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WAVES WITH FINITE AMPLITUDE IN BESSEL HORNS

T. ZAMORSKI

Institute of Physics, Pedagogical University in Rzeszow Department of Acoustics
(35-310 Rzeszow, ul. Rejtana 16 a)

The equation of the propagation a one-dimensional wave with finite amplitude in
Bessel horns filled with nondissipative fluid is formulated in this paper. The solution to the
equation of the propagation is analysed with the small parameter method. It was proved
that a sinusoidal wave with finite amplitude, generated on the entry of the waveguide, is
deformed when it moves along the horn. This manifests itself with the generation of higher
harmonics with amplitudes dependent on position and frequency. The case of a conical
waveguide filled with air is considered on the basis of general formulae achieved for the
family of Bessel horns. Particularily the second harmonic was taken into account.

W pracy sformulowano réwnanie propagacji jednowymiarowej fali o skonfczonej
amplitudzie w tubach Bessela wypetnionych bezstratnym osrodkiem plynnym. Przeanalizo-
wano rozwiazanie rownania propagacji stosujac metod¢ matego parametru. Wykazano, ze
fala sinusoidalna o skoriczonej amplitudzie generowana na wlocie falowodu ulega znie-
ksztalceniu przy przesuwaniu si¢ w glab tuby, co objawia si¢ powstawaniem wyzszych
harmonicznych o amplitudzie zaleznej od polozenia i od czgstosci. Na podstawie ogolnych
wzoréw uzyskanych dla rodziny tub Bessela rozwazono przypadek falowodu stozkowego
wypelnionego powietrzem, ze szczegdlnym uwzglednieniem drugiej harmoniczne;j.

1. Introduction

The problem of propagation of elastic waves with finite amplitude in waveguides
with regularity changing cross-sections (horns) has been relatively rarely considered
in acoustic literature, as opposed to the linear theory of horns. This paper is based on
the equation of propagation of a wave with finite amplitude in a horn with arbitrary
shape. This equation has been formulated in papers [5, 6, 8] in Lagrange’s
coordinates on the assumption that the wave is one dimensional and that the gas
medium in the horn is nondissipative.

Figure 1 presents a layer of the medium in the waveguide. Before the transition of
the wave disturbance this layer is contained between surfaces S, and S, ), Where
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FiG. 1. Displacement of a layer of the medium under the influence of an acoustic wave

a is the Lagrange coordinate. In the wave’s presence the layer moves to the position
. ; 0

a+¢ and it has thickness equal to d(a+¢) = dx = (1+6—é)da. In such a case

. a

variable a determines the particle’s position in the medium at rest and is independent

of time ¢; while ¢ is the displacement of the particle and depends on both, a and .

Variable x =a+¢ is an Euler’s coordinate. In FEuler's coordinates & is the

displacement of an arbitrary particle in point x; & depends on x and t here. After

several transformations of the equation of continuity, equation of motion and the

adiabate equation for considered layer, we can reach the equation of propagation for

a wave with finite amplitude for displacement & [5, 6, 8]
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where &' = 55 is the so-called deformation of the medium, and y = E” is the adiabatic
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exponent. The quantity ¢? = is the square of sound velocity for small amplitudes

Qo
while g, = g, = const is the static density, and P, = Py = const is the static
pressure in the layer of the medium.

Equation (1) was derivated on the assumption that the horn is filled with gas. It

can be also applied for liquid media, if the liquid satisfies empirical equation [11]:

iy I'
PP, (Qﬁ) . @

where P, and I are constants determined for a given liquid from experiment [11],
with adequate approximation. Equation (1) greatly simplifies itself for exponential
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horns and such a case has been discussed in literature [2, 5, 8]. This paper tries to
consider the transmission of waves with finite amplitudes in Bessel horns, with
special interest in the conical waveguide which is rather frequently applied, because
of it’s simple construction.

2. Discussion of the propagation equation of waves with finite amplitudes in Bessel
horns

The following dependence between the cross-sectional area and position of the
horn’s axis determines the family of Bessel horns [7]:

S = By(xo+X)* (3)

where x, is the distance between the throat of a horn and fictitious vertex (Fig. 2), B,
is a so chosen constant that the area at the throat is equal to S, = B x{, while p is
the coefficient of flare of the waveguide and is a positive real number.

