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The aim of the paper is to present applications of the new algebraic system theory in acous-
tic problems. Elements of new types of perturbed ordinary and partial differential equations
are discussed. The formulation is applied to the analysis ofperturbed wave problems with
perturbations in parameters as well as in initial and boundary conditions. Classical pertur-
bation acoustic problems described by differential equations can be solved in the modified
algebraic system as easy as usual. Any additional analytical transformations are not required.
A novel 2D ray-tracing model of detailed representation of the indoor/outdoor environment
is presented. Perturbation ray tracing method is a technique based on geometrical optics with
perturbation in parameters which can be an easily applied approximate method for estimat-
ing perturbation problems in acoustics. The developed algorithms use the new perturbation
methodology where the perturbed images are used to produce 2D-field of illumination zones.
It can be easy considered how perturbations (small) of nominal parameter values can change
solutions of the considered problems.
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1. Introduction

Theory of perturbations first appeared in one of the oldest branchesof applied math-
ematics: celestial mechanics. The scope of perturbation theory at the present time is
much broader than its applications to celestial mechanics, but the main idea isthe same.
One can begin with a simple solvable problem, called the unperturbed problem and us-
ing the solution of this problem as an approximation we go to the solution of a more
complicated problem that differs from the basic one only by some small terms in the
equations. Then one looks for a series of succesive approximations tothis initial solu-
tion, most often in the form of a power series in a small quantity called the perturbation
parameter.

First investigations of the perturbed wave equation are given by Keller and are re-
lated to perturbed Helmholz equation cf. [2, 3, 10]. There are many papers about these
problems, cf. [1, 5, 11–13]. In this paper we shall present a new technique that will be
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used as the basis for our presentation of wave equation analysis in the situation when all
parameters of wave equation are perturbed.

2. Algebraic system of perturbation numbers

DEFINITION 1: Define a number called further a perturbation number as an or-
dered pair of real numbers(x, y) ∈ R2. The set of perturbation numbers is denoted by
Rε. The first elementx of the double(x, y) is called a main value and the second y the
perturbation value or simply the perturbation[14, 15]. ✷

Let z, z1, z2 ∈ Rε denote three perturbation numbers andz = (x, y), z1 := (x1, y1),
z2 := (x2, y2), xi, yi ∈ R, i = 1, 2. It is called that two perturbation numbers are
equalz1 ≡ z2 iff: x1 = x2 andy1 = y2. Further we callx, x1, x2 main values of
corresponding perturbation numbers.

In the setRε we introduce the addition(+ε) and multiplication(•ε) as follows:

z1 +ε z2 := (x1 + x2, y1 + y2), (1)

z1 •ε z2 := (x1x2, x1y2 + x2y1). (2)

Associated with eachz = (x, y) is a unique opposite element−z := (−x,−y) such
thatz +ε (−z) = 0ε.

THEOREM 1: The setRε with addition (+ε) and multiplication(•ε) defined by
Eqs. (1) and (2) with selected neutral addition element0ε := (0, 0) and neutral mul-
tiplication element1ε := (1, 0) is a field. Defined in such way field is called a field of
perturbation numbers. ✷

Defined in Definition 1 the fieldRε doesn’t contain the field of real numbersR. We
show that real numbers can be considered as some elements of fieldRε with all classical
addition and multiplication formulas and neutral elements of addition and multiplica-
tion, cf. [1, 6, 7].

The mapj : R → Rε, j(x) := (x, 0) for eachx ∈ R, is called the injection of
the algebraic system of real numbersR into the algebraic systemRε. It’s the single-
valued mapping and preserves corresponding algebraic operations and neutral elements
of addition and multiplications. Notice, that sincej(·) is the injection then each pertur-
bation number of the form(a, 0), a ∈ R, we can identify with a real numbera. We use
this notice to simplify a notion for perturbation operations. Denote byε the perturba-
tion number(0, 1). Assume that the perturbation number(x, 0) is identified withx and
(y, 0) with the realy. Then we have

(x, y) = (x, 0)+ε (0, y) = (x, 0)+ε (y, 0) •ε (0, 1) = j(x)+ε ε •ε j(y) = x+ε ε •ε y.

