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Dynamics of a weakly nonlinear and weakly dispersive flow of a gas where molecular vibrational
relaxation takes place is studied. Variations in the vibrational energy in the field of intense sound is
considered. These variations are caused by a nonlinear transfer of the acoustic energy into energy of
vibrational degrees of freedom in a relaxing gas. The final dynamic equation which describes this is
instantaneous, it includes a quadratic nonlinear acoustic source reflecting the nonlinear character of
interaction of high-frequency acoustic and non-acoustic motions in a gas. All types of sound, periodic or
aperiodic, may serve as an acoustic source. Some conclusions about temporal behavior of the vibrational
mode caused by periodic and aperiodic sounds are made.
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1. Introduction. Basic equations

and starting points

The attention of physicists to non-equilibrium phe-
nomena, particularly to non-equilibrium gases, was at-
tracted by some fundamental results, both experimen-
tal and theoretical. In the sixties, these results pro-
vided a laser revolution (Zeldovich, Raizer, 1966;
Gordiets et al., 1973; Osipov, Uvarov, 1992).
The establishment of a non-equilibrium molecular
physics began due to the progress in laser tech-
nique and research in physics and chemistry that fol-
lowed. Non-equilibrium gases embrace not only ac-
tive gases used in lasers but discharge plasma, rari-
fied levels of the upper atmosphere, interstellar me-
dia, and so on. The mechanism of a retarded energy
exchange between the internal and translational de-
grees of freedom of the molecules is the reason for
on anomalous dispersion and absorption of ultrasonics
waves (Zeldovich, Raizer, 1966; Osipov, Uvarov,
1992; Kogan, Molevich, 1986). Interest in non-
equilibrium phenomena in the physics of gases was first
connected with studies of these anomalies (Osipov,
Uvarov, 1992;Kogan, Molevich, 1986;Molevich
et al., 2005). The general theory of thermodynamic
relaxation was created by Mandelshtam and Leon-

tovich (1947). The hydrodynamics of non-equilibrium
fluids is a quickly developing area of a scientific knowl-
edge.
This paper is devoted to a nonlinear phenomenon

caused by a high-frequency sound in a vibrationally
relaxing gas. This is an interaction of the sound with
a non-acoustic vibrational mode leading to a nonlinear
generation of a non-wave part of the vibrational energy
by the dominative sound. As far as the author knows,
it is a new subject to study. Losses in the acoustic en-
ergy in a standard thermoviscous fluid always increase
the background temperature, and this phenomenon is
called acoustic heating (Rudenko, Soluyan, 1977;
Makarov, Ochmann, 1996). It was first discovered
by Molevich that the nonlinear exchange of energy
between the sound and the thermal mode may lead
to a cooling instead of heating in a gas where non-
equilibrium relaxation takes place (Molevich, 2002).
The sound itself enhances anomalously (Molevich,
2003).
We start from a linear determination of modes as

specific types of fluid motion in a simple case of mo-
tions in a gas whose steady but non-equilibrium state is
maintained by pumping the energy into the vibrational
degrees of freedom by the power I and heat withdrawal
from the translational degrees of freedom of the power
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Q, both I and Q refer to the unit mass (Sec. 2). The
relaxation equation for the vibrational energy per unit
mass complements the system of conservation equa-
tions in the differential form. It has the form:

dε
dt

= −
ε− εeq(T )

τ(ρ, T )
+ I. (1)

The equilibrium value for the vibrational energy at
a given temperature T is denoted by εeq(T ), and
τ(ρ, T ) is the vibrational relaxation time. For a sys-
tem of harmonic oscillators,

εeq(T ) =
~Ω

m (exp(~Ω/kBT )− 1)
, (2)

where m is the molecule mass, ~Ω is the magnitude
of the vibrational quantum, and kB is the Boltzmann
constant. Equation (2) is valid over the temperatures
where one can neglect anharmonic effects, i.e., be-
low the characteristic temperatures which are fairly
high for most molecules (Zeldovich, Raizer, 1966;
Gordiets et al., 1973; Osipov, Uvarov, 1992). The
mass, momentum and energy conservation equations
governing the thermoviscous flow in a vibrationally re-
laxing gas read:

∂ρ

∂t
+∇(ρv) = 0,

ρ

[
∂v

∂t
+ (v∇)v

]
= −∇p+ η∆v+

η

3
∇(∇v),

ρ

[
∂(e+ ε)

∂t
+ (v∇)(e+ ε)

]
+ p∇v = χ∆T

+ ρ(I −Q) +
η

2

(
∂vi
∂xk

+
∂vk
∂xi

−
2

3
δik

∂vl
∂xl

)2

,

(3)

where v denotes the velocity of the fluid, ρ, p are the
density and pressure, e marks the internal energy per
unit mass of the translation motion of molecules, η is
the shear viscosity, χ denotes the thermal conductivity
(η and χ supposed to be constants), xi (i = 1, 2, 3)
are space coordinates, δik is the Kronecker symbol, it
equals 1 if i = k and 0 otherwise. Two thermodynamic
functions e(p, ρ) and T (p, ρ) complete the system (3).
Thermodynamics of ideal gases provides

e(p, ρ) =
R

µ(γ − 1)
T (p, ρ) =

p

(γ − 1)ρ
, (4)

where γ = CP,∞/CV,∞ is the isentropic exponent with
no account of vibrational degrees of freedom (CP,∞ and
CV,∞ denote “frozen” heat capacities correspondent to
very quick processes), R is the universal gas constant,
and µ is the molar mass of a gas.

2. Dispersion relations. One-dimensional

motions of infinitely small amplitude and

their decomposing

Let us start with considering the motion of a gas
with infinitely small amplitude when η = 0, χ = 0,
I = Q. Every quantity q is represented as a sum of
an unperturbed value q0 (in the absence of the back-
ground flows, v0 = 0) and its variation q′. The flow
is supposed to be one-dimensional along the axis Ox.
First, relations of excess perturbations specific for ev-
ery mode should be established. These relations will be
fixed going to a weakly nonlinear flow. That makes it
possible to decompose equations governing the sound
and non-wave modes accounting for their interactions
correctly (Sec. 3). Following Molevich (Molevich,
2003; 2004; Makaryan, Molevich, 2007), we con-
sider a weak transversal pumping which may vary the
background quantities in the transversal direction of
the axis Ox. It is assumed that the background sta-
tionary quantities are constant along the axis Ox.
The governing equations of continuity and the mo-

mentum and energy balance may be easily rearranged
into the following ones:

∂v′

∂t
+

1

ρ0

∂p′

∂x
= 0,

∂p′

∂t
+ γp0

∂v′

∂x
− (γ − 1)ρ0

ε′

τ

+(γ − 1)ρ0T0Φ1

(
p′

p0
−

ρ′

ρ0

)
= 0,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= 0,

∂ε′

∂t
+

ε′

τ
− T0Φ1

(
p′

p0
−

ρ′

ρ0

)
= 0,

(5)

where

Φ1 =

(
CV,eq

τ
+

ε− εeq
τ2

dτ
dT

)

0

,

CV,eq =

(
dεeq
dT

)

0

.

(6)

The expansions in the series of equations of state (4)
was used in the second and fourth equations from (5):

e′ =
R

µ(γ − 1)
T ′ =

p0
(γ − 1)ρ0

(
p′

p0
−

ρ′

ρ

)
. (7)

The last equation in the set (5) follows from Eqs. (1)
and (7):

∂ε′

∂t
+

ε′

τ
=

(
CV,eq

τ
+

ε− εeq
τ2

dτ
dT

)

0

T ′

= T0

(
CV,eq

τ
+

ε− εeq
τ2

dτ
dT

)

0

(
p′

p0
−

ρ′

ρ0

)
. (8)
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The relaxation time in the most important cases
may be thought as a function of the tempera-
ture according to Landau and Teller in the form:
τ(T ) = A exp(BT−1/3), where A and B are some
positive constants, which gives negative values of
dτ/ dT (Zeldovich, Raizer, 1966; Gordiets et
al., 1973; Osipov, Uvarov, 1992). It is the simplest
but most physically justified model (Zeldovich,
Raizer, 1966).
Let us start the study of motions with infinitely

small amplitudes with representing of all perturbations
as a sum of planar waves, where q̃(k) exp(iω(k)t) is the
Fourier-transform of any perturbation q′:

q′(x, t) =

∞∫

−∞

q̃(k) · exp i(ωt− kx)dk

+ complex conjugate. (9)

