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This paper focuses on the problem of sound radiation of a timeharmonically vibrating
rectangular piston embedded into one of two baffles configured spatially as the two wall cor-
ner. The sound radiation pressure and sound radiation power, active and reactive, have been
presented as their Fourier representations using the Green’s function. The directivity pattern
has been expressed in terms of some elementary functions whereas the radiation efficiency has
been expressed as a low frequency approximation. The elementary formulas obtained make
it possible to clearly interpret the influence of the baffles of two wall corner on the sound
radiation of the piston.

Key words: modal and total radiation efficiency, sound radiation, sound pressure, sound
power.

1. Introduction

Theoretical research on some mutual interactions and sound radiation of some vi-
brating piston sources located within the plane of rigid baffle are well known[1–4].
Some sample experimental investigations indicate that the baffles play an essential role
in the sound power radiated by some flat sources [5]. Especially important acoustic
processes appear for some low frequency radiated waves which specially refers to the
active sound power.

The main aim of this paper is to analyze the influence of the two wall corner on
the radiation efficiency of a rectangular piston. Green’s function in its Fourier represen-
tation has been used to express the sound pressure radiated, active and reactive sound
power and radiation efficiency as well as some elementary formulations have been ob-
tained that are valid for the directivity pattern. Some elementary asymptotic formulas,
describing the radiation efficiency of the source within the low frequency range, have
been presented. The formulas show how the quantity depends on the distance of the
source’s center from the two wall corned and how it depends on vibration frequency.
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2. Sound radiation pressure and sound radiation power

The following time dependence has been assumedexp(−iωt). The sound pressure
radiated by a vibrating surface source into the two wall corner−∞<x<∞, 0≤y<∞,
0 ≤ z < ∞, i.e. the region bounded by two rigid orthogonal half planesy = z = 0
(cf., Fig. 1). The sound source is located in the half-planez = 0. The radiated sound
pressure amplitude has been formulated using Green’s function [6]

p(x, y, 0) = ik̺0c0φ(x, y, 0)

= −ik̺0c0

∫

S′

G(x, y, 0 |x′, y′, 0)
∂φ

∂n′

∣∣∣∣
z′=0

dS′, (1)

given that
∂φ

∂n′

∣∣∣∣
z′=0

= − ∂φ

∂z′

∣∣∣∣
z′=0

=

{
v(x′, y′) for x′, y′ ∈ S′

0 otherwise
(2)

whereG(x, y, z |x′, y′, z′) is Green’s function of the Helmholtz equation that satisfies
the homogeneous Neumann boundary value conditions fory = z = 0 formulated for
the region of−∞ < x < ∞, 0 ≤ y < ∞, 0 ≤ z < ∞. Green’s function has been
expressed as follows [7]

G(x, y, z |x′, y′, z′) =
i

π2

+∞∫

ξ=−∞

+∞∫

η=0

cos ηy′ cos ηy

× exp[iξ(x − x′)]

{
cos γz exp(iγz′) for z ≤ z < z′ < ∞
cos γz′ exp(iγz) for z ≤ z′ < z < ∞

}
dξdη

γ
, (3)

whereγ2 = k2 − ξ2 − η2.
It has been assumed that a rectangular piston, vibrating time harmonicallywith the

normal components of vibration velocityv(t) = v0 exp(−iωt) wherev0 = const, is
the sound source. The piston is embedded into the rigid half-planez = 0 (cf., Fig. 1).
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Fig. 1. The sound source located near the two wall corner.
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After integrating Green’s function in Eq. (1) along the rectangular piston surface, the
following expression for the radiated sound pressure amplitude at the plane of the piston
has been obtained in its Fourier representation

p(x, y, 0) = ̺0c0kv0
ab

π2

+∞∫

ξ=−∞

+∞∫

η1=0

cos(ηy0)
sin(ξa/2)

ξa/2

×sin(ηb/2)

