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This paper presents some elementary formulations for theiahmodal radiation effi-
ciency of a simply supported rectangular plate embeddedainigid infinite baffle. The mag-
nitude makes it possible to introduce the intermodal pdaiteteractions into the total radi-
ation efficiency of the plate vibrating under the influenceanfexternal surface force. The
approximate formula has been expressed as a combinatisosnaftrigonometric and special
functions. The formula is convenient for some numerical potations of the modal and total
radiation efficiency values of the plate.
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1. Introduction

The problem of modal radiation resistance of a rectangular plate wagedpn the
literature earlier. So far, some integral formulations for radiation saistance as well
as for their low-frequency and high-frequency approximations peesented [1-5].
However, approximations presented byWs [2] are useful only. The author ex-
pressed only a part of the corresponding integrand as its expansiea and left all
the functions oscillating with a change in frequency unchanged. As # hesabtained
much higher accuracy than the others — formulas weakly dependémé emodal num-
bers. Nonetheless, he included the zero expansion term, only, anorimslds show
a big level of approximation error. Therefore, the formulas areulgef some rough
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numerical computations only. Paper [6] presents an approximatidghdaoadiation self-

resistance of a rectangular plate similar to that presented by Davies ludimgcsome

more expansion terms. As a consequence, the frequency rangre, tivh approximation
is valid, became wider and the approximation error became much smaller.

For some computations of such vibroacoustic magnitudes as radiated gower
and acoustic radiation impedance it is necessary to know the modal radimfiedance
as well as the intermodal mutual radiation impedance. So far, therenmegproxima-
tion intermodal mutual radiation resistance formulas of a rectangulargiesented in
the literature. Therefore, presenting such formulas is the main aim ofapierp

2. Fourier representation

A flat harmonically vibrating simply supported rectangular plate has be¥edded
into a flat rigid infinite baffle. Internal friction has been neglected. Itleen assumed
that transverse deflections of the plate are small as compared with thegid@téengths
a andb. A linear model of plate by Kirchhoff—Love has been used. The platensbape
of modemn is [7]

. z 1Y\ . y 1
W (x,y) = 281nm7r<g + 5) smmr(z + §> , 1)

wherer, y — Cartesian coordinates of the plate poiataxis is parallel to the plate edges
of lengtha and Q; axis is parallel to the plate edges of lengthn, n =1, 2, 3, ... —
modal numbers. Solution (1) satisfies the equation of motion of the @gev* — 1)
Winn(z,y) = 0, whereV? = 9?/02? + 0%/0y?, k%, = m*[(m/a)® + (n/b)?] -
structural wavenumber of the plate raised to its second power. Theahtegthe time-
averaged intermodal sound radiation power of mogkesand pq can be formulated
as [8]

Hmn,pq = %/pmn U;q dS) (2)

S

where S — surface enclosing the platg,,, — modal amplitude of radiated acoustic
sound pressure exerted by the plate via its moedeon surfaceS, v;, — conjugate
value for vibration velocity of acoustic particle, = —iw,,V,, related to modeq
and normal to surfacé given that the time dependence:is*!, w,, = kf)q\ /Dg/ph—
eigenfrequencyDr = Eh?/[12(1 — v?)] — bending stiffness; — Poisson ratiop, h —
the plate density and thickness, respectively. It is possible to expregsoitie sound
pressure amplitude as

Prmn(2,Y) = ipokc/vmn(l‘o’yo) G(x,y,0|x0,yo,0) dzg dyo, (3
So
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where Green'’s function in its Fourier representation for the Neumaondaoy value
problem for the Helmholtz equation for half-space 0 has been formulated as

+00 +00
déd
G(xayaz|l'07y05 4 ) / /exp{ LE X0 —f—n(y yU)+CZ] 5( n (4)

where¢? = k% — €2 — n?. In the case of impedance approach, surféids extended
closely to plate’s surface, i.e. far = 0. Inserting Green’s function (4) into Eq. (3)
makes it possible to formulate the modal sound pressure amplitude as

o Z'p()k:QC(f‘)nfm
Pon(@,y) = ——— 5 —
2 7'('/27100

X / / Upin (9, ) exp ik sind(z cos ¢ + ysin )| sinddd dp,  (5)
0 0

where the following transformations have been appfied & sin ¢ cos ¢, n = ksin®
sin, ¢ = kcos¥, dédn = k?sind cos¥dddy, ¥ =¥ +i" € C,0 < ¢ < 27 and

the following denotations have been usggl:- rest density of the surro_undiﬁg medium
¢ —sound velocityk = 27 /A — acoustic wavenumber, and

Unin(9, ) = / Wi (20, y0) exp | — ik sin 9(zo cos ¢ + yo sin )| dzo dyo
So

_ 2ab exp(ia/2) — (—1)™ exp(—ia/2)
m2mn 1 — (a/mm)?
exp(iff/2) = (=1)" exp(=if3/2)
- L= (3/nm)? -0

a = kasindcosp, § = kbsindsin ¢. The intermodal radiation sound power can be

expressed in its Fourier representation for modenumber paiendng (each pair must
contains modenumbers of the same parity)

2 T/2—i00

k2 cw,nw * .
Honga = 5570 [ [ Un(0,0) Uy (0, 0)sin o dodp. (@)
0 0

The intermodal reference radiation sound power can be defin&fnoééq =

)
H( ) where IS = (poc/2) [ ViV, AS, Vimpv,, = w2, W2, (z,y) for some
s
a/2 b/2
time harmonic processes. Theref

(poc/2) [ [ w2, W2, (z,y)dydz =
—a/2 —b/2
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(ab/2) pocw?,,, and finallyﬂ,(no,‘ib?pq = (ab/2) pocwmnwpq- Using Egs. (6) and (7) makes
it possible to express the normalized intermodal radiation impedanceadd peirmn
andpgq in its Fourier representation as

o 7/2—i00

¢ _ ynpg 4k%ab / / — (=)™ cos«
gl momnpg [1- a/ﬂm) J[1— (B/7n)?]

