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Several methods can be applied for analyses of the acoustic field in enclosed rooms namely: wave
propagation, geometrical or statistical analysis. The paper presents problems related to application of
the boundary elements method to modelling of acoustic field parameters. Experimental and numerical
studies have been combined for evaluation of acoustic impedance of the material used for the walls of
a model room. The experimental studies have been carried out by implementing a multichannel measuring
system inside the constructed model of an industrial room. The measuring system allowed simultaneous
measurements of the source parameters – the loudspeaker membrane vibration speed, the acoustic pressure
values in reception points located inside the model space as well as phase shifts between signals registered
in various reception points. The numerical modelling making use of the acoustic pressure values measured
inside the analyzed space allowed determination of requested parameters of the surface at the space
boundary.
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1. Introduction

Modelling of the distribution of acoustic field pa-
rameters in enclosed rooms is often accompanied by
a presence of considerable errors. Origins of those er-
rors most often can be traced down to phenomena
taking place at the boundary of the analyzed volume
(Kosała, 2008). Two types of approach are encoun-
tered in description of those phenomena. A practical
or engineering approach is based on a description of
the boundary defining its absorption coefficient. The
material’s compressibility or the surface structure de-
tails are simply neglected. Such an approach is widely
applied because it offers a relatively easy procedure
for determination of the absorption coefficient values,
both reverberation and physical ones. The problem
that has to be coped with is the necessity to mea-
sure the values for all possible versions of the bound-
ary elements fastening, as it can have a considerable
effect on the values of the absorption coefficients. In
the second approach that is applied in the acoustic
field modelling by a wave propagation analysis the phe-
nomena taking place on the boundary are described by
the values of the complex acoustic impedance defin-

ing the dependence between the acoustic pressure and
the acoustic particle velocity at the boundary of the
analyzed volume (Weyna, 2007). Such a description
introduces more serious practical problems. The task
of determination of acoustic impedance values for real
model structures becomes much more difficult (Alba,
2011). There are methods offering the solution of this
problem but, similarly to the case of absorption co-
efficient determination, modification of the boundary
elements fastening may considerably change acoustic
impedance values of the surface. Because of the above,
the authors have decided to combine the experimental
methods (Piechowicz, 2007a; 2007b) with numerical
modelling of the acoustic field (Björk, 1987; Kin-
caid, 2005), which may lead to a successful evalua-
tion of acoustic impedance for the surfaces delimit-
ing the analyzed volume with the enclosed acoustic
field.
The analyzed problem is formulated as a task to

determine such values of acoustical impedance for sur-
faces delimiting the analyzed space that during the
numerical modelling process reproduce as closely as
possible the measured results. The surface acoustical
impedance values are treated as optimal when an ob-
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jective function built of differences between the exper-
imental and model values reaches the minimum.
In order to solve such a problem it is necessary to

execute the following partial tasks:

• build a model connecting the impedance val-
ues at the boundary of an analyzed volume and
the acoustic pressure values in selected reception
points,

• define a function (norm) for determination of the
interval between experimental and simulation re-
sults,

• implement the model and the appropriate objec-
tive function.

2. Problems of acoustic field modelling

in an enclosed space

Acoustic field in a selected volume of space can
be modelled in transitional states (the wave equa-
tion) or in a steady state (the Helmholtz equation)
(Kuttruff, 1991). The process of solving the differ-
ential equations used for modelling of the acoustic field
can be practically realized in many ways, among which
the most frequently used are the ones listed below:

• analytical method – for simple room geometries
and non-complicated boundary conditions;

• finite element method – fast, universal method
which fails for large volumes and higher frequen-
cies;

• boundary element methods – reduces the model
rank by one, reducing 3D problems to 2D – which
is, however, very demanding with respect to com-
putational resources;

• non-grid methods.

