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This article presents a study on music genre classification based on music separation into harmonic
and drum components. For this purpose, audio signal separation is executed to extend the overall vector
of parameters by new descriptors extracted from harmonic and/or drum music content. The study is
performed using the ISMIS database of music files represented by vectors of parameters containing music
features. The Support Vector Machine (SVM) classifier and co-training method adapted for the standard
SVM are involved in genre classification. Also, some additional experiments are performed using reduced
feature vectors, which improved the overall result. Finally, results and conclusions drawn from the study
are presented, and suggestions for further work are outlined.
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1. Introduction

The expanding consumer market for social net-
work services and the large number of music databases
demand the implementation of new functionalities
for searching and analyzing musical information
and examining their effectiveness and quality. Auto-
matic genre classification has been exploited quite
thoroughly in recent years, not only by the re-
search community but also by music services and
applications (ISMIR, 2014; KOSTEK, HOFFMANN,
2014; KoSsTEK, 2013; KOSTEK, KACZMAREK, 2013;
MARXER, JANER, 2013; RAS, WIECZORKOWSKA,
2010; WIECZORKOWSKA et al., 2011). However, the
subject of a more deep content exploring, i.e., taking
into consideration sound source separation in the con-
text of music recognition is to some extent less visible
in the literature, even though separation of individ-
ual auditory sources, apart from instrument recogni-

tion and automatic transcription systems, may be very
useful in genre classification.

In recent years, extensive research has been con-
ducted on this subject, and resulted in interesting ideas
and solutions. Among the most promising one finds si-
nusoidal modeling (SM) (SERRA, SMITH, 1990) which
was extensively exploited over the last two decades.
Also, there are many examples of algorithms that
were implemented within many research studies by
e.g. BREGMAN (1990), CasEy and WESTNER (2000),
DE CHEVEIGNE (1993), DZIUBINSKI et al. (2005), GER-
BER et al. (2012), GILLET and RICHARD (2008), HER-
RERA et al. (2000), KLAPURI (2001), KOSTEK and
DziuBINsKI (2010), TOLONEN (1999), EWERET et al.
(2014).

The main objective of this article is to improve the
classification results of musical genres such as Metal
and Rock with high occurrence of percussion-type in-
struments. We separate the input signal into drum
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and harmonic components, in addition to the non-
separated signals in order to expand the set of features
for each song. For that purpose some soft computing
techniques may be used, as classification is considered
to be supervised learning based on labeled training ex-
amples (KOSTEK, 2004; 2005). It should be remem-
bered that data may be wrongly labeled, some data
instances may be missing, etc., thus this creates many
problems.

Most popular methods for music genre classifica-
tion are: Support Vector Machines (SVMs), Artifi-
cial Neural Networks (ANNs), Decision Trees, Rough
Sets and Minimum-distance methods, to which a very
popular k-Nearest Neighbor (k-NN) method belongs
(KOSTEK, 1999; 2005). Generally, SVMs are very
widely used in Music Information Retrieval. They are
considered efficient, robust and they perform relatively
well in supervised classification. SVMs also ‘protect’
against overfitting because of structural risk minimiza-
tion at the core of the algorithm (WACK et al., 2009).

In our previous study (ROSNER et al., 2013a;
2013b) we also utilized k-NN based classification, and
the results obtained showed that the SVM algorithm is
a better choice for music genre classification when the
original signal is used together with the signal sepa-
rated into percussion and harmonic component tracks.
Thus, this is the motivation for using the algorithm
employed in our previous study.

In the remainder of this article we present the ex-
perimental setup which includes details on audio data
and feature vectors, as well as algorithms that are em-
ployed in classification (Sec. 2). Then, the description
of experiments follows. The results can be found in
Sec. 3, while conclusions are presented in Sec. 4.

2. Methods
2.1. Drum separation algorithm

The effective and reliable separation of music
sounds is the key to searching musical phrases in multi-
pitch material (GUNAWAN, SEN, 2012; NIKUNEN et al.,
2012). It also forms the basis of some automatic tran-
scription systems. Separation algorithms usually oper-
ate on a spectral analysis basis in order to determine
the fundamental tones of individual voices and their
harmonics. However, there are a number of technical
difficulties to overcome which result from the compro-
mise between time and frequency resolution of the an-
alyzed signal.