?

kl,

Fi1G. 2. A schematic presentation of the longitudinal section of a Bessel horn

From (3) it results that

S(a+§) C #
—2=|14-]).
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Including (4) in (1) we achieve the propagation equation of a wave with finite
amplitude in a Bessel horn

¢
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Let us assume that there are no reflections at the mouth of a horn and that
a hypotbhetical piston vibrating with harmonical motion is the source of waves at the
throat. Lagrange’s coordinate of the piston, a,, is a constant. The piston dis-
placement is time-dependent and is equal to

Caoy = A€, (6)

where w is the pulsation.
The amplitude of vibration in formula (6) can be expressed in dimensionless notation
by relating it to the inverse of the wave number k = w/c = 2n/4:

A A
A=F=2ﬂ1=2ﬂ'M, (7)

where M is the ratio of piston’s deflection amplitude and wave length A.
Including (7) expression (6), which defines the boundary condition for a wave in
a horn, has the following form

c :
Claoy = — A€, (®)
W

From (5) and (8) we can see that apart from factors determining the horn’s geometry
the solution of equation (5) will contain two parameters: A(or M) and the adiabatic
exponent y (I' — for liquids).

This results from the fact that in the derivation of equations (1) and (5) the
non-linearity of the equation of continuity, Euler’s equation and adiabate equation
was taken into account. As we know [9, 117, parameter y (I'), which characterizes the
non-linearity of the adiabate equation, varies depending on the type of gas (liquid).
But it’s range of variation is relatively small. Whereas, the range of variation of the
M number includes several orders of magnitude, but it does not exceed one. In
practice M values of 10~ for liquids and 102 for gases are rarely exceeded even for
great intensities. Therefore (see (7)) the dimensionless amplitude 4 in formula (8) does
not exceed one. In this case the small parameter method [11] can be applied in the
solution of equation (5). The solution is accepted in the form of a power series for
amplitude A4:

c
an = —[A0100+ A Qran+ A2 Q3 +...], ©)
w
where functions ¢, ¢,, ¢, have to fulfil the boundary condition (8) at the throat of
a horn:
Pir(aony = eiwt; P2(a0,t) = P3(a0.t) -+ =0. (10)

Further considerations will be performed in the second approximation, i.e. with the
designed of terms with higher order than 42 Including (9) in (5) so that the equation
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of propagation contains only terms with 4 and 4° we have
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where dots mark differentiation in terms of time, commas-in terms of coordinate a.
Expression (11) can be noted in the form of a sum of two equations — one includes
factor A, the second A2

A Fygn+A* Fyun=0. (12)

This equation is fulfilled for an arbitrary A # 0, it equalities F 1, = 0 and Fy(,9 =0
occur independently. It results from (11) that only function ¢4, occurs in equation
Fl(a,!l =:0:

P, nop, M 10%g,
-, ———5 =0 13
92 "ada 27T o » (12
Accepting
Pran = (pua)'eim (14)
we have
’®, pdo, 2
ek ~Lle, =0.
da* +a da HF at] A ? (13)
Substituting then :
¢1 = y'aliv: (16)
where
p+1
=— 17
v=52 A (17
we obtain Bessel equation for y [4, 7]
d’y 1ldy Rl
Saelld iz Naran) 18
da2+ada+ . 2" o0

Equation (15) describes wave motion in a Bessel horn in the first approximation.
Selecting the solution to equation (18) in the form of a Hankel function [7] and
including (16) we have

by = @' " [C- Hily+ B Hi]. _ (19)
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H{{l,) and HR), are v — order Hankel functions [7]. It results from the definition of
these functions that H({), describes a wave propagating in the direction of increasing
“a” values, while H\{),, — a wave propagating in the opposite direction. Because we
previously assumed that there are no reflections at the mouth of the horn, only
a progressive wave occurs and we should accept C = 0. Finally, including (14),

we have

@, =4"""-B: HQ, - ' (20)
Constant B can be determined from boundary condition (10)
P
b=~ (21
HZo) ’
Eventually, the first approximation:
a\'"" Ho
o= () e e

A more detailed discussion of equation (22) is not necessary, because the linear
theory of Bessel horns is well known [1, 6, 7]. Equation F,,, = 0 with terms
containing factor A has the following form (see (11));

oy pd@, p 13,

e e —_—=
26> 'a 0a a2 c* or? W

(23)

where
C r " 1 o }’ ’ g C "
Ean = afplrpz+—wca(w*u+ Doy, S 4 Sl LS (24)

Equation (23) is similar to equation (13), but on the right side it has term &a.ny defined
by the solution achieved in the first approximation, @iy We can see from
expression (22) that ¢, is a periodical function with pulsation . Also derivatives cf
¢, in terms of time and position are periodical functions with pulsation w. Because
products of these derivatives occur in (24), & has to be a periodical function with
pulsation 2 . Expression ¢, determines the form of the solution of the hetero-
geneous equation (23), so [4] that the solution can be a function with pulsation 2 @