" 1 - (— )" cos 3
[1 = (a/7p)?][1 = (B/mq)?]
where the pairsnp andng must contain modenumbers of the same parity as in Eq. (7).

For all the other modenumber combinatiaf)s, ,, = 0. Equation (8) represents a
complex magnitude which integrated alodgvariable within its limits of (0, 7/2)

gives the normalized intermodal radiation resistance and integrated withilintis
of (w/2,7/2 — ico) gives the normalized intermodal radiation reactance.

sin 9 dd do, (8)

3. Low frequency approximation

It is necessary to compute the approximate value of integral from Eqpf@ying
the method analogous as presented in [2] and [6]. For this purpos#eioeninators of
the corresponding integrands have been expressed as their expsasées expanded
around pointsy, = a/mnm =0, a, = a/pr =0, 5, = B/nr =0, 8, = B/qn =0
giving

-1
[(1—an) (1 —ap)(1 = 52)(1 - 57)]
~eg—e1+ea+0(b, +al+ 85+ 80,  (9)
where functionD(-) denotes the approximation error order and
g0 = 1, €1 = a3n+a§+ﬁi+ﬁ§, (10)
€2 = 0,02+ a5, B8 + alf + ol Br + a2B + Bafi + ap, + o + By + By

Further, the expansion series from Eq. (9) has been inserted intoah(8yrand inte-
grated term by term giving the low frequency approximation for the radiagsistance
covering the three initial expansion terms

N—-1
Re(, _ ARab. > (=D)L + 0(e*) (11)
mn,pq — 7T6mnpq — r )

wheree?V = (k/m)2N[a?N (m=2N 4+ p72N) + 82N (n 72N 4 ¢72V)], N € {1, 2, 3}.
Assuming in Eqg. (11) thalv = 1 results in formulas presented earlier by Davies for
m = p, n = q of the lowest numerical accuracy [2]. Assumifg= 2 or N = 3 results

in increasing the numerical accuracy. Moreover, formulas identkarasented in [6]
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have been obtained fan = p, n = ¢. The elementary values of the integrals have been
computed in the same way as presented in [6] which gives

on w2
iIo = i/ / go[l — (—1)™ cosal[l — (—=1)" cos ] sin ¥ dd dep
27 27
0 0
=1—(—=1)"sincka — (—1)"sinckb + (—1)™*"sincy; (12a)
27 /2
T T .
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0 0
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6 a? 1 1 1 1 . 12
— 4 (1 - (b2 ) cskb] 72 <— + E) (ﬁ + q—2> {4smdcb+ (1 — (kb)2> cskb]
at 1 1 1 . 3cskb
=955 (s + g 1) (50~ —<kb>2)}
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Do 2)2]}). o

wherey? = k%(a?4b?), sincu = sin u/u, csu = sincu—cos u, 2 = (b*—a?)/(b*+a?).
Equations (11), (12) are the generalization of all the earlier preseatetifas. They
are valid for computations of the modal radiation resistance as well asfoputations
of the intermodal radiation resistance, and they assure the highesticalnaecuracy
known so far. Moreover, assuming = p andn = ¢ results in the modal radiation
resistance formula known from [6] just from the intermodal radiaticistance from
Eq. (11).

1
p4
1

sincy — 5

4. Numerical analysis

All the numerical results have been prepared for a sample steel getaaplate of
sizesa = 0.5 [m], b = 1.0 [m] andh = 1 [mm]. Certainly, the formulas presented can
be used for any simply supported rectangular plates given that théyimees compared
with their remaining sizes.

The normalized intermodal radiation resistance has been presented itaFior
some sample mode pairs. A good agreement of the low frequencgxamp@tion and
the integral formulation is shown for < k/kpn pg < 0.2 wherek?,, . = k2, + k2.

The theoretical approximation error value Err has been computedBEmprfil) and itis
equal toe?" whereas the estimated approximation error value has been computed fro

Err = ’UInt - UApprox| , (13)
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Fig. 1. a) Radiation efficiency,.» »q. Key: (1) integral for modes (1,2) and (1,4); (2) integral feodes

(3,4) and (1,2); (3) integral for modes (3,3) and (7,7); (@m@ximation for modes (1,2) and (1,4); (5) ap-

proximation for modes (3,4) and (1,2); (6) approximation ficodes (3,3) and (7,7). b) Approximation

error Err. Key: (1) theory for modes (1,2) and (1,4); (2) thefor modes (3,4) and (1,2); (3) theory for

modes (3,3) and (7,7); (4) estimation for modes (1,2) ant)(15) estimation for modes (3,4) and (1,2);
(6) estimation modes (3,3) and (7,7).

where valuesr,; ando approx have been computed from Egs. (8) and (11), respectively.
Figure 1b shows that the estimated error value does not consideraalgdihe theo-
retical error value within the whole low frequency range. Moreovergtiner assumes
values smaller tham0~2 for the relative frequencie8/k,, ,q < 0.2 which confirms

that the formulas presented herein gives a good approximation fortdreniodal radi-
ation resistance.

5. Concluding remarks

The low frequency formulas for the intermodal radiation resistance baen pre-
sented in the form useful for some numerical computations. The faswgives consid-
erably higher numerical accuracy than those presented earlienby¥gBin [2]. More-
over, they are the generalization of those formulas and the enhanmocadds presented
in [6] since they can be used for the modal radiation resistance as well tie inter-
modal radiation resistance.
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