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Our theoretical study aims at finding some statistic pararaatharacterizing the vibra-
tions of an oscillator with damping and forced by stochastipulses. We will derive the
dependence of these parameters on rigidity and mass of ¢ilatms and on the stochastic
distribution of the impulse magnitude. We will also carryt alnumerical simulation verifying
the derived mathematical model and interpret the diffezsrimetween the results obtained in
simulation and the mathematical calculations.

This study is the first stage of research aimed at designimgtzephat will facilitate mea-
suring parameters determining the quality of a technoldgicocess.

Key words: oscillator, stochastic impulses, stochastic processaafion, variance.

1. Introduction

The work was inspired by attempts at constructing a measuring devicesolid
control the granularity of the medium in a dust pipeline. The device had alsap-
pearance of big particles in excessive quantity in transported dust.ifficaltes that
arose then in connection with interpretation of statistical data forced us rtchskea a
mathematical model that would explain its causes.

If mechanical systems such as an oscillator, a string, a membraneectoraed by
stochastic impulses then parameters of its movement are random \&riable

In this study, we will apply a theorem that will allow us to calculate the basic pa-
rameters of considered stochastic variables like mathematical expe@atiorariance
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for dumped oscillator forced by impulses of the fofift) = > 7;0;,. The proof of the
ti<t

theorem will be given elsewhere.

In our study we will assume that the probability that an impulse will occur imoats
time interval is proportional to its length, the moments of impulse occureeaoce their
magnitude are independent random variables. These assumptiongsiée natural in
regard to the actual working conditions of the above mentioned measievice. The
universal theorem presented in this work, though applied for an oscijlksn allows
for an analysis of movement of a string, a membrane and of other connsystems
in which another stochastic variable, i.e., location of the impulse impacs playgnif-
icant role. Because analysis of continuous systems is very complicadeit demands
additional researches we will apply this theorem here to oscillator with dugnigie
will receive theoretical formulas for expectation of the deflection of tlisiator and
its variance. Further, we will carry out numerical simulation, compagedisults of the
simulation with theoretical calculations and interpret the differences thaoazur.

The obtained results will allow us to suggest possible ways of finding thetistatis
cal characteristics of forces influencing the system having statisticedatiesistics of
measurements.

2. Theoretical background

Letg;: [0,00) — R, = 1, 2, 3, ..., m be a sequence of continuous functiods,
be a bounded connected Borel subseRéffor somep € N, h;: A — R,i = 1, 2,
3, ..., m be a sequence of bounded and continuous functipn$;°, — a sequence of
independent identically distributed (i.i.d.) random variables with expibaledistribu-
tion F(z) = 1 — exp(—Az) for z > 0 andF'(z) = 0 for z < 0, {n;}2, — a sequence
of i.i.d. random variables with finite expectatioft; }:°, — a sequence of i.i.d. random
variables with values in the sdtand finally let{«; }3°, be a sequence of real numbers.

Let us putty = 0, t; = Z§:1 75,i=1,2,3,..,and

Za” Z n; h C] gn ) 1)

n=1 0<t;<t

Denote by and¢,, distributions of{ andn respectively. Letl; ¢ C' andB; C [0, c0),
i=1,2,...,m be Borel sets anéi(i, j), for every fixed:, be an increasing sequence
of all natural numbers such that

XA; (Uk(z;j)) XB; (Ek(i,j)) =1, (2)
Whel’eXA( )=1ifz € Aandxa(z) = 0if x ¢ A. Write t;. = i) andT]’f _

t - tlil
’ We will say that¢(¢) is decomposable if for every € N, all Borel sets4; C A
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andB; C [0,00),4 = 1,2, ...n such thatd; x B; are mutually disjoint

L]AiXBi:AXBv
i=1

T; are i.i.d random variables with exponential distribution

F(z) = 1 —exp(=AP¢(A;)P,(B;)) for x>0 and
F(x) =0 for z <0,

Zan Z nk(z] Ckzj) ( t;)

=l o<tl<t

are independent and

= &
=1

3. Theorem

If the above defined procesét) is decomposable, then

1) characteristic function &f(¢) is given by

n=1

®3)

(4)

®)

