel
function divided by the argument

As we have mentioned in Introduction and as it was proved in paper [6],
distribution of velocity amplitude of vibrations in the form of the first order Bessel
function divided by the argument gives so called absolute directivity in the farfield
which means radiation exclusively in a definite cone without sidelobes. Presently we
will consider the nearfield of such a source. Similarily as in the case of Gaussian
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distribution we will consider here the “strict” case with velocity distribution limited
to the source surface, and the approximate one when the distribution curve is
stretched to infinity under obvious assumption that for r greater than the source
radius, ordinates of the distribution curve are negligible.
Assuming distribution limited to the disk surface we write
J4(nr/a)

\I‘\_a,

u »
uy=< ° nr/a (17)
0, r>a,

where a, as previously, is the source radius. Coefficient n plays here analogous role as
for the Gaussian distribution but now we apply an additional condition that the
velocity amplitude of vibrations on the source edge u(a) should be equal to zero. This
reasonable assumption implies

Jy(n) =0, (18)
which gives a discrete series of admissible values of n.

We will perform numerical calculations for n equal to the three first zeros of the
first order Bessel function, namely [2]

n, = 38317,
n,= 7.0156, (19)
ny = 10.1735.

Of course, in the approximate case we apply the same values of n and we will
consider the distribution of the form

J, (nr/a)

(nr/a) ’ i

We pass on to the calculation of the Hankel transform of zero order for both
exact and approximate cases. In the first one we have

u(r) = u,

(20)

Ho[u()] = “2° [, ar/a) Jo(or)dr. el

Formally the above integral can be expressed in analytical form [3, p. 259]:

Upa’ f(—1)"(n/2)2PzF1(—P,—1—p,l,Qzaz/nz)
PR 2, 2p(p+1)! 3
Anyhow, in either case the Hankel transform must be computed numerically and

there is no need to present here the formula (1) for the potential in explicit form.
In the approximate case (Eq. (20)) the appropriate Hankel transform is

Ho[u(r)] =

(22)

Ho[u)] =" [ J /o) Jolorydr. 3)
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This integral can be found in literature [4, p. 100]:
e a/n, 0<pg<nfa,
(]; J(nr/a)J,(or)dr = < 1/2¢, ¢ = nja, (24)
0, 0 > nja.

Substituting this into Eq. (23) we obtain the Hankel transform of interest in the form

2
Uga
"n—z"',. 0< o< "/a,

H = < Ugd
o[u(] e e sl I

0 0 > n/a.

Substituting this into Eq. (1) representing the acoustic potential note that integration
is now extended only to ¢ = n/a. For greater values of g the integrand becomes zero.
Therefore we get

uga® ™" Joler)

nzg

This integral will have two different forms depending on value of k compared to the
limiting value

d(r,z) = — e V¥ oo, (26)

klim = n/a. (27)

If k > ky;, than integrating over ¢ from 0 to n/a we have everywhere ¢*> < k? and
formula for the acoustic potential takes form

2 [ nja J 3
d(r, 2) = u‘::: [ £ \/;:2(?_") sin (z+/k*—0%) odo + (28)
n,'a 3

\/_ cos(z \/rgz) ng].

Instead, when k < ky;,,, the interval of integration must be divided into two parts: for
0 < ¢ < k the integrands will be the same as in Eq. (28), while for k < ¢ < n/a we
have ¢? > k?. Thus in this case we have

d(r, z) = bl 3" Joler) sin (z/k*—0?) odo + (29)
n? 4 /kz_gz

”’“ Jolor)
\/_"_kiexp z./0*—k*)edo +
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Integrals in the above equations will be computed numerically. However, the field on
z axis can be given analitycally. Namely, when k > k;;,, we have from Eq. (28) for
r=>0

(0, 2) = uya’ |:nfr sin(z,/k*—¢?) o +1T(ms(z—kz-;gz) ng:l, &)

T k?—g? k*—o

and when k < ky,, from Eq. (29) we get

k of 2 2 nja ,—(zve?—k?)
upa® [ X sin(z /k*—¢?) e
P10, 2) = n? |:£ k?—o? ng_£ 0 —k2 ede+
% cos(z/k*—0?) ]
+i ode |.  (31)
£ k2 —g?