Paran = Paay €. (25)
Hence, function @, which defines the second harmonic, has to satisfy equation
d’®, pd®, u
222 T ,+K0,=9,, 26
da2+aa’a a2 2 HK1P, (a) ( ]
where :
Vi = k™' @, ] —ka™ (up—p+ 1) B} — k&, &, —(ka) " &} D,  (27)

k, = 2k. (28)
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The fact that function ¥, in equation (26) is determined by the first approximation
of the solution can be explained by the wave’s second harmonic being excited due to
a disturbance of the medium in the horn by the first harmonic. The solution to
equation (26) can be presented in the following form [4]:

fi¥a ¥
@, = [, [ Fpy " da—fi[ 2" da+ By fy+ Bofy, (29)
where

2
Wl (30)

na
fl = ﬂ,l_v'IVU‘HI)’ j (31)
FAT Y i & AW (32)

and I, Yox.a are v-order Bessel functions of the first and second type respec-
tively [7]. In accordance with condition (10) and expression (25) has to be equal to
0 for a particle at the throat of the horn (a = a,). This condition can be fulfilled for
adequately selected constants B, B, in expression (29).

Further approximations can be calculated in an analogous manner by including
terms with higher powers of 4 from expression (9) in the equation of propagation (5)
and formulating linear differential equations for tunctions ¢,, corresponding with
successive harmonics. Condition (10), i.e. ¢, . = 0 in every time moment ¢ for n > 1
is valid for higher harmonics on the entry of the waveguide. Higher harmonics for
a > a, are formed, because of non-linear properties of the medium in the horn. They
are a sign of a deformation of the wave front as the wave disturbance moves along
the horn. The total power on the entry of the waveguide is the power of the first
harmonic. Because the total power remains constant in a nondissipative medium, the
formation of higher harmonics is related with a decrease of the acoustic power of
a wave with fundamental frequency. In practice most information for a waveguide
with definite geometry should be contributed by the analysis of the second harmonic.
Higher harmonics are of less significance, because A4 <1 (see (9)). We will now
analyse the second harmonic in a waveguide with conical shape.

3. Conical horn

A conical horn has worse transmission properties than Bessel horns of higher
order [1, 7] exponential [6] of catenoidal [10] waveguides, but it is often applied for
the simplicity of its shape. In this case the coefficient of flare is equal pu=2.
Therefore, v = 3/2 (see (17)) and the solution of the equation of propagation for the
first harmonic (20) has the following form

o a !B -H® - elot (33)

3 (ka)
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where constant B, defined by expression (21), is equal to:

g V% 3
s g (34)
5 (kao)
In order to determine the second harmonic, equation (26) has to be solved for
function @,. The integral of this equation for x = 2 can be determined from (29) with
the utilization of relationships between Bessel functions [ bia o Y(;‘k and trigonome-
tric functions [7] Foe g

2 I:sin(k1 a)

Hkia) nk.a| k,a

2 ) cos(k, a)
Y = — |.
$(kia) \ mk,a [Sm(k‘aH kya ] (36)

Calculations result in:

—cos(k, a)], (35)

2 ;
Re[®,] = %[Dl(z-—x)+D2(@+A)+ﬁ—N2:| sin(k, a)
; 3 &

N \
+&[D1(@—A)—D2(E+x)—f_.l—k—z:lcps(kla), (37a)
a a
a, L, ;
Im[(ﬁz]:Z DZ(Z—;()--DI(@+/l)—f~k—(;—N1 sin(k, a)
* 1
N
+%[D2(@—A)+D1(E+x)—l.2-—Egljlcos(kla),_ (37b)

where D,, D,, L,, L,, N 1» N, are constants, while X, y, @, A are functions with
following forms:

2.\ 2 o e
2] 2(kla) s(kla) 5 In(k,a), (38)
' +1 . ; g Iy
A= gk—ldS:lea)-f-%—[Ci(zha)“c]s (39)
P 0 e 2 y+1
F=4{-—) -3+ T In(k,a). "
&) *trat 2k a9 s
P+1 . vre :
bl e e —Cl. 41
1= Sikia)+ 5 [Ci2kia)—C] (41)

Symbols Si(2k, a), Ci(2k, a) in expressions (39), (41) denote tabelarized integral sine
and cosine functions, while C is Euler’s constant [3].
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We can calculate constants D, and D, from (34)
D, = (na,)'*Re[B*]; D, = (nap)~'-Im[B%]. (42)

Other constants were derived from the boundary condition (10) and have the
following form:

ky
Ly = 1 o oys 002100 = 40) = Da(Zo+ 1001 =D1(Eo=10)+
_Dz(@o+/lo)} (43)
kyag
L, =17 (k. ap F1%[P2(00—AdH+Dy(Zo+ Xo)1+ Dy (B0 + Ao)+
—D,(Zo—x0)}, (44
kyag
Nl:ﬁﬁ{k1ao[D1(@o+A0)_Dz(zo+10)]—DZ(Q—AO)-I-
—D,(Zo—1x0)}, (49)
N, = 1do {klaO[Dl(zo_x0)+D2(90+A0)]+D1(@0_A0)+

1+(k,a,)?
—Dy(Zo+xo)},  (46)

where @, Ay, 2y, X, are values of functions defined by formulae (38 —41) for a = a,.

