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The construction of the Green functions for the Neumann dannvalue problems of the
Helmholtz equation at the two-wall corner and the thred-e@iner has been described. The
Green functions have been expressed in their Fourier reptaion and have been used for
computations of the radiation sound pressure of a flat @rcsburce located in one of the
two rigid baffles of the two-wall corner and in one of the thriggd baffles of the three-wall
corner.

Key words: sound pressure, Green function, Neumann boundary valuxepno Helmholtz
equation.

1. Introduction

TheGreerfunctionrepresents elementaagoustiqressurexertedby a point source
located atry within a region off2 at a measuring point located atwithin the same
region. This quantity is useful for further computations of the acouséisgure radiated
by sources with a continuous normal vibration velocity distribution. TheeGfanction
for the one-dimensional Neumann boundary value problem wasrgessa [1]. The
solution was valid only for the linear operator containing second ordévatiees of
one or two independent variables only. On the other hand, the Foupiesentations
for the Green function for a free field regiadn bounded by a flat rigid infinite baffle
or bounded by a rigid infinite cylinder are well known and were applied hoesvibro-
acoustic problems [2—-6]. So far, no application of the Green functieinban presented
in the literature for a two-wall corner and for a three-wall corner nardescribing
vibroacoustic processes generated by some sources with a contirarouwe vibration
velocity distribution. This paper proposes a construction of such a funtiat can be
applied to vibroacoustic problems.
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2. The Green function construction

2.1. Two-wall corner

The Helmholtz equation for the Neumann boundary value problem caorbeif
lated as below [2] at a two-wall corner of a regi@h bounded by the two semi-infinite
baffles, described by equatiops= 0, z = 0

(A +E*)G(r|ro) = —0(r — ro), (1)
wherer = (z,y, z) — Cartesian coordinates of the acoustic field paigt= (zo, yo, 20)
— Cartesian coordinates of the source poftr|ro) = G(x,y,z|o,y0,20) =

G(zx,y, z| ro) — Green function (solution for Eq. (1) = 8%/02% +0?/0y> + 0% /02>

— Laplace operatob(r — rg) = 6(z — x0) 6(y — yo) 6(z — 20), k = w/cyp > 0 —acous-
tic wavenumberw — circular frequencyg, — sound velocity. It is necessary to find the
Green function (r | ro) for the region under consideratigy, i.e. —co < = < +00,

0 <y < +4o0,0 <z < 4o filled with light fluid. This quantity can be interpreted as
the sound pressure amplitug@) exerted at the pointand generated by a source at the
pointry. The following homogeneous boundary conditions are satisfied at tflesba
surfaces and can be formulated as

0 0

—G =0 —G = 0. 2

y (r|xo) y=0 0z (r|ro) 2=0 @
The Green function considered herein is valid within the reglmwhere the operators
0? /0% and 9% /0y? possess the continuous spectrum within the limite < ¢ <
+oo and0 < n < +oo, respectively. Let us formulate the Fourier transform pair (cf.,

Appendix A)

+oo  +o0
1 .
G(r|rg) = - / /g(«f,n,Z!ro) cosny exp(i€x) dédn,
E=—oon=0
+oo  +oo (3)

semzm) = = [ [ Glelro) cosny exp(-igz) dady

r=—00 y=0

We insert the Green function from Eq. (3) into Eq. (1). Further, we niyltipe equa-
tion side by side by factofl /) cos noy exp(—i&px) and integrate along variablesy
within their limits —co < z < 400 and0 < y < +o0, respectively. We use the
following Dirac delta function properties

+00 +oo
1
= [ ewlite-galds [ cosny cosmydy = 3¢ - &) 50— m)
T=—00 y=0

(4)

“+o0o +oo

/ / F(Em) 6(€ — &) 8(n — mo) dédy = £(Eorm0)

§=—o0n=0
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and obtain the following from Eq. (1)

(& +47) i p— 5= - ©)
o2 t77) 9(&m, z[ro) = —— exp(—i€wo) cosnyo 6(2 — 20),

by substitutingy andn, with ¢ andxn, respectively, wherg? = k2 — ¢2 — 2. In the
case whenr # zy, we obtain a homogeneous wave equation