From multiplicity formulas it follows that

ε2 := ε •ε ε = (0, 1) •ε (0, 1) = (0, 0),

in simplified notionε2 = 0 and in consequencez = x + εy.
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3. Order relation in the set of perturbation numbers

Let z = x+εy, z1 = x1+εy1, z2 = x2+εy2 be arbitrary real perturbation numbers.
In the set of perturbation numbers, similarly as in the sets:R2, set of complex num-

bersC1, Rn, n > 1 etc it’s not possible to introduce the complete order relation. Fol-
lowig that fact we define the relation of partial order in the strong “≤ε, ≥ε, =ε, >ε, <ε”
and weak matter “̇≤ε, ≥̇ε, =̇ε, >̇ε, <̇ε”.

DEFINITION 2: For z1, z2 ∈ Rε, we say thatz1 ≥ε z2 if x1 ≥ x2 andy1 ≥ y2. ✷

DEFINITION 3: For z1, z2 ∈ Rε, we say thatz1 >ε z2 if z1 ≥ε z2 andx1 > x2 and
y1 > y2. ✷

In an analogous way we define relations “≤ε” and “<ε”.

DEFINITION 4: For z1, z2 ∈ Rε, we say thatz1≥̇εz2 if x1 ≥ x2 and y1, y2 are
arbitrary. ✷

DEFINITION 5: For z1, z2 ∈ Rε, we say thatz1>̇εz2 if x1 > x2 and y1, y2 are
arbitrary. ✷

DEFINITION 6: For z1, z2 ∈ Rε, we say thatz1=̇εz2 if z1≥̇εz2 and z2≥̇εz1 (or
equivalentlyx1 = x2. ✷

In the analogous way we define the relation “≤̇ε” and “<̇ε”.
Notice that relations between perturbation numbers of the “strong” type as“≤ε, ≥ε,

=ε, >ε, <ε” implies the “weak” relations: “̇≤ε, ≥̇ε, =̇ε, >̇ε, <̇ε”, respectively.

4. Extendedε-functions

Perturbation value functions are defined for perturbation arguments asextensions of
classical elementary and trigonometric functions. Properties ofε-functions are analyzed
in details, cf. [14–16].

Let D ⊂ Rε be an arbitrary subset. Suppose that we have a rulefε which assigns to
each elementz ∈ D exactly one elementw of Rε. Then we say thatfε is an extended
function defined onD with values inRε. We will denote that function asfε : D → Rε

or w = fε(z) or simplifiedw = ε − f(z).
To illustrate how we can construct generalizations of usual real functions we use a

simple function. We discuss now an extension of a simple exponential function exp(x),
x ∈ R. With polynomials and rational functions it is one of the simplest elementary
functions. How can we understand the notionexp(z), wherez = x + εy ∈ Rε?

Notice that we can expandexp(x) into a classical series

exp(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... =

∞∑

k=0

xk

k!
, x ∈ R, (3)

which is convergent for allx ∈ R. Define the new functionexpε(z), for z = x + εy ∈
Rε as

expε(z) := 1 +
z

1!
+

z2

2!
+

z3

3!
+ ... =

∞∑

k=0

zk

k!
, z ∈ Rε . (4)
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Following equations (3) and (4) we write

expε(z) := 1 +
x + εy

1!
+

x2 + ε2xy

2!
+ ... = (1 + εy) exp(x), z ∈ Rε . (5)

We can prove the generalized convergence of the sequence (4) for every z ∈ Rε. We
have

j(exp(x)) = (exp(x), 0) = expε(x),

which proves that the new functionexpε(·) is the extension of real functionexp(x).
In the similar way one can define more complicated multidimensional functions.

5. Differentiation of perturbation functions

Let the functionfε(t), t ∈ D ⊂ Rε be a perturbation function of a real perturbation
variable.

DEFINITION 7: If in the pointz0 ∈ D ⊂ Rε there exists a limit (in theε – conver-
gence sense) of difference quotient

fε(z0 + ∆z) − fε(z0)

∆z
, (6)

for ∆z = ∆x+ε∆y
ε→ 0ε then one says that theε-functionfε(z) is ε-differentiable (or

simply differentiable) inz0. The limit is calledε-differential of the functionfε in z0 and
is denoted

f ′
ε(z0) := ε − lim

∆z→0ε

fε(z0 + ∆z) − fε(z0)

∆z
. ✷

We can generalize these definitions to higher order differentials [15–16].