In our work, the boundary element method has
been used for modelling the acoustic field in an
enclosed room (Ciskowski, 1991; Gołaś, 1995;
Kirkup, 1998). If the acoustic pressure is labelled as
p, the acoustic wave equation, with additional assump-
tion that the solution is harmonic in time, takes the
following form (the Helmholtz equation):

∇2p+ k2p = 0, (1)

where k is the wave number, it defines the relationship
between the frequency ω and the velocity of propaga-
tion c of the sound wave: k = ω/c.
The boundary conditions imposed on the boundary

surface for this equation can be written as follows:

• Dirichlet condition: p|Γ = pi,

• Neumann condition:
∂p

∂n

∣∣∣∣
Γ

= iωρ0vn,

• impedance condition, called also mixed or Robin’s

condition: p|Γ = Zvn = Ziωρ0
∂p

∂n
,

where p is the acoustic pressure, vn is the normal com-
ponent of the particle velocity, ω is the angular fre-

quency,
∂p

∂n
is the partial derivative with respect to

the normal, ρ0 is the density of the air ≈1.21 kg/m3,
and Z is the acoustic impedance of a material.
After employing the Green’s identity the following

integral boundary equation can be written in the space
delimited by the surface S:

cpp =

∫

S

(
g
∂p

∂n
− p

∂g

∂n

)
dS, (2)

where g =
1

4πr
eikr provides the fundamental solution,

and cp is a coefficient dependent on the point’s loca-
tion.
After carrying out the boundary discretization and

assuming appropriate shape functions one obtains the
following equation for every sub-surface (Ciskowski,
1991; Kirkup, 1998):

cppi −
∑

j

∫

Sj

p
∂g

∂n
dS = −

∑

j

∫

Sj

(
g
∂p

∂n

)
dS. (3)

Each of the sub-surfaces is a boundary element. The
behaviour of the variables in each element is defined
by a suitable shape function. The shape function can
be constant, linear, or parabolic. Constant shape func-
tions were used by the authors, which means that in
the whole sub-surface there is a constant acoustic pres-
sure and velocity. This treatment makes determination
of integral values in the above equation much easier
(Ciskowski, 1991). The above equation describes the
acoustic pressure in i-th node caused by the pressures
and velocities in all other nodes. After executing the
following substitutions:

hij =

∫

Sj

∂g

∂n
dS and gij =

∫

Sj

g dS, (4)

one can write:

cppi −
∑

j

hijpj = −
∑

j

gij
∂p

∂n

∣∣∣∣
j

. (5)

Taking into the account that
∂p

∂n
= iωρ0v, where v is

the acoustic velocity, one can execute a transformation
of the above formula. After performing a multiplication
of the coefficients gij by iωρ0, the set of equations can
be expressed in a matrix form as:

Hp =Gv, (6)

where p, v are column vectors containing the node
values for acoustic pressures and velocities respectively,
whileH andG are square matrices of coefficients called
influence matrices.
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A necessary condition for solving the problem is the
knowledge of the acoustic pressure or acoustic veloc-
ity value in each of the boundary nodes. Then, by the
power of the equation mentioned above, one can deter-
mine the unknown values of the velocity or pressure at
the boundary.
The acoustic impedance of the boundary Z is taken

into the account as a mixed (Robin’s) boundary con-
dition in the nodes in the following way:

Z =
p

v
(7)

or

v =
1

Z
p

which in the matrix form can be written as:

v = Ep, (8)

where the E is a diagonal matrix that contains the
known values of the inverse of acoustic impedance,
or admittance, in the node points. After taking into
the account the dependence, the written above Eq. (6)
takes the following form:

Hp =GEp. (9)

In the boundary element method the calculations are
executed in two stages:

• determination of the acoustic pressure and veloc-
ity values in all boundary nodes,

• determination of the pressure values in the ana-
lyzed space in selected points.