—2 + 2 g n,z|rg) =0 6
( 122 Y ) (57 ) ’ 0) ) ( )
instead of Eq (5) with the fO”OWing solutions

g1(&,m,z|ro) = Arexp(ivz) + Biexp(—ivz) for 2z <z, @)
92(&,m,z|ro) = Agexp(ivz) + Baexp(—ivz) for 2o < 2.
These solutions must satisfy “the sharpened Sommerfeld radiatiorticoid7], i.e.
these solutions must describe the waves propagated along thezafas increasing
z values, which implies thaB, = 0. The Neumann boundary condition leads to

d

a4 s 1 =0 8
& m zlro)| (8)
which results inA; = B;. We use the fact that the Green function is continuous
for all the values ofz as well as forz=z, which implies thatg, (£, 7, 2=z |ro) =

g2(&,m, 2=20 | o) and

g1(&m, 2 |ro) = Agcosyz for 2 <z, ©)
g2(§,m, 2 |rg) = Agcosyzg expliv(z —z0)]  for z < z,
where it has been denoted th&t = Ay/2 and Ay = Agcosyzp exp(—iyzp). Solu-
tions (9) must satisfy the non-homogeneous equation (5) which is simfgula = z.
The solution derivatives over the variableshow a value jump for = z;. Inserting
solutions (9) into Eq. (5) and integrating over the variablgithin its limits zp — € <
z < zp + € covering a singular point = z,, and further computing the following limit
e—0lead to

d d
lim — ~lim —
lim o2& zlro)| =l g (6, 2[vo)|
) 20+e€
= _ exp(=iézo) cos nyo lim / 0(z — z9) dz,
s e—0
z0—¢€

and
liH(l) A cos yzg exp(—iyzo) (i) expliy (20 + €)]
€e—

1
— lim Ag (—7) siny (20 — €) = —= exp(—i&xo) cosnyo,
Y

e—0
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which implies thatdy = (i/7y) cos nyo exp(—izo) exp(ivzp). The Green function
from Eq. (3) has been expressed by the solutions (9) and assunfesthef

. +oo 400 d{d
i .
Grlr) =% [ [ 16:2120) expligte — au)] cosmpcosny S, (10
E=—o0n=0
where
cosyzexp(iyzg) for 0<z<z) <400
I(v,2]20) = :
cosvyzpexp(ivz) for 0<2z)<z< +o0 (11)
= cosyzexp(iyzo) H(zo — z) + cosyzg exp(ivz) H(z — 2p)
and
1, zZ > 20,
H(z—2)=14¢1/2, z= 2z, (12)
0, z < 2o,

is the Heaviside function.
In the specific case when the field point as well as the source point aedbon
the planez = 0, the Green function assumes the form of

+o00  +oo

1 . déd
Glap 000 = =5 [ [ expligto —a)] cosm cosmy = (13)
E=—o0n=0

valid within the region(?; limited by the two-wall corner.

2.2. Three-wall corner

The Green function for the Helmholtz equation (1) satisfies the boundargi-c
tions expressed below within the region of the three-wall cofhelimited by the rigid
infinite bafflesz=0, y=0, z=0 of the Neumann boundary value problem

0 0 0
a—xG(r | o) =0 %G(r |ro) o 0, @G(r | o) P C )

This function deals with the regiof?s, i.e.0 < z < 00,0 < y < 00,0 < 2z < .
In this case, the operaté® /0 is defined within the semi-infinite range< = < oo
with a continuous spectrum < ¢ < oco. We must use the following Fourier transform
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pair (cf. Appendix A) instead of the transform pair from Eq. (3)

400 +00
Glrlro) = = [ [ atn.z ) cosé cosnydsan,
£=0n=0
400 +00
g@ww@:%//GMmmWmeMy
£=0n=0

We apply the following Dirac delta function integral properties

(15)

400 —+00
4
= / cos {x cos §pr dx / cosny cosnoydy = (£ — &o) 5(n — mo),

=0 y=0
+0o0 +00 (16)

[ [ remate - 08— m)dgan = #(éo.m)

£=0n=0
and substitute the non-homogeneous wave equation (1) with
(35 +92) ez xo) = -2 cosc demz) D)
1.2 Y ) gl&,n,z|rg) = ﬂ_cos Tp COSNYp 0(2 — 20).

