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Our theoretical study aims at finding some statistic parameters characterizing the vibra-
tions of an oscillator with damping and forced by stochasticimpulses. We will derive the
dependence of these parameters on rigidity and mass of the oscillator and on the stochastic
distribution of the impulse magnitude. We will also carry out a numerical simulation verifying
the derived mathematical model and interpret the differences between the results obtained in
simulation and the mathematical calculations.

This study is the first stage of research aimed at designing a probe that will facilitate mea-
suring parameters determining the quality of a technological process.
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1. Introduction

The work was inspired by attempts at constructing a measuring device thatwould
control the granularity of the medium in a dust pipeline. The device had to signal ap-
pearance of big particles in excessive quantity in transported dust. The difficulties that
arose then in connection with interpretation of statistical data forced us to search for a
mathematical model that would explain its causes.

If mechanical systems such as an oscillator, a string, a membrane etc. are forced by
stochastic impulses then parameters of its movement are random variables.

In this study, we will apply a theorem that will allow us to calculate the basic pa-
rameters of considered stochastic variables like mathematical expectationand variance
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for dumped oscillator forced by impulses of the formf(t) =
∑
ti<t

ηiδti . The proof of the

theorem will be given elsewhere.
In our study we will assume that the probability that an impulse will occur in a short

time interval is proportional to its length, the moments of impulse occurrences and their
magnitude are independent random variables. These assumptions seem quite natural in
regard to the actual working conditions of the above mentioned measuringdevice. The
universal theorem presented in this work, though applied for an oscillator, also allows
for an analysis of movement of a string, a membrane and of other continuous systems
in which another stochastic variable, i.e., location of the impulse impact plays a signif-
icant role. Because analysis of continuous systems is very complicated and it demands
additional researches we will apply this theorem here to oscillator with dumping. We
will receive theoretical formulas for expectation of the deflection of this oscillator and
its variance. Further, we will carry out numerical simulation, compare the results of the
simulation with theoretical calculations and interpret the differences that may occur.

The obtained results will allow us to suggest possible ways of finding the statisti-
cal characteristics of forces influencing the system having statistical characteristics of
measurements.

2. Theoretical background

Let gi : [0,∞) → R, i = 1, 2, 3, ..., m be a sequence of continuous functions,A
be a bounded connected Borel subset ofRp for somep ∈ N , hi : A → R, i = 1, 2,
3, ..., m be a sequence of bounded and continuous functions,{τi}∞i=1 – a sequence of
independent identically distributed (i.i.d.) random variables with exponential distribu-
tion F (x) = 1 − exp(−λx) for x > 0 andF (x) = 0 for x < 0, {ηi}∞i=1 – a sequence
of i.i.d. random variables with finite expectation,{ζi}∞i=1 – a sequence of i.i.d. random
variables with values in the setA and finally let{αi}∞i=1 be a sequence of real numbers.
Let us putt0 = 0, ti =

∑i
j=1 τj , i = 1, 2, 3, ..., and

ξ(t) =
m∑

n=1

αn

∑

0<tj<t

ηj hn(ζj) gn(t − tj). (1)

Denote byφζ andφη distributions ofζ andη respectively. LetAi ⊂ C andBi ⊂ [0,∞),
i = 1, 2, . . . ,m be Borel sets andk(i, j), for every fixedi, be an increasing sequence
of all natural numbers such that

χAi

(
ηk(i,j)

)
χBi

(
ξk(i,j)

)
= 1, (2)

whereχA(x) = 1 if x ∈ A a ndχA(x) = 0 if x /∈ A. Write tij = tk(i,j) andτ i
j =

tij − tij−1.
We will say thatξ(t) is decomposable if for everyn ∈ N , all Borel setsAi ⊂ A
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andBi ⊂ [0,∞), i = 1, 2, ...n such thatAi × Bi are mutually disjoint

τ⋃

i=1

Ai × Bi = A × B, (3)

τ i
j are i.i.d random variables with exponential distribution

F (x) = 1 − exp (−λΦξ(Ai)Φη(Bi)) for x > 0 and

F (x) = 0 for x < 0,
(4)

ξi(t) =
m∑

n=1

αn

∑

0<tji <t

ηk(i,j) hn

(
ζk(i,j)

)
gn(t − tij) (5)

are independent and

ξ(t) =
n∑

i=1

ξi . (6)

3. Theorem

If the above defined processξ(t) is decomposable, then

1) characteristic function ofξ(t) is given by

ϕ(s) = exp


λt



∫

A

∞∫

0

1∫

0

exp

(
is

m∑

n=1

αnyhn(z)g(ut)

)
duφη(dy)φζ(dz) − 1




; (7)