The dispersion equation follows from Eqs. (5):

ω
(
iΦ1(γ − 1)T0τ(c

2k2 − γω2)

+ c2(c2k2 − ω2)(i − ωτ)
)
= 0, (10)

where c =
√

γRT0

µ =
√
γp0/ρ0 is the “frozen”, infini-

tely small signal sound speed in an ideal uniform gas.
Approximate roots of the dispersion equation for

both acoustic branches, progressive in the positive and
negative directions of the axis Ox, are well known un-
der the simplifying condition ωτ ≫ 1 which restricts
consideration by the high-frequency sound (Osipov,
Uvarov, 1992; Molevich, 2003)

ω1 = ck +
i

2

(γ − 1)2T0

c2
Φ1,

ω2 = −ck +
i

2

(γ − 1)2T0

c2
Φ1.

(11)

The last term in the both dispersion relations mani-
fests an amplification of the sound in a non-equilibrium
regime (if Φ1 < 0) which does not depend on the
wavenumber k. The amplification effect increases with
a growth of | dτ/ dT | and vibrational disequilibrium
m(ε − εeq)/kBT . The two last roots of the dispersive
equation, estimated without the limitation ωτ ≫ 1,
have the following form:

ω3 = i

(
1

τ
+

(γ − 1)(γ + c2k2τ2)T0

c2(1 + c2k2τ2)
Φ1

)
,

ω4 = 0.

(12)

The third mode comes from the vibrational relaxation.
The fourth root represents the thermal, or entropy,
mode. In an equilibrium gas, this type of a non-wave
motion specifies perturbation in the background tem-
perature and correspondent variation in its density. It
is well established that nonlinear losses in the acoustic
energy in a gas with typical thermoviscous attenua-
tion lead to heating of the background, and by means

of that, influence on the sound velocity in a fluid. The
last two roots manifest slow varying and stationary,
non-wave motions of a gas.
In accordance to Eqs. (5) and the roots (11), (12),

the Fourier transforms of the dynamic variables may
be represented as linear combinations of four specific
Fourier transforms of the excess density ρ̃1, ρ̃2, ρ̃3, ρ̃4
as follows:

ṽ =

4∑

n=1

ωnρ̃n/(kρ0),

p̃ =

4∑

n=1

ω2
nρ̃n/k

2,

ρ̃ =

4∑

n=1

ρ̃n,

ǫ̃ =
T0Φ1

ρ0c2

2∑

n=1

(
γω2

n

k2
− c2

)
ρ̃n
iωn

+

(
γω2

3

k2
− c2

)

·
T0Φ1

ρ0c2∞

ρ̃3
iω3 + 1/τ

+
τT0Φ1

ρ0c2

(
γω2

4

k2
− c2

)
ρ̃4.

(13)

Thus, perturbation in the velocity, pressure, or en-
ergy of every dynamic variable may be expressed in
terms of specific excess densities. The correspondent
formulas in the (x, t) space follow from Eqs. (13) and
the roots of the dispersion equation, i.e., Eqs. (11),
(12), keeping in mind that the overall excess velocity,
pressure, density, and internal energy are sums of spe-
cific parts:

v′(x, t) =

4∑

n=1

v′n(x, t), p
′(x, t)

=

4∑

n=1

p′n(x, t), ρ
′(x, t) =

4∑

n=1

ρ′n(x, t), ε
′(x, t)

=

4∑

n=1

ε′n(x, t). (14)

Relations of acoustic right- and leftwards progressive
waves in the high-frequency regime (ckτ ≫ 1) fol-
low from the dispersion relations ω1(k), ω2(k), i.e.,
Eqs. (11), and Eqs. (13):

v′1(x, t) =
c

ρ0

(
1−B

∫
dx
)
ρ′1(x, t),

p′1(x, t) = c2
(
1− 2B

∫
dx
)
ρ′1(x, t),

ε′1(x, t) =
2Bc2

(γ − 1)ρ0

∫
dxρ′1(x, t),

v′2(x, t) = −
c

ρ0

(
1 +B

∫
dx
)
ρ′2(x, t),

p′2(x, t) = c2
(
1 + 2B

∫
dx
)
ρ′2(x, t),

ε′2(x, t) = −
2Bc2

(γ − 1)ρ0

∫
dxρ′2(x, t),

(15)
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where

B = −
(γ − 1)2T0

2c3
Φ1. (16)

