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Noise induced hearing loss (NIHL) is a serious occupational related health problem worldwide. The
A-wave impulse noise could cause severe hearing loss, and characteristics of such kind of impulse noise
in the joint time-frequency (T-F) domain are critical for evaluation of auditory hazard level. This study
focuses on the analysis of A-wave impulse noise in the T-F domain using continual wavelet transforms.
Three different wavelets, referring to Morlet, Mexican hat, and Meyer wavelets, were investigated and
compared based on theoretical analysis and applications to experimental generated A-wave impulse noise
signals. The underlying theory of continuous wavelet transform was given and the temporal and spectral
resolutions were theoretically analyzed. The main results showed that the Mexican hat wavelet demon-
strated significant advantages over the Morlet and Meyer wavelets for the characterization and analysis
of the A-wave impulse noise. The results of this study provide useful information for applying wavelet
transform on signal processing of the A-wave impulse noise.
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poral and spectral resolutions, noise induced hearing loss, A-wave impulse noise.

1. Introduction

Noise induced hearing loss (NIHL) is a serious
problem that affects many people worldwide. Accord-
ing to the World Health Organization, exposure to
excessive noise is the major avoidable cause of per-
manent hearing loss (SMITH, 1996). It is estimated
that about 29 million Americans have some type
of hearing loss within the speech frequency range
(AGRAWAL et al., 2008). A-wave impulse noise is a type
of highly transient noise widely experienced in mili-
tary fields (e.g., an intense blast wave) (HENDERSON,
HAMERNIK, 1986). A typical waveform of A-wave im-
pulse noise is illustrated in Fig. 1. It is leading by
a sharp compressive wave with time duration (re-
ferred as A-duration) about 0.5 ms, and followed by
a tensile wave of about 1 ms duration (HENDERSON,
HAMERNIK, 1986). Animal studies demonstrated that
the impulse noise could cause more hearing loss than
continuous Gaussian noise with same amount of acous-
tic energy (HAMERNIK et al., 1993).

Characteristics of the impulse noise in both time
and frequency domains are critical for evaluation of
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Fig. 1. A schematic representation of a typical A-wave im-
pulse noise.

auditory hazard level and prediction of NIHL (PRICE
et al., 1989). The fast Fourier transform (FFT) has
been widely used to analyze and display the spectrum
of noise signals in the frequency domain (CLIFFORD,
ROGERS, 2009). However, the FFT only provides the
time history or the frequency spectrum alone, and they
are not sufficient to analyze transient signals (e.g., im-
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pulse noise). In addition, the short-time Fourier trans-
form (STFT) has also been used to analyze transient
signals, and it can provide detailed information in the
joint time-frequency (T-F) domain. However, because
of fixed time window, STFT could lose the spectral
resolution in low frequency range, while it also could
lose the temporal resolution in high frequency range
(Znu, KM, 2006).

In contrast, the wavelet transform (WT) uses
wavelet function and various scales to decompose sig-
nals in the T-F domain, and it can guarantee the tem-
poral and spectral resolutions in the entire frequency
range. Since introduced in the 1970s, WT has been
used in various applications, such as signal detection,
imaging processing, signal de-noising, speed enhance-
ment, audio classification, etc. (MALLAT, 1997). Wang
and colleagues applied the Morlet WT for mechanical
fault diagnosis. They extracted features of the impulse
signals on both time and frequency domains. Based on
the T-F localization, the wavelet coefficients were in-
vestigated to classify the acoustic signals, and to recog-
nize the faults of mechanical structure (WANG, Mc-
FADDEN, 1996; LIN, Qu, 2000). Satish and Nazneen
used WT as an effective tool to obtain the partial dis-
charge signals buried in excessive noise and interfer-
ences (SATISH, NAZNEEN, 2003). ADELI et al., devel-
oped a WT based algorithm for characterization of the
spike of epileptic form discharges, and based on the
wavelet decomposition of the electroencephalogram
records, the captured transient features were investi-
gated to reveal the small-scale oscillations (SENHADJI,
WENDLING, 2002; ADELI et al., 2003).