The integrals in Egs. (30) and (31) can be reduced easily to elementary ones. For this
purpose one has to apply substitution (14) in Eq. (30) and in the first and the third
integral of Eq. (31), and substitution (15) in the second one. Thus for k > kj;,, we havc
from Eq. (30)

aZ k k
[ | sin(tz)dt+i [ cos(tz)dt]. (32)

VkZ = (n/a)? VK2 =(n/a)?

®0, z) =

Performing integration we can rewrite this in more convenient exponential form:
Uy’ —izVET—(njay? __ ,—ikzy  °
@(0, Z) = zn—z(e =€ ) (33)

Applying formula given in [5, p. 291] to the above expressmn one can separate the
amplitude and the phase:

2 v
of sin(% ( /kz—(n/a)z— k)) ¢~ G+ 5= +i) (34)
As we can see, the amplitude of the acoustic potential is greatest for z =0,

e ”sz( /K —(nja)® —k), (35)

and then oscillates with increasing z with local extrema decreasing as 1/z.
Let us now consider the case of Eq. (31), k > ky;,,. Using substitutions given in
Egs. (14) and (15) we get

@0, 2) =

®(0, 0)

Vinja)2 = k2 k .
| e dt+ifcos(tz)dt]. (36)
0

0

ugn? ;%
®(0, z) = ;2
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After performing elementary integration we turn back to convenient exponential
notation and get

(0, 2) = R gt RSP (37)

Calculating ®(0, 0) we have to find the limiting value of Eq. (37) for z = 0, similarly
as in case of Eq. (34). Applying the I'Hopital’s rule we obtain

(. /(n/a)* — k* +ik). (38)

It is easy to prove that in the limit k=>ky,, the absolute values of @(0, 0) from Egs.
(35) and (38) are equl to each other.

2

®(0,0) =

3. Normalization of the output

Performing numerical calculations we assume that the two considered types of
sources have the same volume output. In general, if the distribution of velocity
amplitude of vibrations on the source of radius a is given by function u(r), the output
Q is expressed by '

a

Q=2n _f u(r)rdr. (39)

0

In order to distinguish between the two distributions considered in this paper, we
will add indices G and B to respective quantities representing the Gaussian
distribution and the Bessel distribution. The source radius will be taken the same in
both cases. For “rigorous” Gaussian distribution Eq. (4) we have from Eq. (39)

Q¢ = 2nugg [ € rdr. (40)

0

This integral is elementary and we get
Q¢ = mog(a/ngf(1—e™"). (41)
For the Bessel distribution (Eq. (17)) we obtain from Eq. (39)

¢ J(ngr/a)

aia) rdr. (42)

0= 2““03_[

This integral is also elementary [2] and we obtain

Qp = 2mugy(a/ng)*[1—Jo(np)]- (43)
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Imposing the condition that both outputs are equal, ie. Q; = Q,, we obtain
a relation between respective maximal amplitudes of velocity which can be written as

1 e
Uop = 5toc(ns/ng)® P
0o\V'"B.

For distributions called above the “approximate” ones, i.e. stretched to infinity
calculations are even easier. For the Gaussian distribution (Eq. (7)) we have

(44)

oo

Q¢ = 2mugg | e~ ™" rdr, (45)

0
Elementary integration gives

Q¢ = muggla/ng)*. (46)
For the Bessel distribution (Eq.(20)) we get

Ds = 2%,, jm e 47)

o (ngr/a)
Using the well-known property of definite integral of the Bessel function of any order
[1, p. 679],

[J(x)dx =1, (48)

0
we obtain from Eq. (47)

Qp = 2nugg(a/ng)*. (49)

Comparing both outputs also in this case we obtain the relation between maximal
amplitudes of velocity: -

1
Ugp = 5”08("8/ "G)Z- (50)

As we have noted above, coefficient n, can be chosen as a zero of the Bessel function
of first order, while coefficient n; can be arbitrary in principle. Then, if we put
ug = up in Eq. (50), maximal amplitudes of the velocity will satisfy the relation

1
Upp =5uon- (51)

This means that with the same values of maximal amplitudes of the velocity, the
Bessel distribution gives twice as great output as the Gaussian distribution.