Therefore, it is difficult to use directly Eq. (9) for deter-
mination of the acoustic impedance of the delimiting
surfaces. Equation (9) is just a starting equation for
determining of the acoustic impedance of the surfaces
delimiting the room (Fig. 1).
The same acoustic impedance determination was

carried out using the numerical model. To test the
room, a model was prepared in a 1:3 scale made of 6
Oriented Strand Boards. In one of the walls a speaker
driven sinusoidal signal was placed. A laser vibrometer
was used to make non-contact velocity and phase mea-
surements of the speaker’s membrane. The linear array
of 24 microphones was moved down to the length of
the cuboid in steps of 5 cm on the central plane. Each
of the microphones recorded the sound pressure and
phase shifts of the signal. Figure 2 shows the distribu-
tion of the ratio of the sound pressure and vibration
velocity at the frequency of 100 Hz in the model room.
The measurement results collected in the real model
of the room (see Fig. 2) have been used as starting
values for the tuning process of the numeric model.
The model tuning has been carried out taking into the
account the values of the acoustic impedance on the
bounding walls.

Fig. 1. Model of the analyzed room and distribution of
the reception points used for identification of the boundary
conditions: S is the sound source, RP are reception points

(numbered in the figure on the bottom).

Fig. 2. Distribution of the ratio of the sound pressure and
vibration velocity at the frequency f = 100 Hz.

3. Determination of the acoustic impedance

of the model surface

Determination of the acoustic impedance values for
the bounding surfaces was based on a measurement of
acoustic pressure values in selected reception points lo-
cated inside the model room and a simultaneous mea-
surement of the signal phase shifts with respect to the
stimulation signal (Piechowicz, 2011).
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The scheme of the experiment was as follows:
1. Selection of the reception points used in the model
tuning;

2. Estimation of effective values of the acoustic pres-
sure, phase shifts between the pressure and veloc-
ity of the stimulating membrane, as well as the
effective value of the membrane’s velocity;

3. Assumption of the impedance values at the vol-
ume’s boundary;

4. Estimation of the acoustic pressure values at se-
lected points by numerical calculations;

5. Specification of the objective function and calcu-
lation of its minimum.
In order to evaluate the quality of the chosen nu-

meric model in relation to the measured values it is
necessary to assume the form of the respective func-
tion (see Fig. 3). At the present stage of the study the
error measure has been assumed as a sum of squares of
differences. If one assumes that pi is the acoustic pres-
sure value at the i-th reception point, then one can
write it down in the form:

F (Z1, Z2, ..., Zn) =

m∑

i=1

(p̂i − pi)
2
, (10)

where p̂i is the value of the acoustic pressure deter-
mined by the numerical calculations. The objective
function defined above is a good tool for evaluation of
the model quality. However, it should be remembered
that the obtained function minimum might not ensure
a complete identity of the experimental and simulation
results (Fig. 4).

Fig. 3. Shape of the objective function.

The shape of the objective function shown in Fig. 3
was obtained by iterative calculations for successive
values of the acoustic impedance for the boundary of
the analyzed space. The solution was searched for the
minimum objective function values (Fig. 4). Determi-
nation of the acoustic impedance values at the bound-
ary of the analyzed volume has been carried out by an

Fig. 4. Shape of the objective function in the vicinity of the
global minimum.

appropriate optimization process. Values of the acous-
tic pressure pi = p(xi, yi, zi) generated in the analyzed
volume by a source located at its boundary have been
determined. Momentary values of the acoustic pressure
in the reception points have been registered together
with momentary values of the membrane vibration ve-
locity for the stimulating loudspeaker. The results of
those measurements have been used to determine the
pressure amplitudes and the signal phase shifts with
respect to the stimulating signal (Table 1).

Table 1. Measured values of the sound pressure, phase
shifts, and membrane vibration velocity for stimulating the

loudspeaker for 18 measurements points.

Point pressure [Pa] phase [◦] velocity [m/s]

1 0.0142 30.5 00280

2 0.0147 31.5 0.0280

3 0.0148 31.0 0.0280

4 0.0159 28.8 0.0280

5 0.0160 26.5 0.0280

6 0.0166 22.4 0.0280

7 0.0175 22.6 0.0280

8 0.0181 22.3 0.0280

9 0.0179 23.0 0.0280

10 0.0018 165.3 0.0117

11 0.0173 23.5 0.0303

12 0.0135 25.9 0.0276

13 0.0109 25.5 0.0259

14 0.0102 28.3 0.0300

15 0.0075 31.7 0.0296

16 0.0012 32.2 0.0072

17 0.0011 67.6 0.0107

18 0.0010 135.0 0.0113
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A numerical model consistent with the layout of
the measurement system has been constructed. Acous-
tic impedance values Zi have been set on the surfaces
delimiting the analyzed volume, with each value con-
stant within the respective wall surface. Then values of
the acoustic pressures p̂i have been determined in 18
reception points (see Fig. 1) attributed to respective
measurement points in the real system.
The collected data allowed determination of an ob-

jective function in the form given by Eq. (10). In the
next step, the Nelder-Mead optimization method has
been applied, as implemented in the statistical software
package “R”.