In addition, WT has also been used for noise
analysis. Zhu and Kim applied the analytic wavelet
transform to analyze the impact noise and vibra-
tions (ZHu, KM, 2006; Kim et al., 2007). The Mor-
let wavelet was used in their study, in which the pa-
rameters were improved based on 1/3 octave bands
in the frequency range. Their results demonstrated
that the WT could capture much more detailed char-
acteristics of transient signals than the STFT (ZHu,
Kim, 2006).

However, the application of WT to the A-wave
impulse noise has not been investigated. In this pa-
per, we will apply the continuous wavelet transform
to analyze the A-wave impulse noise signals generated
by a noise exposure system, which was developed to
mimic A-wave impulse noise produced by a military
weapon (e.g., M-16 rifle) (Wu, QIN, 2013). Three dif-
ferent wavelets, including the Morlet, Mexican hat, and
Meyer wavelets, were investigated and compared based
on theoretical analysis and applications to experimen-
tal generated A-wave impulse noise signals. The un-
derlying theory of continuous wavelet transform was
given and the temporal and spectral resolutions were
theoretically analyzed. The wavelet entropy and the
similarity between the wavelets functions and the noise

signal were investigated and discussed in this paper as
well.

2. Underlying theory and theoretical analysis
2.1. General theory of CWT

Continuous wavelet transform (CWT) which de-
composes a signal f(¢) in the T-F domain can be de-
fined as follows (DAUBECHIES, 1992; MALLAT, 1997):

Wia,b) = 7f<t>%¢(¥> a

where (t) is the wavelet kernel function along with the
continuous scaling parameter a and the time shifting
parameter b. W(a,b) refers to the CWT coefficient.

The signal f(t) can be recovered back from the
CWT coefficients only when it satisfies the admissi-
bility condition (Cy < 00):

a
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where constant value Cy is defined by:
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where ¢ (w) is the Fourier transform of the wavelet ker-
nel function ¢(t). Equation (3) requires that 1(0) = 0,
which equals to [(t)d¢t = 0, and wavelet kernel
functions have a zero average in the time domain
(MALLAT, 1997). In addition, after normalization,
[1%@)* dt =1 is required as well.

2.2. Three different continuous wavelets

In this paper, three continuous wavelets, Morlet,
Mexican hat and Meyer wavelets, are investigated. The
Morlet wavelet is derived from the Gaussian function,
while the Mexican hat wavelet is defined according to
the second derivative of Gaussian function. In addition,
the Meyer wavelet is an orthogonal wavelet, and it is
defined on the frequency domain. Typically, the ker-
nel functions of three wavelets, ¥mor(t), Ymexh(t), and
Ymeyr (), can be described by the following equations,
respectively (MALLAT, 1997).
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where fp, fo in Eq. (4) are the bandwidth parame-
ter and center frequency, respectively. In this study,
the real part of Eq. (4) will be used to represent Mor-
let wavelets. o in Eq. (5) is constant parameter. A in
Eq. (6) is an even function of w.

To normalize wavelet kernel function (t), a wa-
velet atom ¢~ (t) is proposed:

=)o

where - is a multi-index parameter referring to a and b.

Figure 2 shows the time history and frequency
spectrum of the wavelet kernel functions of three
wavelets. All three wavelets are symmetric about y-
axis in the time domain. In the frequency domain, all
three wavelets behave like band-pass filters, and they
can extract the localized frequency details of transient
signals. The bandwidth of the Mexican hat wavelet is

D (t) = Yap(t)
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Fig. 2. a) Time history and b) frequency spectrum of
wavelet kernel functions of the Morlet (Morl), Mexican hat
(Mexh), and Meyer (Meyr) wavelets.

narrower than the corresponding values of the other
two wavelets.

2.8. Temporal and spectral resolutions in the CWT.

Resolutions in the time and frequency domains
are critical for evaluation of performance of different
wavelets. The temporal resolution in the time domain
o and the spectral resolution in the frequency domain
o, of CWT can be defined as (MALLAT, 1997):

+oo
2
7o) = [ (=)l (0 at ®)
—+oo
2 1 2|7 2
2 =5 [ W=-&)?[6w)]| dw, )
where
+oo
— [ thon(o ar
Uy = ——5 v )
les” J.
“+oo
b= [ 0]t d
y=— [ wlpy(w ‘ w,
2161
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and (w) is the Fourier transform of the wavelet atom
Py (1).