Mel-frequency cepstral coefficients (MFCC) are of-
ten chosen as a metric for spectral envelope percep-
tion because of their linearity, orthogonality, and mul-
tidimensionality (TERASAWA et al., 2012). They were
also applied in a study by RumP et al. (2007), which
aimed at the improvement of accuracy of MFCC-
based genre classification by applying the Harmonic-

Percussion Signal Separation (HPSS) algorithm to the
music signal, and then calculating the MFCCs on the
separated signals. The authors’ conclusion was that,
by analyzing the MAR (Multivariate Autoregressive)
features calculated on the separated signals, it was pos-
sible to achieve a good performance when all three
signals (original, harmonic and percussion) were used.
However, that study concentrated on an improvement
of overall performance and relative error rates, while
our aim is to present more specific results for each
genre by using different algorithmic methodology. For
this purpose, the open-source accessible drum separa-
tion algorithm implemented by SCHULLER et al. (2009)
and a considerably expanded set of music audio fea-
tures compared to previous studies are utilized.

Applying drum-beat separation for tempo and key
detection shows that the separation into single sig-
nals parts (only drums or only harmonic parts) does
not necessarily improve the results in comparison with
the original signal (SCHULLER et al., 2009). Due to
that fact, we consider different mixtures of at least
two signal representation types, namely: original, drum
and/or harmonic. The results reported in the paper by
ROSNER et al. (2013b) confirm the assumptions that
such a mixture of signals is a promising approach to
music classification.

The main principle of the drum separation algo-
rithm is employing a semi-supervised approach based
on non-negative matrix factorization (NMF). Data and
components are assumed to be non-negative in this ap-
proach. The aim of unsupervised learning algorithms
such as vector quantization is to factorize a data ma-
trix according to different constraints (LEE, SEUNG,
1999). This results in clustering the data into mutu-
ally exclusive prototypes.

NMEF is an efficient method in the blind separa-
tion of drums and melodic parts of music recordings.
NMEF performs a decomposition of the magnitude spec-
trogram V (V. ~ W - H) obtained by Short-Time
Fourier Transform (STFT), with spectral observations
in columns, into two non-negative matrices W and
H (where W € RIJ™, H € RL;™ and constant
r € N). Matrix W resembles characteristic spectra
of the audio events occurring in the signal (such as
notes played by an instrument), and matrix H mea-
sures their time-varying gains. Columns of W are not
required to be orthogonal as is in principal component
method.

In our experiments, we use an approach based
on an iterative algorithm for computing two factors
based on the Kullback-Leibler divergence of V given
W and H. This means that the factorization process
is achieved by iterative algorithms minimizing cost-
functions, which interprets the matrices V and (W, H)
as probability distributions.

Then, to each NMF component (column of W and
corresponding row of H) we apply a pre-trained SVM
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classifier to distinguish between percussive and non-
percussive components. The task of this pre-trained
SVM classification which bases on features such as
harmonicity of the spectrum and periodicity of the
gains is to distinguish between percussive and non-
percussive signals bases. By selecting the columns of
W that are classified as percussive and multiplying
them with their estimated gains in H, we obtain an es-
timate of the contribution of percussive instruments to
each time-frequency bin in V. Thus, we can construct
a soft mask that is applied to V to obtain an estimated
spectrogram of the drum part, which is transferred
back to the time domain through the inverse STFT
using the OLA (overlap-add) operation between the
short-time sections in the inverting process. It should
be reminded that the redundancy within overlapping
segments and the averaging of the redundant samples
averages out the effect of the window analysis (window-
ing). More details on the drum separation procedure
can be found in the introductory paper by WENINGER
et al. (2011).

For straightforward reproducibility of our ex-
periments, we used the default parameters of the
publicly available drum beat separation application
of the source separation toolkit openBliISSART as
implemented by part of the authors (WENINGER,
SCHULLER, 2012). These parameters are as follows:
frame rate 30 ms, window size 60 ms, 100 iterations,
and separation into 20 NMF components.