Having calculated @, we can now determine ¢, from (25). Then, knowing ¢, and ¢,

we can find the vibration velocity of a particle from (9)

U{a,t) = iACQ]{a) % eim! + i2A Z C@z(a) < ezt.m'. (47)

Formula (47) determines the vibration velocity in Lagrange’s coordinates. If we want
to know the vibration velocity in a point with abscissa x (see Fig. 1), then we have to
apply the relationship between Lagrange’s and Euler’s coordinates [11]

dv

Vi) = Va1 — 50" Bt (48)
Applying formulae (9) and (47) we obtain the second approximation
: 109, :
U(x‘,) = iAC@l(a)' el(m‘+ iCAz [z(p;g(g] k a =4 él(a):‘ 8210-"‘ (49) 4

To end the case of a conical horn (u = 2) we will present a numerical example.
Amplitudes of vibration velocity of the first and second harmonic of a wave in
a waveguide with the following dimensions:

distance between the throat of the hom and fictitious of the cone x, = 107! m,

horn throat diameter d,=2-10"% m,

horn mouth diameter d,, =2-10"' m

length 1=9-1071
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F1G. 3. Amplitudes of vibration velocities of particles of the medium in a horn for the first and second
harmonic. Frequency of sine wave at the throat of a horn f =540 Hz (k = 10 m™ 1)

were numerically calculated on the basis of expressions (7), (33), (34) and (37-47).
Figure 3 presents the relationship between amplitudes of vibration velocities of
the first and second harmonic, and position in the horn of particles of the medium for

m
Amplitudes of vibration velocities of both harmonics were related to the amplitude
of vibration velocity of the first harmonic on the horn’s throat |v;,|. We can see that
the amplitude of vibration velocity of the first harmonic is a monotone function
which decreases as it moves away from the throat of the horn. The second harmonic
initially rapidly increases near the throat, but then it begins to decrease also, with
characteristic oscillations. The amplitude decrease of the vibration velocity of the
second harmonic, accompanying the growth of the distance from the throat, means
that the flare of the waveguide’s walls has a restraining effect on the development of
distortions of the wave front during the propagation of a wave with high amplitude.
This results from the fact that with the increase of the cross section of the horn, the

e 3 ] 1
a definite vibration frequency of the piston at the throat f = 540 Hz (k =11 )
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FiG. 4. Ratio of a particle velocities for the second harmonic and the fundamental at the horn mouth

acoustic energy per cross-section area unit decreases and the amplitude of the wave
disturbance decreases.

As we know, pulsation of wave’s higher harmonics in space (or in time) is caused
by dispersion [9, 11]. Therefore, oscillations of the second harmonic, shown in Fig. 3,
should prove that in terms of the non-linear theory, a nondissipative fluid contained
in the horn is a dispersion medium. As it should have been expected the amplitude of
vibration velocity of the second harmonic increases with the increase of the
amplitude of the source’s vibrations. This is shown in Fig. 3, where calculation
Izl
[v10
M =0.02 and M = 0.04, are taken into account.

The amplitude of vibration velocity of the second harmonic for a given particle of
the medium in the horn increases in relation to the amplitude of vibration velocity of
the first harmonic when frequency is increased. This relationship is shown in Fig. 4
where results of calculations of the ratio of amplitudes of vibration velocities of both
harmonics are presented in terms of wave number k for particles on the horn’s
mouth. We can see that the higher the amplitude of vibrations of the piston on the

results of for two values of the number M (see [7]) on the horn’s throat

20 — Arch. of Acoust. 3—4/90
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V.
waveguide’s entry the more quickly the —= IVl ratio increases with a frequency increase.

Vil

|V,
In approximate calculations we can accept that the square of 17 : ratio is equal to the
i

intensity ratio of both harmonics (see [5, 8]).

4. Conclusions

A plane wave with finite amplitude, propagating in an unlimited medium with
small dispersion, or in a cylindrical pipe, is subject to relatively quick deformation [9,
11]. The wave front deformation process in discussed above waveguides takes place,
at a different rate and unlike than in a free space. We should particularily notice that
the second harmonic of a wave progressive after an initial increase in the narrow part
of the horn, decreases as the waveguide’s flares. Yet, because of the increase of the
second harmonic on the horn’s throat which accompanies fundamental frequency
increase, we have to take into account strong harmonics produced due to non-linear
properties of the medium air in the waveguide, which can be included in the range of
transmitted frequencies. On the basis of the results of this paper, non-linear effects in
Bessel horns can be assessed for cases of known horn’s geometry and amplitude on
the throat of the waveguide.
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