4. Numerical model of the room

The presented problem of determination of acous-
tic impedance values for the surfaces delimiting the
analyzed room has been solved by applying numerical
modelling. Such an approach turned out to be neces-
sary because analytical determination of the requested
impedance value from Eq. (5) was not possible. The
numerical model comprised a spatial mapping of the
interior geometry for the analyzed volume. The princi-
pal difference between the model and the study of the
real object (Fig. 5) was the assumption of stiff delim-
iting surfaces.

Fig. 5. Differences between the experimental and numeri-
cally determined values for individual reception points.

The elaborated model has been used for deter-
mination of acoustic impedance values of the walls.
The stimulation in the form of the acoustic velocity
at the volume’s boundary has been applied on a sur-
face equivalent to the membrane area of the stimulat-
ing loudspeaker. For all the remaining surfaces of the
walls one value of the acoustic impedance has been
assumed, and it was later subject to optimization.
For the calculations 18 reception points have been se-
lected, located along two perpendicular straight lines
(see Fig. 1).

As a result of the calculations, the acoustic
impedance value Z on the OSB surface of the delim-
iting walls has been determined and presented in Ta-
ble 2.

Table 2. Specific acoustic impedance Z of Oriented Strand
Board (22 mm thick panel) as a function of the frequency.

frequency [Hz]
Impedance Z

Re Z Im Z

50 0.75 0.30

63 −1.00 0.87

80 −2.53 −0.02

100 −0.77 0.68

125 0.49 −0.46

160 −5.03 −8.81

200 −0.01 −0.25

315 43.58 −28.15

400 −37.33 8.40

500 −178.15 21.99

630 −5.37 −6.64

5. Summary

The study presents a possibility of appointing
a normal wall acoustic impedance using an inverse
BEM approach from a set of sound pressures at differ-
ent points measured in an interior steady-state sound
field. This is important because distribution of the
sound pressure in the interior shows the effect of
wall coverings on the sound field. For the calculation
a model with stiff boundary surfaces has been used,
while in the real system the surfaces have been re-
alized as boards fastened along their edges. It seems
that this fact is the source of errors in determination
of the acoustic impedance values of the delimiting sur-
faces. The error is introduced by a presence of an addi-
tional component of the wall impedance, resulting from
its elasticity. Another consequence of such a fastening
of the bounding boards is an inhomogeneous distribu-
tion of the acoustic impedance value within the whole
bounding surface.
The calculations have shown that scaling of the

objective function values may be very helpful for im-
proving a convergence of the optimization procedure
– as a slow convergence seems to be a problem for



102 Archives of Acoustics – Volume 37, Number 1, 2012

some starting points. The analyses have shown that
the objective function exhibits only one local mini-
mum in the analyzed variable range covering 〈−10 000,
10 000〉×〈−10000i, 10 000i〉. It seems that it is also
a global minimum. This allows determination of acous-
tic impedance values for the indicated frequencies.
Subsequent studies were conducted for various config-
urations of wall materials. Refined computational algo-
rithms for the model space will allow a transfer of the
method to determine the acoustic impedance of actual
walls of small factory rooms.
Further research directions that should be indi-

cated include determination of the influence of re-
ception points distribution on a determined value of
the acoustic impedance of walls, estimation of the er-
ror bound for a determined impedance value resulting
from the assumption of stiff boundary surfaces delim-
iting an analyzed volume.
It would also seem plausible to test other methods

of the acoustic field analysis to find a solution of the
discussed problem, for example, some algorithms from
the non-grid methods family.
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