Figures 3a and 3b show the theoretical analysis
of temporal and spectral resolutions of three differ-
ent wavelets with the scale a changing. For all three
wavelets, the temporal resolutions decrease with the
scale increasing (Fig. 3a), while the spectral resolutions
increase with the scale increasing (Fig. 3b). To ana-
lyze a highly transient signal, such as an impulse noise
signal, its short time duration requires small scales
with high temporal resolution. When the scales be-
come small, the temporal resolution of three wavelets
are same (Fig. 3a). However, the Mexican hat wavelet
shows the better spectral resolution than the Morlet
and Meyer wavelets at small scales (Fig. 3b). There-
fore, the Mexican hat wavelet has obvious advantages
of better spectral resolution compared with the other
two wavelets when applied to highly transient signal
(e.g., impulse noise).

In addition, the resolution cell can be defined as
the product of the temporal and spectral resolutions,
and it is dynamically limited by 1/47, known as uncer-
tainty principle (i.e., o1 - 0, > 1/47) (YOUNG, 1993).
As shown in Fig. 3c, the resolution cells of three dif-
ferent wavelets are constant with the scale increasing.
The resolution cells of the Mexican hat ([0 0] mexh =
0.0836) and the Morlet wavelets ([0¢ - 0w]mor = 0.0796),
are comparable, and they are smaller than the corre-
sponding value of the Meyer wavelet ([0} - 0w|meyr =
0.1058).
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Fig. 3. a) Temporal resolution o, b) spectral resolution oy,
and c) resolution cell (o - o) of three different wavelets.
2.4. Wavelet entropy

The wavelet entropy reflects the energy cost of
CWT. It has been used to evaluate the performance

of CWT and to select the best wavelet kernel function.
In general, the lower wavelet entropy indicates the bet-
ter performance of CWT (CO1FMAN, WICKERHAUSER,
1992).

The WT coefficients W (a,b) represent the energy
distribution of a signal in the T-F domain. The energy
component F, at each scale level a can be calculated
by the WT coefficient as:

Ea=> [W(a, ). (10)
b
Consequentially, the total energy F; of a CWT can be

obtained by
Ey =Y E.. (11)

Relative wavelet energy p, can be defined as (ROSSO

et al., 2001):
E,

Further, wavelet entropy S can be defined as

S=- Zpa : In(pa)' (13)

Pa (12)

In this study, the relative wavelet energy p, and
wavelet entropy S of three different wavelets will be
calculated and compared.

2.5. Similarity analysis between wavelet functions
and the waveform of impulse noise

When wavelet functions are similar to the origi-
nal signal, CWT can accurately represent the original
signal in the T-F domain. The similarity between the
original signal and the wavelet functions can be used to
evaluate the performance of CWT. The similarity can
be defined as the error function E(i(t),a) (CHAPA,
R0, 2000):

B((1),0) = / (s - Lo(2)) e aw

1

where f(t) refers to the original signal, ¢(t) is the
wavelet kernel function, and a is scale.

The error function inversely presents the similarity.
On other words, when the coefficient of the error func-
tion reaches the minimal value, the wavelet function
has the highest similarity to the original signal.

3. Experimental methods

3.1. Generation and measurement
of impulse noise signals

The impulse noise signals used in this paper were
generated by a digital noise exposure system, which
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was developed in our lab to mimic the A-wave im-
pulse noise produced by a military weapon (e.g., M-
16 rifle) (Wu, QIN, 2013). As shown in Fig. 4a, the
noise exposure system consists of a data acquisition
device (DAQUSB-6251, Nation Instrument Inc., TX,
USA), an audio power amplifier, an acoustic com-
pression driver (2446H, JBL Professional, CA, USA),
a shock tube extension, a flat-front horn (2380A, JBL
Professional, CA, USA), and a computer. To mimic
the impulse noise in military fields, the waveform of
the digital signal can be described by the Friedlander

wave:
. t
p(t) = Pe'/! (1 - F) ’ (15)
where P is the peak sound pressure, and the t* is the
time at which the pressure crosses the x-axis and goes
from positive to negative.
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Fig. 4. Schematic diagram of the a) digital noise expo-

sure system and b) impulse noise measurement system, and

c) a representative waveform of A-wave impulse noise with
peak SPL = 155 dB generated by the system.