4. Results and conclusions

Using the formulae derived in previous paragraphs we have performed numerical
calculations of the acoustic nearfield for the two types of considered distributions of
velocity on the source. In both cases we have compared the results obtained in the
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“strict” case, i.e. for the distribution function limited to the finite source surface, and
in the “approximate” one, when the distribution is stretched to infinity. To represent
the acoustic nearfield, we have plot diagrams of the normalized pressure modulus
versus normalized coordinates in the neighbourhood of the source. Given the
acoustic potential @(r, z), one can calculate the acoustic pressure p as

p = ikopc®(r, z), (52)

where g, — rest density of the medium, ¢ — speed of sound. To generalize results, we
introduce the normalized pressure defined as

p
P=———, (53)
opcv)
where (v) is the average velocity amplitude over the source surface S and
1 Q
=— ds =—. 54
v ngu(r) w2 (54)

Preparing formulae for numerical calculations, it is convenient also to introduce
everywhere: the normalized wavenumber » = ka, the normalized radial coordinate
# = r/a and the normalized orthogonal coordinate Z = z/a (the procedure is
explained in details in paper [8]).

Numerical calculations show that in the case of the Gaussian distribution, for
both considered values of the contraction parameter, ng =2 and ng =3, the
“approximate” and “strict” formulae give practically the same values of pressure
amplitude in the nearfield. As the differences are of no importance and even difficult
to represent on graphs, we present results for Gaussian source on Fig. 1 and Fig. 2
without specifying the type of approximation. It can be seen from the figures that
the pressure amplitude decrcases monotonically with respect to both coordinates
# and # and for both values of the contraction parameter n the pressure amplitude
on axis decreases the same way, which is the effect of adequate normalization of
outputs. '

Instead, for the Bessel distribution the differences between the “strict” and
“approximate” cases become important. They are less visible in vicinity of the source,
presented on Fig. 3 (% < 1 and 0 < Z < 1 for the “approximate” case). For greatest
distances, in the “strict” case when the distribution of velocity is nonzero only on the
limited circular source surface, the field on axis exhibits characteristic minima (Fig. 4)
similar to these observed in the case of rigid piston [5]. The minima become less
significant when the contraction parameter ny becomes greater then the normalized
wavenumber (Fig. 4, dotted line). In the “approximate” case, when the distribution is
assumed to be stretched to infinity, no minima are observed for all values of ng
(Fig. 5).

Recapitulating approximation consisting in extending the velocity distribution
function from finite circular source surface to infinite plane is plausible in the case of



FiG. 1. Modulus of the normalized pressure P = pf(opc{v)) as a function of normalized cylindrical
coordinates z/a and r/a near the source of Gaussian velocity distribution for ka = 10 and: a) ng = 2,
b) ng =3
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pressure modulus

C 1 1 A Akl ol bk 1 1 1 L1 LA
07 10° 0’
normalized distance z/a

F1G. 2. Normalized pressure amplitude on axis of source with Gaussian distribution of velocity; solid
line — ng =2, dashed line — ng=3; ka =10

n > 2 the Gaussian distribution function, while for the Bessel distribution the errors
following such approximation become important. Nevertheless, for wavenumbers
less than the contraction parameter ny (which increases together with the number of
nodal circles on the source plane) the approximation becomes reasonable and can be
useful in calculation and design of highly directive sources.

a)

abs(P)




b)

abs(P)

abs (P)

F1G. 3. Modulus of the normalized pressure P = p/(gpc{v}) as a function of normalized cylindrical
coordinates z/a and r/a near the source of Bessel velocity distribution (the “approximate” case) for ka = 10

and: a) ny = 3.8317, b) np = 7.0156, c) np = 10.1735

[527]
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F1G. 4. Normalized pressure amplitude on axis of source with Bessel distribution of velocity (the “strict”
case); solid line — ny = 3.8317, dashed line — ny = 7.0156. dotted line — ny = 10.1735; ka = 10
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FiG. 5. Normalized pressure amplitude on axis of source with Bessel distribution of velocity (the
“approximate” case); solid line — ny = 3.8317, dashed line — ny = 7.0156, dotted line — ny = 10.1735;
ka =10 ;
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