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The aim of the paper is to present applications of the newbadgesystem theory in acous-
tic problems. Elements of new types of perturbed ordinaxy gertial differential equations
are discussed. The formulation is applied to the analysiseofurbed wave problems with
perturbations in parameters as well as in initial and bogndanditions. Classical pertur-
bation acoustic problems described by differential eguatican be solved in the modified
algebraic system as easy as usual. Any additional andlyticesformations are not required.
A novel 2D ray-tracing model of detailed representationhaf indoor/outdoor environment
is presented. Perturbation ray tracing method is a teckrti@sed on geometrical optics with
perturbation in parameters which can be an easily applipdoamate method for estimat-
ing perturbation problems in acoustics. The developedrihgns use the new perturbation
methodology where the perturbed images are used to prodfield of illumination zones.
It can be easy considered how perturbations (small) of nahparameter values can change
solutions of the considered problems.
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1. Introduction

Theory of perturbations first appeared in one of the oldest bramdtagplied math-
ematics: celestial mechanics. The scope of perturbation theory atekenprtime is
much broader than its applications to celestial mechanics, but the main itleasemme.
One can begin with a simple solvable problem, called the unperturbed prainée us-
ing the solution of this problem as an approximation we go to the solution of @ mor
complicated problem that differs from the basic one only by some smaiistér the
equations. Then one looks for a series of succesive approximatidhis taitial solu-
tion, most often in the form of a power series in a small quantity called thanbation
parameter.

First investigations of the perturbed wave equation are given by Kelttaes re-
lated to perturbed Helmholz equation cf. [2, 3, 10]. There are mangrpabout these
problems, cf. [1, 5, 11-13]. In this paper we shall present a nelantgae that will be
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used as the basis for our presentation of wave equation analysis in thimsituaen all
parameters of wave equation are perturbed.

2. Algebraic system of perturbation numbers

DeFINITION 1: Define a number called further a perturbation number as an or-
dered pair of real numberér, i) € R?. The set of perturbation numbers is denoted by
R.. The first element of the doubl€z, y) is called a main value and the second y the
perturbation value or simply the perturbati¢b4, 15] O

Letz, 21, 22 € R. denote three perturbation numbers and (x,y), z1 := (z1,y1),
zo = (x2,Y2), i, y; € R, 1 = 1, 2. It is called that two perturbation numbers are
equalz; = z iff. 1 = x9 andy; = ys. Further we call, 21, 22 main values of
corresponding perturbation numbers.

In the setR. we introduce the additiof+.) and multiplication(e.) as follows:

21 +e 22 = (z1+ 22, y1 +y2), (1)
21 oc 29 1= (2122, T1Y2 + T2y1). (2)

Associated with each = (z,y) is a unique opposite element: := (—z, —y) such
thatz +. (—z) = 0..

THEOREM 1: The setR. with addition (4-.) and multiplication(s.) defined by
Egs. (1) and (2) with selected neutral addition elem@&nt= (0,0) and neutral mul-
tiplication elementl. := (1,0) is a field. Defined in such way field is called a field of
perturbation numbers. O

Defined in Definition 1 the field?. doesn’t contain the field of real numbeks We
show that real numbers can be considered as some elements &.fielth all classical
addition and multiplication formulas and neutral elements of addition and mutiplic
tion, cf. [1, 6, 7].

The mapj: R — R., j(x) := (z,0) for eachz € R, is called the injection of
the algebraic system of real numbétsinto the algebraic systerR.. It's the single-
valued mapping and preserves corresponding algebraic operatibneatral elements
of addition and multiplications. Notice, that singe) is the injection then each pertur-
bation number of the fornu, 0), a € R, we can identify with a real number We use
this notice to simplify a notion for perturbation operations. Denote liye perturba-
tion number(0, 1). Assume that the perturbation numier 0) is identified withz and
(y,0) with the realy. Then we have