The digital signals of impulse noise were generated
based on Eq. (15) in LabVIEW, and then converted
into analog signals through the data acquisition device
with 131 kHz sampling rate. The analog signals were
amplified by the audio power amplifier, and fed into
the compression driver to create impulse noise.

A 1/4” condenser microphone set (46BE, G.R.A.S.,
Denmark) was used to measure the impulse noise (as
shown in Fig. 4b). The sampling rate used in noise
generation and measurement was 131 kHz. The im-
pulse noise generated at different output voltage levels
were measured, and 10 signals were saved at each volt-
age level. A typical waveform of A-wave impulse noise
generated by the system is shown in Fig. 4c. The peak
sound pressure level (SPL) is about 155 dB and the
A-duration is about 0.5 ms.

8.2. Numerical implementation of CWT

Because all the three wavelets are symmetric func-
tions, Eq. (1) can be written as a convolution integral
form:

W (a,b) = /Oof(t)%w (b;t) dt

— conv(f(H)e, (1))- (16)

Further, the wavelet kernel functions are assumed to
satisfy the admissibility condition in Eq. (3). Using the
convolution property of Fourier transform, the Fourier
transform of WT coefficients can be calculated as:

— ~ —

W (a,w) = Flw)y (@), (17)
where f(w) and &;(w) are the Fourier transforms of
f(t) and ¢ (t). Therefore, the WT coefficients can be
calculated by the inverse Fourier transform of /W(a, w).
Based on the numerical method, the angular frequency
w can be defined as:

w=w./(a-At), (18)

where w, is the center frequency of kernel wavelet func-
tion, and At refers to the time interval.

3.3. Optimization of scales

To avoid the redundant decomposition of impulse
noise, it is critical to optimize the scales in CWT. The
optimization of scales can accurately extract signifi-
cant features in the T-F domain, and save the com-
putation resources as well. In an impulse noise, the
local transient details require the higher scale density
to illustrate the temporal and spectral information.
The optimization of scales in this study is approached
through the following steps (as shown in Fig. 5):

1. Set the upper value Sypper and the lower value
Slower for the scale;

2. Select a set of sorted scales Sy;), and then calcu-
late WT coefficient Wi;y;

3. Search Sy;; where the WT coefficient Wy;, reach
local maximum or minimum value, and obtain j;
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4. Decrease scale step AS(;y to AS(;;/2. Based on
new step value, add new scale into Sy}, and then
obtain Sy;; and {j}'. Calculate new WT coeffi-
cient Wy;yr;

5. Vn € {j}, if Winy = Winy)/Winy < 1, {5} =
{j} — n, and S{i} = S{i} + S{n}'§ if {7} # {(Z)}v
repeat step (4);

6. Output the optimal scales Sg;) and the WT coef-
ficient.

Select SHM:L‘J' and Sfrm'(‘r

Select scale set S; and
Calculate WT coefficients ¥;

v

Search S;; and obtain {j} where
coefficients reach local extreme values

Y

Let AS;;=ASy; /2, add new scale values,
obtain Sy, and calculate ¥, -.

l

For n belongs to Sy, (W =W p)/W sy <p,
{3 = {j}-n and Sy =S +Ssm

i

{j}is empty

No

Yes J'
Output Scale set S;; and W,

Fig. 5. Block diagram of the optimization of
the scale a in the CWT.