2) the expectation ofξ(t) is

E(ξ(t)) =
ϕ′(0)

i
= λtE(η)

m∑

n=1

αnE(hnt(ζ))

1∫

0

gn(tu) du; (8)

3) the variance ofξ(t) is

D2(ξ(t)) = E(ξ2(t)) − E2(ξ(t)) =
1

i2
(
ϕ′′(0) − (ϕ′)2(0)

)

= λtE(η2)

m∑

n=1

m∑

j=1

αnαjE(hn(ζ)hj(ζ))

1∫

0

gn(tu) gj(tu) du. (9)
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4. Applications

Let us consider the differential equation of the forced harmonic oscillator with
damping and with one degree of freedom

d2x

dt2
+ a2x + 2b

dx

dt
= f(t), (10)

where0 < b < a. The solution of the above equation satisfying the following initial
conditions

x(0) = 0 (11)

and
ẋ(0) = 0 (12)

has the form

x(t) =
1√

a2 − b2

t∫

0

f(u) e−b(t−u) sin
√

a2 − b2(t − u) du. (13)

If ηi is any sequence of real numbers,ti is any increasing sequence of real numbers and
f(t) is given by

f(t) =
∑

ti<t

ηi δti , (14)

whereδti areδ-Dirac distributions atti, then the solution of (10)–(12) takes the follow-
ing form

x(t) =
1√

a2 − b2

∑

ti<t

ηi e
−b(t−ti) sin

(√
a2 − b2(t − ti)

)
. (15)

Let us notice that the derivation of the above function is discontinuous atti and, conse-
quently, the second derivative of this function does not exist in the normal sense. For-
tunately, function (15) can be considered as a solution of (10)–(12) in the distribution
sense and it is sufficient for our purposes.

If ηi, i = 1, 2, ... are independent and identically distributed random variables with
finite expectation andτi = ti − ti−1, i = 1, 2,..., are also independent and identically
distributed random variables with exponential distribution (F (u) = 1 − exp(−λu) for
u > 0 and for someλ andF (u) = 0 for u < 0) thenx(t) is a stochastic process
satisfying assumptions of theorem 1 withm = 1 andh1 = 1. Applying this theorem
we get the following formulas for the expectation and variance ofx(t)

E(x(t)) = λE(η)
1√

a2−b2

t∫

0

e−bt sin
(√

a2−b2t
)

dt

= λE(η)
e−bt

√
a2−b2

(
b sin t

√
a2−b2 −

√
a2−b2 cos t

√
a2−b2

)
+

λE(η)

a2
, (16)
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D2(x(t)) = λE(η2)
1

a2 − b2

t∫

0

e−2bt sin2
(
t
√

a2 − b2
)

dt

= λE(η2)
e−2bt sin t

√
a2 − b2

4a2
√

a2 − b2

(
− 2b√

a2 − b2
sin
√

a2 − b2t

− 2 cos
√

a2 − b2t

)
− λE(η2)

e−2bt

4ba2
+

λE(η2)

4ba2
. (17)

5. Numerical simulation

For numerical simulation we will consider stochastic processx(t) given by (15) for
t ∈ [0, 20π/

√
a2 − b2].

For simplicity of computations we will assume that random variablesηi have only
few values. We consider the following cases for distributions ofη.

1. η ∈ {728, 214} andP (η = 728) = 2/3, P (η = 214) = 1/3,
2. η ∈ {728, 42.66}, P (η = 728) = 3/4 andP (η = 42.66) = 1/4,
3. η ∈ {728, 385.33}, P (η = 728) = 1/2 andP (η = 385.33) = 1/2,
4. η ∈ {352, 240, 120, 33}, P (η = 352) = 2/3 and P (η = 240) = 1/9,

P (η = 120) = 1/9, P (η = 33) = 1/9, E(η2) = 90 723.67,
5. η ∈ {330, 217, 120, 33}, P (η = 330) = 3/4 andP (η = 217) = 1/12,

P (η = 120) = 1/12, P (η = 33) = 1/12, E(η2) = 86 889.83.
It is easy to calculate that in the first three casesE(η) = 556.67, in the last two cases

E(η) = 278.33 andE(η2) is equal to368588.00, 397943.11, 339231.60, 90723.67,
86889.83 respectively. The values ofλ are assumed in such a way thatλE(η) = 5566.7
that isλ = 10 in the first three cases andλ = 20 in the last two cases (λE(η) represents
the mass of the medium flowing through the pipe in the unit of the time). To check nu-
merically that theoretical formulas are correct we need a statistical sample. To get a one
with n elements we repeat the following proceduren times. First we choose randomly
τi in accordance with exponential distribution with chosenλ until tm > 20π/

√
a2 − b2

for the first time. We remember thattm =
m∑

i=1
τi. After that we choose randomly the

values ofηi. We substitute these data into (15) and thus we obtain an element of our
statistical sample. Elements of the sample are denoted byxk(t). Three such elements
for the first case are given in the Fig. 1a.