(Jj,y) = (377 O) +e (an) = (l'a 0) +e (y,O) °c (O> 1) = ](l') Fc€ o ](y) =T+ 0 Y.
From multiplicity formulas it follows that
g2 i=ce.e=(0,1) . (0,1) = (0,0),

in simplified notions? = 0 and in consequence= z + «y.
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3. Order relation in the set of perturbation numbers

Letz = z+ey, 21 = x1+ey1, 290 = x2+eyo be arbitrary real perturbation numbers.
In the set of perturbation numbers, similarly as in the sts:set of complex num-
bersC!, R", n > 1 etc it's not possible to introduce the complete order relation. Fol-
lowig that fact we define the relation of partial order in the strodg, >, =., >, <.”
and weak matter&_, >_, =., >, <.".
DEFINITION 2: For z1, z9 € R., we say that; >, 25 if x1 > 29 andy; > y». O
DEFINITION 3: For z1, z2 € R., we say that; >. 2 if z; >. zo andz; > x5 and
Y1 > Yo. O
In an analogous way we define relations.” and “<.".

DEFINITION 4: For z1, zo € R., we say that, >,z if x; > x5 andy, y» are
arbitrary. O

DEFINITION 5: For z1, 25 € R., we say that;>.z; if 21 > x5 andyy, yo are
arbitrary. O

DEFINITION 6: FOr z;, 2o € R, we say that; =,z if 21>.2, and 23>,z (or
equivalentlyz; = xs. O

In the analogous way we define the relatien.” and “<.”.

Notice that relations between perturbation numbers of the “strong” type as>.,
=., >, <."implies the “weak” relations: £_, >_, =., >., <.”, respectively.

4. Extendede-functions

Perturbation value functions are defined for perturbation argumentgessions of
classical elementary and trigonometric functions. Propertiedfictions are analyzed
in details, cf. [14-16].

Let D C R. be an arbitrary subset. Suppose that we have aftulich assigns to
each element € D exactly one element of R.. Then we say thaf. is an extended
function defined orD with values inR.. We will denote that function ag.: D — R,
orw = f-(z) or simplifiedw = £ — f(2).

To illustrate how we can construct generalizations of usual real fursctienuse a
simple function. We discuss now an extension of a simple exponentididansp(x),

x € R. With polynomials and rational functions it is one of the simplest elementary
functions. How can we understand the notéomp(z), wherez = x + ey € R.?
Notice that we can expandp(z) into a classical series

:EZ

x 3 = b
exp(z) =1+ +—+§+...:ZF, T € R, 3)
! = k!

1" 2l

which is convergent for alt € R. Define the new functionxp,(z), forz = z + ey €
R. as

expa(z)::1+i+—+z—+...:zz—, z€R.. 4)
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Following equations (3) and (4) we write

xr+e 2+ e2x
y+ Y

T 51 +...= (1 +ey)exp(x), z€R.. (5

exp.(z) :=1+

We can prove the generalized convergence of the sequence (d)efgrec R.. We
have

jlexp(z)) = (exp(x),0) = exp.(z),

which proves that the new functietp,(-) is the extension of real functiomxp(z).
In the similar way one can define more complicated multidimensional furgtion

5. Differentiation of perturbation functions

Let the functionf.(t), t € D C R. be a perturbation function of a real perturbation
variable.

DEFINITION 7: If in the pointzy € D C R. there exists a limit (in the — conver-
gence sense) of difference quotient

fe(20 + A2) — fe(20)

Az ’ (©6)

for Az = Az +eAy — 0. then one says that thefunctionf. () is e-differentiable (or
simply differentiable) irxy. The limit is callece-differential of the functiory. in z, and
is denoted

. O

fs/(zo) = — Alziinog fe(zo + AAZz — fe(20)

We can generalize these definitions to higher order differentials [15—16]