(6)

oo 1
o(s) = exp (/\t ( exp (zs Z anyhn(z ) du ¢, (dy)o¢(dz) — )) @)
Il

2) the expectation of(t) is

1
B(Et) = 2 = um( }j%/ht ) [ () s
0

3) the variance of(t) is

DA(e(t) = E(E(1) - BE(1) =  (£"(0) — (¢)2(0))

7

n=1 j=1

1
m m
= )\tE(nQ)ZZanaj /gn (tu) g;(tu)d
0

(8)
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4. Applications

Let us consider the differential equation of the forced harmonic osaillatth
damping and with one degree of freedom

2

%+aw+26—_f() (10)

where0) < b < a. The solution of the above equation satisfying the following initial
conditions
z(0) =0 (11)

and
#(0) =0 (12)

has the form

1
2(t) = ——— [ f(u) e "W sin /a2 — b2(t — u) du. (13)
Va2 —b? 0/

If n; is any sequence of real numbefrsis any increasing sequence of real numbers and
f(t) is given by
= b, (14)
t;<t
whereé;, areé-Dirac distributions at;, then the solution of (10)—(12) takes the follow-

ing form
(1) N7 Z n; e 1) sin <\/ a? —b3(t — tl)> (15)

Let us notice that the derlvatlon of the above function is discontinuotysaad, conse-
guently, the second derivative of this function does not exist in the alosanse. For-
tunately, function (15) can be considered as a solution of (10)—(12kiuligtribution
sense and it is sufficient for our purposes.

If n;,i = 1,2, ... are independent and identically distributed random variables with
finite expectation ana; = t; — t;_1, ¢ = 1, 2,..., are also independent and identically
distributed random variables with exponential distributiéif®) = 1 — exp(—Au) for
u > 0 and for some\ and F'(u) = 0 for u < 0) thenx(t) is a stochastic process
satisfying assumptions of theorem 1 with = 1 andh; = 1. Applying this theorem
we get the following formulas for the expectation and variance(of

H

E(z(t)) = b2/t tsin a2—b2t> dt
0

=\E

(bsint\/aQ—b2 —Va2—b2cost aQ—b2> +

=
~—
IS}
[\e]
|
S
[e]
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¢
D?(x(t)) = \E(n?) 5 ! 7 /e_%t sin? (t a27b2> dt
a —_—

sin vV a? — b2t

0
e 2t gint\/a2 — b2 2b
— AB(R) (

IVE -7\ VE-B

—2bt E(n?
—2cosVa? — b2t> — )\E(772)6 AB ()

17
4ba? + 4ba? (17)

5. Numerical simulation

For numerical simulation we will consider stochastic procgs$ given by (15) for
t € [0, 20m /a2 — b?].

For simplicity of computations we will assume that random variab)dsave only
few values. We consider the following cases for distributions.of

1. n € {728, 214} andP(n = 728) = 2/3, P(n = 214) = 1/3,

2. n € {728, 42.66}, P(n = 728) = 3/4 andP(n = 42.66) = 1/4,

3. € {728, 385.33}, P(n = 728) = 1/2 andP(n = 385.33) = 1/2,

4. n € {352, 240, 120, 33}, P(n = 352) = 2/3 and P(n = 240) = 1/9,

P(n=120)=1/9, P(n = 33) = 1/9, E(n?) = 90723.67,
5.1 € {330, 217, 120, 33}, P(n = 330) = 3/4 and P(n = 217) = 1/12,
P(n=120) = 1/12, P(n = 33) = 1/12, E(n*) = 86 889.83.

It is easy to calculate that in the first three caB¢g) = 556.67, in the last two cases
E(n) = 278.33 and E(n?) is equal t0368588.00, 397943.11, 339231.60, 90723.67,
86889.83 respectively. The values ofare assumed in such a way thdt(n) = 5566.7
thatisA = 10 in the first three cases and= 20 in the last two cases\{(n) represents
the mass of the medium flowing through the pipe in the unit of the time). Tdkamec
merically that theoretical formulas are correct we need a statisticallsaiigpget a one
with n elements we repeat the following procedurémes. First we choose randomly
7; in accordance with exponential distribution with chosemtil ¢,,, > 207 /v/a? — b?

for the first time. We remember that, = Z 7;. After that we choose randomly the

values ofr;. We substitute these data mto (15) and thus we obtain an element of our
statistical sample. Elements of the sample are denoted'fty. Three such elements
for the first case are given in the Fig. 1a.