The sound is imposed to be a wave process, so that it
attenuates (or amplifies, in dependence to the sign of
B) weakly over the wavelength, |B|k ≪ 1. The third
mode possesses the following leading-order relation-
ships:

v′3(x, t) =
1

ρ0τ

∫
dxρ′3(x, t),

p′3(x, t) = 0,

ε′3(x, t) =
c2

(γ − 1)ρ0
ρ′3(x, t).

(17)

The equalities defining the thermal mode correspond
to an isobaric motion:

v′4(x, t) = 0, p′4(x, t) = 0,

ε′4(x, t) = −
T0Φ1τ

ρ0
ρ′4(x, t).

(18)

Relations (15)–(18) along with the linear property of
superposition, Eq. (14), point out a way of combin-
ing four equations from (5) in order to get dynamic
equations for perturbation of only one specific mode.
Application of a matrix operator on the vector of over-
all perturbations (v′ p′ ρ′ ε′) actually decomposes
the correspondent specific mode:

Pn




v′(x, t)

p′(x, t)

ρ′(x, t)

ε′(x, t)



=




v′n(x, t)

p′n(x, t)

ρ′n(x, t)

ε′n(x, t)




, n = 1, . . . , 4. (19)

Within the accuracy up to the terms of the first order
in (ckτ)−1, (|B|k), projectors take the form as follows
(n = 1, . . . , 4):

Pn =




Pn(1,1) Pn(1,2) Pn(1,3) Pn(1,4)

Pn(2,1) Pn(2,2) Pn(2,3) Pn(2,4)

Pn(3,1) Pn(3,2) Pn(3,3) Pn(3,4)

Pn(4,1) Pn(4,2) Pn(4,3) Pn(4,4)




, (20)

where

P1(1,1) =
1

2
+

B

2

∫
dx,

P1(1,2) =
1

2cρ0
−

B

cρ0(γ − 1)

∫
dx,

P1(1,3) =
Bc

ρ0(γ − 1)

∫
dx,

P1(1,4) = −
(γ − 1)

2c2τ

∫
dx,

P1(2,1) =
cρ0
2

,

P1(2,2) =
1

2
−

(γ + 1)B

2(γ − 1)

∫
dx,

P1(2,3) =
B

(γ − 1)c2

∫
dx,

P1(2,4) = −
ρ0
2cτ

∫
dx,

P1(3,1) =
ρ0
2c

+
Bρ0
c

∫
dx,

P1(3,2) =
1

2c2
+

B(γ − 3)

2(γ − 1)c2

∫
dx,

P1(3,3) =
B

(γ − 1)

∫
dx,

P1(3,4) =
(γ − 1)ρ0

2c3τ

∫
dx,

P1(4,1) =
Bc

(γ − 1)

∫
dx,

P1(4,2) =
B

ρ0(γ − 1)

∫
dx,

P1(4,3) = P1(4,4) = 0,

P2(1,1) =
1

2
−

B

2

∫
dx,

P2(1,2) = −
1

2cρ0
−

B

cρ0(γ − 1)

∫
dx,

P2(1,3) =
Bc

ρ0(γ − 1)

∫
dx,

P2(1,4) = −
(γ − 1)

2c2τ

∫
dx,

P2(2,1) = −
cρ0
2

,

P2(2,2) =
1

2
+

(γ + 1)B

2(γ − 1)

∫
dx,

P2(2,3) = −
B

(γ − 1)c2

∫
dx,

P2(2,4) =
ρ0
2cτ

∫
dx,

P2(3,1) = −
ρ0
2c

+
Bρ0
c

∫
dx,

P2(3,2) =
1

2c2
−

B(γ − 3)

2(γ − 1)c2

∫
dx,

P2(3,3) = −
B

(γ − 1)