6. Wave equation with perturbation components

New mathematical formalism is applied to classical perturbation differeprtidd-
lems arising in theoretical mechanics and physics [15, 16]. Dynamiarpation prob-
lems of a simple vibration problem is given. The advantages of the mdtgpda
presented in analytical calculations and in special numerical procededicated to
linear wave equation with perturbations in parameters as well as in initialitcorsl
and boundary conditions. Consider the following perturbed wave equattb mixed-
type variables

62 1 2

WUE(t,w) - a——U5<t,$) = 067 (7)
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wheret € [0,00[, x € [0,l], ac = ap + a1, l- = lp + ¢l; € R., perturbed initial
conditions of Cauchy type

ue(xv 0) = fa(‘r)v

x € (0,1.), (8)
EUE(JZ,O) = g€($),
and perturbed boundary conditions
Us(osat) = 0,
t € (0,00). 9)
ue(le,t) = 0O,

7. Ray acoustic emission algorithm with perturbations

This paper investigates the feasibility of predicting the perturbations of #imou
Emission €-AE) signals travelling within a indoor/outdoor environment. SueAE
can occur due to external stimulation or internal events. The attenuatibas# signals
is affected not only by perturbed material properties but also by tharped geometry
of the object. For example, wave propagation is complex because oaitetshape with
perturbed variations and discontinuities in thickness and surface crgvétwcontrast
to much of the reported literature that models the transmission of soundnmsrand
buildings, this paper reports the development of a perturbation ray firocedure to
model the transmission of rays both across the surface and throughtéhier of a
complex perturbed shapes, cf. [9].

There is a strong analogy between the physical propagation of soddigjan both
reflect of boundaries at incident angles that determine the paths tpiiea &nergy. The
techniqgue employed by theRayAE algorithm exploits this analogy through classical
steps reminiscent of rendering:

e Generate a source of plain perturbed vector fieldPYF) to epresent external/
internale-AE. Filter e-PVF, keeping only the vectors (i.e. a ray representing the
direction (ordered in weak-sense) the sound will travel along) that lihesur-
face, or fully inside the model. Each of these vectors is the start efamoustic
energy path4-AEP).

e For eache-AEP, generate a series of weak edge segments that represertig@ertu
reflection/transmission of theAE ray. Essentially, this maps the propagation of
thee-AE wave through and/or over the body. Each edge segmentdn/deP is
referred to as an-AES.

e Create a representation of the sensor/sensors.

e For each sensor location testalAEPs and record the number of times an single
e-AES of thee-AEP intersects the sensor.
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8. Example

Consider a room with internal dimensioh® x 5, suppose an isotropR0° sector-
directional sound source placed in the left bottom corner. In the roora #re 3 protec-
tive acoustic screens and an internal construction element, see Fij.dimAnsions,
locations and absorbent coefficients of walls, screens and internsiraction can be
perturbed. The values of perturbed sound pressure level in any gfdime room can
be calculated in the sense of previous methodology. The main valuesdufmdy per-
turbed absorbent coefficients of all walls, screens and internatrcgtien are known
as deterministic values. All numerical values are dimensionless.
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Fig. 1. The main value of perturbed sound pressure levellfsoioent coefficients: 0.1.

9. Conclusions

Calculations with use of a new perturbation differential calculus to application
mathematically equivalent with I-order approximations in classical peation meth-
ods.

Advantages of the presented algebraic system are as follows:

e we can omit all complex analytical calculations typical for expanding @gpr
mated values of solutions in infinite series. It works for expanding wwvknal-
ues — solutions as well as for perturbed coefficients of the problem;

e we get a great simplification of all calculations in mathematical analysis area
which appear in analytical formulation and analysis of the problem;

e most of known classical results of the theory of differential equatianse sim-
ply adapted for the new system of calculations without any serious diffisultie

With the modified algebraic system we get a set of very simple and usetihlem
matical tools which can be easy used in analytical and computational pamnslysis
of complex perturbation differential problems.
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Examples of applications for perturbation formulation in classical problefrvi-
brations described by wave equations with perturbed coefficients andlamtidound-
ary conditions are given [15, 16].
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