ηb/2
cos ηy exp(iξx)

dξdη

γ
, (4)

whereas the time averaged radiation sound power

N =
1

2

∫

S

p(x, y) v∗(x, y) dS, (5)

has been expressed in its Fourier representation

N = ̺0c0(abv0)
2 k

2π2

+∞∫

ξ1=−∞

+∞∫

η1=0

sin2(ξa/2)

(ξa/2)2
sin2(η b/2)

(η b/2)2
cos2(ηy0)

dξdη

γ
, (6)

wherev∗ is the conjugate value for the piston vibration velocity amplitudev, N =
N ′ − iN ′′, N ′, N ′′ are the real and imaginary components of radiation sound power,

respectively. The change of variables introducing the polar coordinates0≤θ<
π

2
− i∞,

0 ≤ ϕ ≤ π in the plane of complex variableθ = θ′ + iθ′′ and using transformations

ξ = k sin θ cos ϕ, η = k sin θ sinϕ, (7)

whereγ = k cos θ, dξdη = k2 sin θ cos θ dθdϕ has provided

N

N (∞)
=

k2ab

π2

π/2−i∞∫

0

π∫

0

M2(θ, ϕ) sin θ dθdϕ, (8)

instead of Eq. (6) where

N (∞) = lim
k→∞

N(k) =
̺0c0

2
abv2

0, (9)

whereas

M(θ, ϕ) =
1

ab

a/2∫

−a/2

exp(ikx sin θ cos ϕ) dx

y2∫

y1

cos(ky sin θ sin ϑ)dy

=

sin

(
1

2
ka sin θ cos ϕ

)

1

2
ka sin θ cos ϕ

sin

(
1

2
kb sin θ sin ϕ

)

1

2
kb sin θ sin ϕ

cos(ky0 sin θ sinϕ) (10)
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is the characteristic function that is also useful to express the corresponding directivity
pattern

R(θ′, ϕ) = |M(θ′, ϕ)|. (11)

Equation (8) has been expressed as a sum of two termsN = N1 + N2. The first term

N1

N (∞)
=

k2ab

2π2

π/2−i∞∫

0

π∫

0




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(
1

2
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)

1

2
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×
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(
1

2
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)

1

2
kb sin θ sin ϕ





2

sin θ dθ dϕ (12)

describes the radiated sound power (active and reactive) of a vibrating piston with only
one baffle (cf., Ref. [3]). The second term

N2

N (∞)
=

k2ab

2π2

π/2−i∞∫

0

π∫

0




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(
1

2
ka sin θ cos ϕ

)

1

2
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×
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(
1

2
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)

1

2
kb sin θ sin ϕ





2

cos(2ky0 sin θ sinϕ) sin θ dθ dϕ (13)

represents the additional sound power radiated by the piston as a consequence of acous-
tic interaction between the piston and the baffle orthogonal to the piston plane.

3. Radiation efficiency

The radiation efficiency has been defined using Eqs. (12) and (13) asfollows

σ =
N ′

N∞
=

k2ab

2π2
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0
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
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(
1

2
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)

1

2
kb sin θ sin ϕ


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2

[1 + cos(2ky0 sin θ sin ϕ)] dϕ. (14)
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In the specific case whenka/2, kb/2 < 1 the following expansion series has been used

sin2 x sin2 y/(xy)2 ≃ 1 − 1

3
(x2 + y2) which leads to

σ =
k2ab

2π2

π/2∫

0

sin θdθ

π∫

0

[1 − (k2/12) sin2 θ(a2 cos2 ϑ + b2 sin2 ϑ)]

× [1 + cos(2ky0 sin θ sin ϕ)] dϕ. (15)

During the integration along variableϕ the following equation has been used [8]
π∫

0

cos(z sin ϕ) cos(2nϕ) dϕ = πJ2n(z), n = 0, 1, 2, . . . , (16)

leading to

σ =
k2ab

2π

π/2∫

0

F (θ) sin θ dθ, (17)

where

F (θ) =

{
1 − (ka)2 + (kb)2

24
sin2 θ

}
[1 + J0(2ky0 sin θ)]