∫
dx,

P2(3,4) = −
(γ − 1)ρ0

2c3τ

∫
dx,

P2(4,1) =
Bc

(γ − 1)

∫
dx,
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P2(4,2) = −
B

ρ0(γ − 1)

∫
dx,

P2(4,3) = P2(4,4) = 0,

P3(1,1) = 0,

P3(1,2) =
2B

cρ0(γ − 1)

∫
dx,

P3(1,3) = −
2Bc

ρ0(γ − 1)

∫
dx,

P3(1,4) =
(γ − 1)

c2τ

∫
dx,

P3(2,1) = P3(2,2) = P3(2,3) = P3(2,4) = 0,

P3(3,1) = −
2Bρ0
c

∫
dx,

P3(3,2) =
2Bτ

(γ − 1)c
,

P3(3,3) = −
2Bτc

(γ − 1)
,

P3(3,4) =
(γ − 1)ρ0

c2
+

2Bρ0τ

c
,

P3(4,1) = −
2Bc

(γ − 1)

∫
dx,

P3(4,2) =
2Bcτ

ρ0(γ − 1)2
,

P3(4,3) = −
2Bc3τ

ρ0(γ − 1)2
,

P3(4,4) = 1 +
2Bτc

(γ − 1)
,

P4(1,1) = P4(1,2) = P4(1,3) = P4(1,4) = 0,

P4(2,1) = P4(2,2) = P4(2,3) = P4(2,4) = 0,

P4(3,1) = 0,

P4(3,2) = −
1

c2
−

2Bτ

(γ − 1)c
,

P4(3,3) = 1 +
2Bτc

γ − 1
,

P4(3,4) = −
(γ − 1)ρ0

c2
−

2Bρ0τ

c
,

P4(4,1) = 0,

P4(4,2) = −
2Bcτ

ρ0(γ − 1)2
,

P4(4,3) =
2Bc3τ

ρ0(γ − 1)2
,

P4(4,4) = −
2Bτc

(γ − 1)
.

Projectors P1, . . . , P4 form a full orthogonal set of
projectors:

Pn · Pn = Pn, Pn · Pm = 0 (n 6= m),

4∑

n=1

Pn = E, n,m = 1, . . . , 4,
(21)

where 0 and E denote the zero and unit matrix opera-
tors, correspondingly. The remarkable property of pro-
jectors is that then decompose the dynamic equations
governing the correspondent mode by an immediate
appliance on the linear system (5):

Pn




∂

∂t




v′

p′

ρ′

ε′


+ L




v′

p′

ρ′

ε′







=
∂

∂t




v′n
p′n
ρ′n
ε′n


+ L




v′n
p′n
ρ′n
ε′n


 = 0. (22)

where L is the matrix operator correspondent to the
system (5). Employment of the second rows of P1 or P2

on the system (5) distinguishes the governing equations
for the specific acoustic pressures p′1 or p

′
2, respectively:

∂p′1
∂t

+ c
∂p′1
∂x

− cBp′1 = 0,

∂p′2
∂t

− c
∂p′2
∂x

− cBp′2 = 0,

(23)

which obviously coincide with the roots of the disper-
sion equation, i.e., ω1 and ω2 from Eqs. (11). Applica-
tion of the last rows of P3 or P4 on Eqs. (5) decomposes
the equations for the excess specific energies as follows,
correspondingly:

∂ε′3
∂t

+

(
1

τ
−

2Bc

γ − 1

)
ε′3 = 0,

∂ε′4
∂t

= 0. (24)

These equations coincide with ω3 and ω4 established
by Eqs. (15). Projecting in problems of weakly nonlin-
ear flows was worked out and applied by the author in
the studies of acoustic streaming and heating in stan-
dard thermoviscous flows (Perelomova, 2003; 2006),
as well as in some weakly dispersive flows.