We rearrange the Green function to formulate it below in a similar way as.i(lEY
in the case of the two-wall corner
s T ded
G(r|rp) = _; / / I(7y, z | z9) coséx cos&xp cosny cosnyo £ 77, (18)
T Y
£=0n=0

where functior/ (-) has been defined in Eq. (11). In the case when the field point as well
as the source point are located on the plare0, the Green function assumes the form
of

—+00 400
4i déed
G(z,y,0] w0, v0,0) = W—z / /COS&: cos g cos My CoS NYo 6771 (19)
§=071=0

which deals with the region of the three-wall corrgy.

3. Acoustic pressure

The Green function shown here represents an elementary acousscigrelt can
be used, e.qg., for computations of the acoustic vibration velocity potemtiplitude

b(r) = / on(r0) G (r | r0) S, (20)

So
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whereS, — surface of sound source, angl— normal component of vibration velocity
of an acoustic particle being in direct contact with the surfggelhe acoustic pressure
depends on the acoustic potential as follgas) = oo d¢(r)/0t. The time dependence
has been assumedas(—iwt) which implies thaip(r) = —iwep¢(r), and leads to

p(r) = —’ino/Un(ro) G (r|rg)dSo, (21)
So

wherepg — light fluid density in the rest state. Equation (21) represents acoussisysee
exerted at the point by a source with a continuous surface harmonic vibration velocity
distribution.

Let us assume that a flat source is located at the baffle surfacerize=f0. Then,
in the case of the two-wall corner regighy, we use Eq. (10) to formulate the acoustic
pressure amplitude as

+oo  +00
w déd
p(r) = 220 u/ /"expzax cosny exp(ivz) My(€,m) ?y”, (22)
E=—o00on=0

where M;(&,1) = [ vn(ro) exp(—i€zo) cosnyodSp. In the case of the three-wall
So
corner regionf2, we use Eq. (18) and formulate the acoustic pressure amplitude in the

form of

+00 400
L//m&mwwwmemﬁﬁ (23)

EZO 7]:0

4w 0o

pa2(r) =

where Ms(&,1m) = [ vn(ro) cos&xg cosnyy dSy. The acoustic pressure amplitudes

So
p1,p2 € Cradiated by the source located on the plane 0 are valid for any point of
the regions?; and (2, respectively.

4. Concluding remarks

The construction of the Green function for the two-wall corner as wefbraghe
three-wall corner have been proposed and presented in their Foepiesentations.
These formulas have not been presented earlier for the Neumanddrgwalue prob-
lems as described herein. They are useful for some further cotigmgaf the acoustic
pressure radiated by flat sound sources with continuous normativibrgelocity dis-
tributions.
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Appendix A. Fourier transforms

The Fourier transform from Eq. (3) has been formulated using theétdtansform
pair F, ]-'5_1 for the variables:, £ within their infinite limits (—oo, +00)

+oo
Gr ) = F gl lr0) = <= [ o€z o) explica) de,
= (A1)

“+oo
1
o6 Im) = FoGlay.zIm) = = / G(r | ro) exp(—icx) dz,

and the Fourier transform pa(ﬂgJ,C;l for the variablesgy, n within their semi-infinite
limits [0, +00)

+oo
_ 2
G(I‘|I’0) = CT] 19(3377772’1'0) = \/;/9($>7772’|r0) COST]ydTL
0

2
g(z,n, z|rg) = CyG(r|rog) = \/;/G(rlro) cosny dy.
0
Equations (3) have been obtained by composing the following transforms
_ —1,-1
G(I"I‘()) - ‘7:5 C’q 9(577772‘1‘0)7 (A3)

9(&n,z|ro) = FuCyG(r|ro).
In the case of the three-wall corner, the pair of Fourier transforB)sds been obtained
by composing the following transforms (A2)
G(r|ro) = C'C g€ m, 2| ro),
9(&n,z|ro) = CoCyG(r|ro).
The Dirac delta function integral properties (4) and (16) have beennaotaising the

formulas (&, 1) = FuC, F¢ 'C; ' f(6.m) and f(&,m) = CaC, C¢'C;7 (€. ), respec-
tively.

(A4)
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