Havingn elements of the sample we can write

- gm (18)
and

2at) = 5 3 (+'(0) - Blalt)”. (19)
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E,(xz(t)) and D2 (z(t)) are estimators of the expectation and the variance(tf re-
spectively. By the law of large numbers for every fixed [0, 207 /v/a? — b2 E,, ((t))
andD2 (z(t)) are convergent to theoretical expectatiofx(t)) and theoretical variance
D?(z(t)), respectively, as tends to infinity.

5000 r ! \ \
4000
3000 B
0 \
== the first realization
-1000 = the second realization ||
the third realization
-2000 : '
0 5 10 15 20 25

Fig. 1. Three different realizations of the process (15).

If the statistical sample has a large number of elements, for exampledDO€@n
En(x(t)) will be always close to the solution of (10)—(12) with the constant foreakq
to AE(n) whose diagram is given in the Fig. 2 as a theoretical expectation. Diagfams
the estimated variancéfé,%(x(t)) for three statistical samples corresponding to the first
distribution ofn as well as the diagram of theoretical variance are shown in Fig. 3. We
can see high conformity between the simulation and the theoretical results.
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— the estimator of the expectation - the first statistical sample
— — ‘the estimator of the expectation - the second statistical sample
the estimator of the expectation - the third statistical sample

— = theoretical expectations E(x(t))
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Fig. 2. Estimators of the expectation for the oscillationsven above (Fig. 1).
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the estimator of the variance - the first statistical sample

= — -the estimator of the variance - the second statistical sample
the estimator of the variance - the third statistical sample ]

— = - the theoretical variance
1 1 1

-
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Fig. 3. Estimators of the variance oft) for the oscillations shown above (Fig. 1).

0

Below we present diagrams (Fig. 4) of estimations of the variancesspnding to
the considered distributions gfwhen\E(n) is of the same value, but variancB$(n)
are different.

100

E(n?)=397 343.11 (1)
E(n?)=368 555.00 (2)
E(n?)=339 231.60 (3)| -

E(n?)=9072367 (4)

End)=aE 889,83 (5)

i i | | i i i i ‘
DD 100 200 300 400 a00 600 700 800 900 1000
Fig. 4. Estimators of the variance oft) when value\E(n) is of the same, but variancds?®(n) are

different.
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In the real technical system appearance of too large particles with to® paodp-
ability at the same mean value of transported mass in a unit of time is an tetvan
effect.

Our results suggests to us how to detect this fact. The greater is the eatianc
greater is the probability of appearance of too large particles.

6. Conclusions

The first stage of computer simulation was to test whether the derivedifas for
parameters characterizing the stochastically forced vibrations of dhospélator were
derived correctly. This stage was also meant to assess the size oftistecatasample,
so that the estimatorg,,(z(t)) and D2 (z(t)) could well approximate the theoretical
solution.

The second stage of simulation was to visualize the dependence betwelstiihe
bution of particle sizes with the same mean statistical value multiplied by the sitike r
A, but with different variances.

If \increases, the maximud(n?) at constant flowAE(n)) = const must decrease,
and thus, on the basis of the diagrams we may conclude @bqut(t)) that the less the
D?(z(t)), the closer the size of a falling particle to the mean value and the lesser the
probability of a large particle strike.

In technological conditions the mean value of distribution of particle size#-mu
plied by the mean strike rate is constant, at least in certain time intervals.alhe v
of variance that we will be able to measure with the methods similar to thoskiuse
simulation will inform us about irregularities in the technological process.

Actually, application of an oscillator in construction of a technological agiparis
little probable, it will have to be substituted by a continuous model. Mathematice#
els of such models are much more complex as regards calculationatticufar, the
mean value and the variancexft) depend on the countable numbers of harmonic vi-
brations. This additional difficulty requires further consideration. Ties@nted results
for an oscillator justify the need for studying these systems.
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