+
(kb)2 − (ka)2

24
sin2 θ J2(2ky0 sin θ). (18)

Sonine’s integral has also been used (cf., Refs. [8, 9])

π/2∫

0

Jν(z sin θ) cos2µ+1 θ sinν+1 θ dθ =
2µΓ (µ + 1)

zµ+1
Jν+µ+1(z) (19)

given thatRe ν, Re µ > −1. Further, the Bessel functionsJn+1/2 for n = 0, 1, 2, 3, . . .
have been expressed by some trigonometric functions giving

σ = σ0

[
1 +

sin u0

u0
+ E(k, a, b, y0)

]
, (20)

where it has been denotedσ0 = k2ab/2π, u0 = 2ky0, and

cs x ≡ 1

x

(
sinx

x
− cos x

)
, (21)

E(k, a, b, y0) =
(ka)2 + (kb)2

12

(
cs u0 − sinu0

2u0
− 1

3

)

+
(kb)2 + (ka)2

24

3cs u0 − sin u0

u0
. (22)
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In Eq. (22), the following integral values have been used
π/2∫
0

J0(x sin θ) sin θ dθ =

sin x/x,
π/2∫
0

J0(x sin θ) sin−3 θ dθ = (sinx − cs x)/x,
π/2∫
0

J2(x sin θ) sin−3 θ dθ =

(3cs x − sin x)/x. In Eq. (20), quantityE(k, a, b, y0) represents a correction for all the
reflected waves. It has been determined by neglecting all the terms containing (ka)4n,
(kb)4n, (k2ab)2n for n ≥ 1. An increase in the range ofk, where Eq. (20) is valid, can
be reached by including some more successive approximation terms from the expansion
series of functionf(x, y) = (sinx/x)2(sin y/y)2, wherex = (ka/2) sin θ cos ϕ, y =
(kb/2) sin θ sin ϕ in Eq. (14). Quantity

σ0 =
k2ab

2π
=

2πS

λ2
, (23)

represents the radiation efficiency of a vibrating rectangular piston embedded into a flat
rigid baffle in the case of a single baffle whereS = ab andk = 2π/λ. On the other
hand, increasing the distance between the two wall corner and the piston (i.e., length
y0) results in decreasing down to zero in amplitude of oscillating termsin u0/u0, i.e.,
the influence of the two wall corner on radiation efficiency of the piston vanishes.

4. Concluding remarks

A theoretical analysis of the influence of the two wall corner on the acousticfield
generated by some time harmonic vibrations of a rectangular piston source has been
performed. The sound pressure radiated, the complex radiation sound power and the
radiation efficiency of the source have been expressed as their Fourier exponent-cosine
representations. For this purpose, Green’s function for the Helmholtz equation, for the
Neumann boundary condition and “the sharpened Sommerfeld radiationcondition” sat-
isfied, has been used. The directivity pattern has been expressed in its elementary form
(11) including the influence of the two wall corner on the sound pressureradiated. The
two terms of complex radiation sound power (12) and (13) as well as the radiation ef-
ficiency (14) have been expressed in their integral forms. Equation (12) is enough if
only one baffle appears whereas the two wall corner requires the sum of two terms, i.e.,
Eqs. (12) and (13). The second term represents the correction for all the reflected waves.
In the specific case when the linear sizes of the source are small enoughas compared
with the wavelengths radiated then the radiation efficiency can be approximated with
Eq. (20) where the term representing the reflected waves has been separated and mainly
depends on the distancey0 between the source and the two wall corner, and on the
acoustic wavenumberk. All the computations presented in this paper are valid for the
acoustic radiation of a flat piston. However, the method presented hereincan easily be
used for such sources as circular plates and rectangular plates. The influence of the air
column on source’s vibrations and sound radiation can also be included using presented
results.
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