3. Interaction of the dominative sound

and non-acoustic types of motion

in a weakly nonlinear flow

3.1. Decomposition of dynamic equations
in a weakly nonlinear flow

Account for the nonlinear terms of the second order
in the relaxation Eq. (1) and the state Eqs. (4) yields
the leading order equalities:
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T ′ = T0

(
p′

p0
−

ρ′

ρ0
+

ρ′2

ρ20
−

p′ρ′

p0ρ0

)
,

dε′

dt
= −

ε′

τ
+ T0

(
1

τ2
dτ
dT

)

0

ε′
(
p′

p0
−

ρ′

ρ0

)

+ T0Φ1

(
p′

p0
−

ρ′

ρ0
+

ρ′2

ρ20
−

p′ρ′

p0ρ0

)

+ T0Φ2

(
p′

p0
−

ρ′

ρ0

)2

,

(25)

where

Φ2 = T0

(
−

1

τ2
CV,eq

dτ
dT

−
(ε0 − εeq)

τ3

(
dτ
dT

)2

+
1

2τ

dCV,eq

dT
+

(ε0 − εeq)

2τ2
d2τ
dT 2

)

0

.

The governing dynamic system with the account for
quadratic nonlinear terms differs from (5) by the
quadratic right-hand side:

∂v′

∂t
+

1

ρ0

∂p′

∂x
= −v′

∂v′

∂x
+

ρ′

ρ20

∂p′

∂x
,

∂p′

∂t
+ γp0

∂v′

∂x
− (γ − 1)ρ0

ε′

τ

+(γ − 1)ρ0T0Φ1

(
p′

p0
−
ρ′

ρ0

)
=−v′

∂p′

∂x
−γp′

∂v′

∂x

+(γ − 1)ρ′
(
ε′

τ
− T0Φ1

(
p′

p0
−

ρ′

ρ0

))

− (γ − 1)ρ0

(
T0

(
1

τ2
dτ
dT

)

0

ε′
(
p′

p0
−

ρ′

ρ0

)

+T0Φ1

(
ρ′2

ρ20
−

p′ρ′

p0ρ0

)
+ T0Φ2

(
p′

p0
−

ρ′

ρ0

)2
)
,

∂ρ′

∂t
+ ρ0

∂v′

∂x
= −v′

∂ρ′

∂x
− ρ′

∂v′

∂x
,

∂ε′

∂t
+

ε′

τ
− T0Φ1

(
p′

p0
−

ρ′

ρ0

)

= T0

(
1

τ2
dτ
dT

)

0

ε′
(
p′

p0
−

ρ′

ρ0

)

+T0Φ1

(
ρ′2

ρ20
−

p′ρ′

p0ρ0

)

+T0Φ2

(
p′

p0
−

ρ′

ρ0

)2

− v′
∂ε′

∂x
.

(26)

The left-hand sides of Eqs. (26) may be successfully de-
composed into specific parts by projecting. The right-
hand nonlinear terms become distributed between spe-
cific dynamic equations by projecting in the correct
way as well: a sum of all projectors is the unit oper-
ator. The non-linear right-hand parts of Eqs. (26) in-
clude terms of all modes, and further analysis depends
on the portion of every mode there.

3.2. Weakly nonlinear equation governing sound

The most important problems relate to dominative
(intense) sound and nonlinear phenomena in its field.
The mode is dominative with respect to other modes
if amplitudes of its perturbations are much larger than
that of other modes. The equation governing the sound
may be readily obtained by applying of acoustic pro-
jectors on the system (26). It is valid over the temporal
and spatial domains where sound holds dominative, be-
cause a weak nonlinearity presupposes a slow growth
of the secondary modes, and they may become com-
parable in the amplitude with the dominative sound.
We will consider the first acoustic mode and nonlin-
ear generation of the third mode in its field. Applying
of the second row of P1 on Eqs. (26) and replacing
all nonlinear terms by those specific for the sound one
readily obtains the following equation:

∂p′1
∂t

+ c
∂p′1
∂x

− cBp′1 =
γ + 1

2ρ0c
p′1

∂p′1
∂x

. (27)

3.3. Equation governing the relaxation mode

At this point we make routine manipulations to
decompose the dynamic equation for the specific ex-
cess energy of the vibrational mode by applying on
the system (26) of the fourth row of projector P3 and
collecting together terms of the leading order. Only
dominative acoustic terms are held in the right-hand
non-linear part, which may be expressed in terms of
the acoustic excess pressure in view of Eqs. (15):

∂ε′3
∂t

+

(
1

τ
−

2Bc

γ − 1

)
ε′3 = −

2Bτ(γ + 1)

ρ20(γ − 1)2
p′1

∂p′1
∂x

+ T0

(
1

τ2
dτ
dT

)

0

2B

ρ20c
2
p′1

∫
p′1 dx

+
T0Φ2(γ − 1)2p′21

ρ20c
4

. (28)

The acoustic pressure in the right-hand side should
itself satisfy the dynamic Eq. (27). Equation (28) is
instantaneous and applies to the periodic or aperiodic
high-frequency sound. It is the leading-order equation
accounting for a weak nonlinearity and dispersion.