Havingn elements of the sample we can write

Ẽn(x(t)) =
1

n

n∑

i=1

xi(t) (18)

and

D̃2
n(x(t)) =

1

n

n∑

i=1

(
xi(t) − E(x(t))

)2
. (19)
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Ẽn(x(t)) andD̃2
n(x(t)) are estimators of the expectation and the variance ofx(t) re-

spectively. By the law of large numbers for every fixedt ∈ [0, 20π/
√

a2 − b2]Ẽn(x(t))

andD̃2
n(x(t)) are convergent to theoretical expectationE(x(t)) and theoretical variance

D2(x(t)), respectively, asn tends to infinity.

Fig. 1. Three different realizations of the process (15).

If the statistical sample has a large number of elements, for example 100 000, then
Ẽn(x(t)) will be always close to the solution of (10)–(12) with the constant force equal
to λE(η) whose diagram is given in the Fig. 2 as a theoretical expectation. Diagramsof
the estimated variances̃D2

n(x(t)) for three statistical samples corresponding to the first
distribution ofη as well as the diagram of theoretical variance are shown in Fig. 3. We
can see high conformity between the simulation and the theoretical results.

Fig. 2. Estimators of the expectation for the oscillations shown above (Fig. 1).
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Fig. 3. Estimators of the variance ofx(t) for the oscillations shown above (Fig. 1).

Below we present diagrams (Fig. 4) of estimations of the variances corresponding to
the considered distributions ofη whenλE(η) is of the same value, but variancesD2(η)
are different.

Fig. 4. Estimators of the variance ofx(t) when valueλE(η) is of the same, but variancesD2(η) are
different.
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In the real technical system appearance of too large particles with too large prob-
ability at the same mean value of transported mass in a unit of time is an unwanted
effect.

Our results suggests to us how to detect this fact. The greater is the variance the
greater is the probability of appearance of too large particles.

6. Conclusions

The first stage of computer simulation was to test whether the derived formulas for
parameters characterizing the stochastically forced vibrations of damped oscillator were
derived correctly. This stage was also meant to assess the size of the statistical sample,
so that the estimators̃En(x(t)) andD̃2

n(x(t)) could well approximate the theoretical
solution.

The second stage of simulation was to visualize the dependence between thedistri-
bution of particle sizes with the same mean statistical value multiplied by the strike rate
λ, but with different variances.

If λ increases, the maximumE(η2) at constant flowλE(η) = const must decrease,
and thus, on the basis of the diagrams we may conclude aboutD2(x(t)) that the less the
D2(x(t)), the closer the size of a falling particle to the mean value and the lesser the
probability of a large particle strike.

In technological conditions the mean value of distribution of particle sizes multi-
plied by the mean strike rate is constant, at least in certain time intervals. The value
of variance that we will be able to measure with the methods similar to those used in
simulation will inform us about irregularities in the technological process.

Actually, application of an oscillator in construction of a technological apparatus is
little probable, it will have to be substituted by a continuous model. Mathematicalmod-
els of such models are much more complex as regards calculations. In particular, the
mean value and the variance ofx(t) depend on the countable numbers of harmonic vi-
brations. This additional difficulty requires further consideration. The presented results
for an oscillator justify the need for studying these systems.
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[7] PLUCIŃSKA A., PLUCIŃSKI E., Probabilistyka, Wydawnictwa Naukowo-Techniczne, Warszawa
2000.

[8] RICE S. O.,Mathematical analysis of random noise I, Bell. System Technical Journal,23 (1944).

[9] ROBERTSJ. B.,On the harmonic analysis of evolutionary random vibrations, J. Sound Vibr. (1965).

[10] ROBERTS J. B., The response of linear vibratory systems to random impulses, J. Sound Vibr.,2,
375–390 (1965).

[11] ROBERTSJ. B.,System response to random impulses, J. Sound Vibr.,24 (1972).

[12] ROBERTSJ. B.,Distribution of the response of linear systems to Poisson distributed random pulses,
J. Sound Vibr.,28 (1973).

[13] ROBERTSJ. B., SPANOS P. D.,Stochastic averaging: an approximate method for solving random
vibration problems, Int. J. Non-Linear Mech.,21, 2 (1986).

[14] ROWLAND E. N., The theory of mean square variation of a function formed by adding; known
functions with random phases and applications to the theories of shot effect and of light, Proc.
Cambr. Phil. Soc., 32 (1936).
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