4. Results and discussions
4.1. T-F characterization of impulse noise

Figure 6a shows the T-F representations obtained
by applying the CWTs to a representative impulse
noise signal (as shown in Fig. 4c¢) using the Morlet,
Mexican hat and Meyer wavelets. All three wavelets
can decompose the impulse noise and display detailed
features in the T-F domain. Along the frequency axis,
the spectrum distribution of three wavelets show sim-
ilar trend. The amplitudes increase first and then de-
crease with the frequency increasing, and the peak
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Fig. 6. a) time-frequency joint representations and b) distri-

bution along the time axis obtained by applying the CWTs

to a representative impulse noise signal using Morlet, Mex-
ican hat and Meyer wavelets.

amplitudes can be found at frequency about 2000 Hz.
The Mexican hat wavelet shows the highest peak am-
plitude among three wavelets. Along the time axis,
all three wavelets cannot exactly represent the origi-
nal signal of impulse noise (as shown in Fig. 6b). The
Mexican hat wavelet shows the highest similarity to
the original signal with less distortion compared with
the Morlet and Meyer wavelets.

Figure 7 shows the time histories at five selected
frequancies (i.e., 1kHz, 2kHz, 3 kHz, 4 kHz, and
5 kHz) of the CWTs using three wavelets. At all five
frequences, the time histories produced by the Mor-
let and Meyer wavelets show more oscillation and
signal distortion than the Mexican hat wavelet. In
other words, the time histories produced by the Mex-
ican hat wavelet show the highest similarity with
the original signal. In addition, at high frequencies
(3, 4, and 5 kHz), the amplitudes of the Mexican hat
wavelet are higher than the corresponding values of the
other two wavelets. It indicates that the Mexican hat
wavelet has higher power spectrum and can provide
more details than other two wavelets in high frequency
range.
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Fig. 7. Time histories at five selected frequancies (i.e., 1 kHz, 2 kHz, 3 kHz,
4 kHz, and 5 kHz) of the CWTs using three different wavelets.

4.2. Detection of singularity of the impulse noise
signal in CWT

CWT is often applied to detect the singularities of
a transient signal. The term ‘ridge’ was used to indicate
the local transient values in CWT, and it represents re-
lated singular points in the original signal (MALLAT,
1997). Figure 7 shows detection of the singularities in
impulse noise signal in the color illustrated T-F do-
main using three different wavelets. The ridges can be
determined by different neighboring colors in Fig. 8.

Figures 8b, 8c, and 8d illustrate the CWTs of im-
pulse noise signal using the Morlet, Mexican hat, and
Meyer wavelets, respectively. The numbers of ridges
can be found to be 7 of the Morlet wavelet, 4 of the
Mexican hat wavelet, and 7 of the Meyer wavelet.
In addition, as illustrated in Fig. 8a, four singular
points can be found in the original signal of impulse
noise. The results show that the Mexican hat wavelet
can accurately detect the singularities in the impulse
noise signal. The Morlet and Meyer wavelets both
have certain extent deviation on the singularity de-
tection.
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Fig. 8. a) A representative waveform of the impulse noise,
and the color illustrated T-F representations of the impulse
noise using the b) Morlet, ¢) Mexican hat, and d) Meyer
wavelets.
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Fig. 9. The energy spectrum and power spectrum calculated using the original
signal of impulse noise, and the WT coefficient produced by three different
wavelets.

4.3. Energy spectrum and power spectrum

To further evaluate three wavelets, the energy spec-
trum and power spectrum of CWTs are calculated and
compared with the corresponding values of the original
impulse noise signal. The energy spectrum FE(t) and
power spectrum P(w) of the WT coefficient W (¢,w)
are defined as:

P(w) :/|W(t,w)|2 dt, (19)

E(t) = / W () de. (20)

Figure 9 illustrates the energy spectrum and power
spectrum calculated using the original signal of im-
pulse noise and the WT coefficient produced by three
different wavelets, respectively. The left figures display
the energy spectrums in the time domain. The Mexican
hat wavelet produced higher energy spectrum than the
Morlet and Meyer wavelets. In addition, the distribu-
tion of the energy spectrum of the Mexican hat wavelet

is comparable to the original signal (as shown in the
top left figure). The Mexican hat wavelet can repre-
sent transition points in the original signal such as the
point A illustrated in Fig. 9c¢. It is because the Mexi-
can hat wavelet has higher spectral resolution than the
other two wavelets. This is consistent with the results
of singularity detection.