6. Wave equation with perturbation components

New mathematical formalism is applied to classical perturbation differentialprob-
lems arising in theoretical mechanics and physics [15, 16]. Dynamic perturbation prob-
lems of a simple vibration problem is given. The advantages of the methodology is
presented in analytical calculations and in special numerical procedures dedicated to
linear wave equation with perturbations in parameters as well as in initial conditions
and boundary conditions. Consider the following perturbed wave equation with mixed-
type variables

∂2

∂x2
uε(t, x) − 1

a2
ε

∂2

∂t2
uε(t, x) = 0ε , (7)
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wheret ∈ [0,∞[, x ∈ [0, lε], aε = a0 + εa1, lε = l0 + εl1 ∈ Rε, perturbed initial
conditions of Cauchy type

uε(x, 0) = fε(x),
x ∈ (0, lε), (8)

∂

∂t
uε(x, 0) = gε(x),

and perturbed boundary conditions

uε(0ε, t) ≡ 0ε,
t ∈ (0,∞) . (9)

uε(lε, t) ≡ 0ε,

7. Ray acoustic emission algorithm with perturbations

This paper investigates the feasibility of predicting the perturbations of Acoustic
Emission (ε-AE) signals travelling within a indoor/outdoor environment. Suchε-AE
can occur due to external stimulation or internal events. The attenuation ofthese signals
is affected not only by perturbed material properties but also by the perturbed geometry
of the object. For example, wave propagation is complex because of intricate shape with
perturbed variations and discontinuities in thickness and surface curvature. In contrast
to much of the reported literature that models the transmission of sound in rooms and
buildings, this paper reports the development of a perturbation ray firingprocedure to
model the transmission of rays both across the surface and through theinterior of a
complex perturbed shapes, cf. [9].

There is a strong analogy between the physical propagation of sound and light, both
reflect of boundaries at incident angles that determine the paths taken by the energy. The
technique employed by theε-RayAE algorithm exploits this analogy through classical
steps reminiscent of rendering:

• Generate a source of plain perturbed vector field (ε-PVF) to epresent external/
internalε-AE. Filter ε-PVF, keeping only the vectors (i.e. a ray representing the
direction (ordered in weak-sense) the sound will travel along) that lie onthe sur-
face, or fully inside the model. Each of these vectors is the start of anε-acoustic
energy path (ε-AEP).

• For eachε-AEP, generate a series of weak edge segments that represent perturbed
reflection/transmission of theε-AE ray. Essentially, this maps the propagation of
theε-AE wave through and/or over the body. Each edge segment in anε-AEP is
referred to as anε-AES.

• Create a representation of the sensor/sensors.
• For each sensor location test allε-AEPs and record the number of times an single

ε-AES of theε-AEP intersects the sensor.
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8. Example

Consider a room with internal dimensions10 × 5, suppose an isotropic30◦ sector-
directional sound source placed in the left bottom corner. In the room there are 3 protec-
tive acoustic screens and an internal construction element, see Fig. 1. All dimensions,
locations and absorbent coefficients of walls, screens and internal construction can be
perturbed. The values of perturbed sound pressure level in any point of the room can
be calculated in the sense of previous methodology. The main values of randomly per-
turbed absorbent coefficients of all walls, screens and internal construction are known
as deterministic values. All numerical values are dimensionless.

Fig. 1. The main value of perturbed sound pressure level for absorbent coefficients= 0.1.

9. Conclusions

Calculations with use of a new perturbation differential calculus to applications are
mathematically equivalent with I-order approximations in classical perturbation meth-
ods.

Advantages of the presented algebraic system are as follows:
• we can omit all complex analytical calculations typical for expanding approxi-

mated values of solutions in infinite series. It works for expanding unknown val-
ues – solutions as well as for perturbed coefficients of the problem;

• we get a great simplification of all calculations in mathematical analysis area
which appear in analytical formulation and analysis of the problem;

• most of known classical results of the theory of differential equations can be sim-
ply adapted for the new system of calculations without any serious difficulties.

With the modified algebraic system we get a set of very simple and useful mathe-
matical tools which can be easy used in analytical and computational parts of analysis
of complex perturbation differential problems.
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Examples of applications for perturbation formulation in classical problems of vi-
brations described by wave equations with perturbed coefficients and initial and bound-
ary conditions are given [15, 16].
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