4. Examples

4.1. Periodic sound

A solution of the linear wave equation may be pre-
liminary considered for the acoustic pressure:

p′1(x, t) = P0 sin(ω1(t− x/c)), (29)

where P0 is a constant. Equation (28) after averaging
over the sound period 2π/ω1 rearranges in the leading
order into:
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∂ 〈ε′3〉

∂t
+

(
1

τ
−

2Bc

γ − 1

)
〈ε′3〉 =

T0Φ2(γ − 1)2

2ρ20c
4

P 2
0 , (30)

where square brackets denote averaging over the sound
period.
After integrating with the initial condition

〈ε′3〉 |t=0 = 0 , a variation in the vibrational energy of
the third mode takes the form:

〈ε′3〉 ≈ ε′3 =
T0Φ2(γ − 1)2

2αρ20c
4

P 2
0 (1− e−αt),

α =
1

τ
−

2Bc

γ − 1
,

(31)

if α 6= 0. For small αt, ε′3 ≈
T0Φ2(γ − 1)2

2ρ20c
4

P 2
0 t. Equa-

tion (31) is valid over the temporal domain where the
sound still remains dominant:

Max |ε1(x, t)| = Max
∣∣∣∣

2B

(γ − 1)ρ0

∫
dxp′1

∣∣∣∣

=

∣∣∣∣
2BcP0

(γ − 1)ρ0ω1

∣∣∣∣≫ |〈ε3(x, t)〉| .

(32)

The sound is dominant comparatively to the non-
acoustic modes but the excess pressure caused by it
must be small due to a weak nonlinearity of the flow:
P0 ≪ p0. The sign of α determines whether the re-
laxation mode enhances in time (α < 0) or tends to
a limit value (α > 0). It may be readily concluded
that the condition of increase for the third mode mag-
nitude is much more rigorous than that of the sound.

In view of 1 ≤
(γ + c2k2τ2)

(1 + c2k2τ2)
for any wavenumber k, the

condition of the third mode amplification is as follows:

ε− εeq
τ

≈ I ≥ −

R

µ(γ − 1)2
+ CV,eq

dτ/ dT
. (33)

Thus the threshold quantity of the third mode ampli-
fication is

Ith,3 = −

R

µ(γ − 1)2

dτ/ dT
+ Ith,a, (34)

where the threshold quantity for the sound amplifi-

cation, corresponding to Φ1 = 0, is Ith,a =
−CV,eq

dτ/ dT
.

A simple estimation for a typical laser mixture CO2 :
N2 : He = 1 : 2 : 3 at the pressure p0 = 1 atm and
temperature T0 = 300 K (Gordiets, Osipov, 1992;
Makaryan, Molevich, 2007), possessing an aver-
aged molar mass µ ≈ 18.7 ·10−3 kg/mol, τ ≈ 5 ·10−5 s,
dτ/ dT ≈ −6 ·10−7 s/K, yields in quantities: Ith,aρ0 =
1.5 W/cm3, Ith,3ρ0 = 5 · 103 W/cm3. The threshold
level for the third mode is much greater than that for

the both acoustic branches, and, even without consid-
ering an experimental possibility of such a large inten-
sity, for the valid description of the motion it becomes
necessary to account for gradients in the background
parameters. The conclusions above are no longer valid
because the linearization should be proceeded with re-
spect to the background with non-zero spatial gradi-
ents of pressure and density. This alters the very defini-
tion of modes and further analysis, making it complex.
Investigation devoted to amplification of the sound in
the flat layer of a non-equilibrium gas reveals some new
properties as compared to the case of a uniform gas
(Koltsova et al., 1994). In particular, the area of in-
stability becomes smaller in the plane pumping inten-
sity vs. the inverse time of relaxation. Features of non-
acoustic modes and governing equations for them may
alter essentially. Unfortunately, mathematical difficul-
ties do not allow to consider the problem in general.
The sign of the excess vibrational energy is de-