The right figures in Fig. 9 show the power spectrum
in the frequency domain. There is no significant differ-
ence among the power spectrums produced by three
different wavelets. Moreover, all the power spectrums
of three wavelets are comparable with it of the original
signal by applying the regular FFT (as shown in the
top right figure).

4.4. Relative wavelet energy and wavelet entropy

Figure 10a shows the distribution of relative
wavelet energy of three wavelets with the scales chang-
ing. The relative energy of the Mexican hat wavelet is
concentrated in a narrow scale range (0 < a < 100),
while the relative energy of the Morlet and Meyer
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scales increasing and b) wavelet entropies of the impulse

noise signals generated at five varied output voltages by
applying CWTs using three different wavelets.

wavelets are distributed in a broad scale range (0 <
a < 300). In addition, the peak energy of the Mex-
ican hat wavelet is about three times higher than it
of the other two wavelets. The results indicate that
the Mexican hat wavelet has higher degree of energy
concentration on signal decomposition and it can rep-
resent detailed features (e.g., transient points) of the
impulse noise signals with fewer scales.

Figure 10b shows the wavelet entropies of CWTs
applied to the impulse noise using three different
wavelets. The signals of impulse noise were generated
by the developed noise exposure system (as shown in
Fig. 4a) at five output voltages (i.e., 1.0, 2.5, 4.0, 5.5
and 7.0 V). Ten signals at each output voltages were
measured and used to calculate the wavelet entropies
of CWTs. At all five output voltages, the Mexican hat
wavelet show significantly lower wavelet entropy than
the other two wavelets. The results indicate that the

Mexican hat wavelet requires lower information cost
when decomposing the impulse noise signal compared
with the other two wavelets.

4.5. Similarity analysis

Figure 11 shows the similarities between the im-
pulse noise signal and three different wavelets under
different scales. When the scale is less than 40, which
is corresponding to the frequency higher than 1000 Hz,
the coefficients of error function produced by the Mex-
ican hat wavelet are smaller than the corresponding
values of the Morlet and Meyer wavelets. It means that
the Mexican hat wavelet has higher degree of similar-
ity to the impulse noise signal than the Morlet and
Meyer wavelets at small scales. Comparatively, when
the scales are larger than 40, the Morlet and Mayer
wavelets have higher similarity to the impulse noise
signal than the Mexican hat wavelet. The results in-
dicate that the Mexican can represent much superior
features of the A-wave impulse noise signals at higher
frequency range, which responses to the short time du-
ration such as A-duration ¢+ shown in Fig. 4c. While
the Morlet and Meyer wavelets may perform better
when representing lower frequency components in an
impulse noise signal, such as the time duration of neg-
ative pressure t— shown in Fig. 4c.

60

Error function coefficients

45 40 30 120

Scale, a

Fig. 11. The similarities between the impulse noise

signal and three wavelet functions under different

scales. The similarities are inversely presented by the
error function coefficients.

5. Conclusion

In this paper, we applied CWT for the analysis
of A-wave impulse noise, and compared the perfor-
mances of three different wavelets (i.e., Morlet, Mexi-
can hat, and Meyer wavelets). All three wavelets can
represent detailed features of the impulse noise in the
T-F domain. The Mexican hat wavelet shows advan-
tages over the Morlet and Meyer wavelets for impulse
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noise analysis. The Mexican hat wavelet also shows the
lowest wavelet entropy level and highest degree of the
similarity to the signal of impulse noise among three
wavelets. The results of wavelet entropy and similarity
may explain why the Mexican hat wavelet can repre-
sent superior features of the impulse noise signals com-
pared with the other two wavelets. The results of this
study provide useful information for applying wavelet
transform on analysis of A-wave impulse noise signals,
and accordingly improve understanding of A-wave im-
pulse noise induced hearing loss. However, other types
of impulse noise, such as impact noise (HENDERSON,
HAMERNIK, 1986) and alpha-stable impulsive noise
(ILow, HATZINAKOS, 1998) are not included in this
wavelet analysis framework. Further study will be done
to apply CWT for analysis and characterization of dif-
ferent types of noises, including continuous noise, im-
pulse noise, and complex noise.
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