fined by Φ2 (Eq. (25)). Evaluation of it for the men-
tioned mixture CO2 : N2 : He = 1 : 2 : 3 at the
pressure p0 = 1 atm yields quantities from 6 · 106 to
193·106 J/(kgK s) at temperatures varying from 300 K
to 2000 K. It is also positive for other gases. Thus, an
averaged excess vibrational energy generated by peri-
odic sound is positive for any α. Its absolute value in-
creases in time for a typically positive α and achieves

maximum

∣∣∣∣
T0Φ2(γ − 1)2

2αρ20c
4

P 2
0

∣∣∣∣.

4.2. Impulse sound

In the case of the sound being a solution of a lin-
ear wave equation in the role of an acoustic source,
p′1 = p′1(η = (t− x/c)/θ, µt), where θ ≪ τ is a charac-
teristic duration of a pulse, µ is a generic small param-
eter that characterizes the smallness of |B|k and the
acoustic Mach numberM . The meaning of the solution
in the above form is that in the retarded frame (i.e.,
for an observer in a reference frame that moves at the
speed c), nonlinearity and absorption separately pro-
duce only slow variations as functions of the distance.
Equation (28) is rearranged in the leading order and
may be readily integrated as follows:

∂ε′3
∂t

+

(
1

τ
−

2Bc

γ − 1

)
ε′3 ≈

2Bcτθ(γ + 1)

ρ20(γ − 1)2
p′1

∂p′1
∂η

,

ε′3(η, µt) ≈
2Bτ(γ + 1)

ρ20c(γ − 1)2
exp(−αηθ)

·

η∫

−∞

p′1(η
′, µt)

dp′1(η
′, µt)

dη′
exp(αη′θ)dη′.

(35)

The trace after a pulse passing is namely ε′3(η → ∞).
Note that minus infinity in the lower limit of inte-
gration and the whole above formula are rather sym-
bolic because this subsection considers confined pulses.
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The part of the excess vibrational energy belonging to
the third mode behaves differently in dependence on
the sign of B and the shape of the acoustic pulse. It
may be negative or positive but is hardly expected to
achieve large values.

5. Concluding remarks

In this study, we consider a nonlinear generation
of the vibrational mode by the high-frequency sound,
ωτ ≫ 1. The domain of frequencies satisfying this con-
dition for a typical laser mixture CO2 : N2 : He =
1 : 2 : 3 at the pressure p0 = 1 atm and temperature
T0 = 300 K is ω ≫ 105 s−1 (Gordiets, Osipov, 1992;
Makaryan, Molevich, 2007). The standard thermal
viscosity always leads to sound attenuation and non-
linear growth of the excess temperature belonging to
the thermal mode. This excess temperature and ex-
cess energy associated with it may be negative if the
non-equilibrium relaxation takes place. The behavior
of a non-equilibrium gas over a wide range of variations
of the parameters require to take into account influ-
ence of pumping and heat removal (Osipov, Uvarov,
1992; Koltsova et al., 1994). With increasing of the
relaxation time, the amplification coefficient declines;
however, a larger magnitude of pumping I is required
to maintain the same degree of non-equilibrium, since
ε − εeq ≈ Iτ . That makes the non-equilibrium media
inhomogeneous (Osipov, Uvarov, 1992; Koltsova
et al., 1994; Molevich, 2001).
This investigation is devoted to a nonlinear gen-

eration of the relaxation modes by the low-frequency
dominative sound, periodic or aperiodic. The analysis
is based on the method of a successful decomposition of
weakly nonlinear equations worked out by the author.
The main result is an instantaneous dynamic Eq. (28).
The sound may increase or decrease a part of the vi-
brational energy in the total excess energy. As it was
discovered in Sec. 4, a periodic sound results in a pos-
itive but finite excess vibrational energy. This may be
useful in order to govern the degree of inhomogeneity
of a gas and to influence the rate of the exchange pro-
cess between the translational and vibrational energies
of a molecule.
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