2.2. Analyzed data and extracted audio features

In this article, we utilize samples of 30 seconds long
music tracks of the ISMIS! music database, which are
44.1 kHz, 16 bit, stereo music excerpts. The ISMIS
database consists of 470 music audio files. For 465 files
it was possible to separate the drum path — these tracks
were considered in our analysis. The tracks represent
four music genres: Blues (11 files), Metal (77 files), Pop
(129 files) and Rock (148 files). The chosen selection
of genres is challenging as there is high resemblance
between these music styles.

The audio feature vector consists of 191 acoustic
features per representation of the music track (cf. Ta-
ble 1). We prepared the audio feature vector for five
different ‘mixtures’ of the input signals as shown in Ta-
ble 2. The description of features is not given here, as
most of the descriptors have roots in the MPEG 7 stan-
dard or earlier research (e.g. KOSTEK, CZYZEWSKI,
2001) and are explained very thoroughly in the paper
on the ISMIS competition (KOSTEK et al., 2011).

1The ISMIS music database was prepared for a data min-
ing contest associated with the 19th International Symposium
on Methodologies for Intelligent Systems (ISMIS 2011, War-
saw), http://tunedit.org/challenge/music-retrieval, March 2013
(KOSTEK et al., 2011).

Table 1. Audio features (191 in total): overview by the total
number, identifier (ID), and description per type (KOSTEK
et al., 2011; ROSNER et al., 2013).

# 1D Audio Feature Description
1| TC Temporal Centroid
2|SC, SC_.V Spectral Centroid and its vari-
ance
34| ASE 1-34 Audio Spectrum Envelope
(ASE) in 34 subbands
1| ASEM ASE mean
34| ASEV 1-34 ASE variance in 34 subbands
1| ASE.MV Mean ASE variance
2| ASC, ASC_V Audio Spectrum Centroid
(ASC) and its variance
2| ASS, ASS.V Audio Spectrum Spread (ASS)
and its variance
24 | SFM 1-24 Spectral Flatness Measure
(SFM) in 24 subbands
1|SFM_M SFM mean
24| SFMV 1-24 SFM variance
1|SFM_MV SFM variance of all subbands
20 | MFCC 1-20 Mel Function Cepstral Coeffi-

cients (MFCC) —first 20
MFCC Variance —first 20

20 | MFCCV 1-20

3| THR_[1,2,3] No of samples higher than sin-
RMS_TOT gle/double/triple RMS value
3| THR_[1,2,3] Mean of THR_[1,2,3]RMS_TOT

RMS_10FR_MEAN| for 10 time frames

3| THR[1,2,3] Variance of THR_[1,2,3]RMS_
RMS_10FR_VAR |TOT for 10 time frames

1| PEAK_RMS_TOT | A ratio of peak to RMS (Root
Mean Square)

2| PEAK_RMS10FR_ | A mean/variance

of PEAK.

[MEAN,VAR] RMS_TOT for 10 time frames
1|ZCD Number of transition by the level
Zero
2 |ZCD_10FR._ Mean/Variance value of ZCD for
[MEAN,VAR] 10 time frames

31[1,2,3]RMS_TCD |Number of transitions by sin-
gle/double/triple level RMS

Mean value of [1,2,3]RMS_TCD

3|[1,2,3)RMS_TCD_

10FR_MEAN for 10 time frames
31[1,2,3]RMS_TCD_ | Variance value of [1,2,3]RMS_
10FR_VAR TCD for 10 time frames

Table 2. Audio feature sets with regard to identifier (ID),
their description, and the number of contained audio fea-

tures.

ID Description F#features
(0] original signal 191
HD | harmonic and drum signals 382
OD | original and drum signals 382
OH | original and harmonic signals 382
OHD | original, harmonic and drum signals 573
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2.8. Classification and co-training

In this study we use the co-training method which
is incorporated into the SVM-based classification.
Since SVMs are widely used in many classification
problems, including those related to the acoustics do-
main, only the co-training methodology will be ex-
plained here. Co-training is a semi-supervised machine
learning technique (BLuUM, 1998), which first learns
on small training set, and then during classification
of unlabelled data, the elements of the most confident
predictions are used to iteratively extend the original
training set. This is done by adding threshold crite-
ria in the process of classifying data from the test set.
If the prediction of classification of unlabelled data is
sufficiently high (i.e., higher than the threshold crite-
ria), then those data are marked as classified and they
are added to the training set. Those steps are repeated
iteratively until all elements from the test set are clas-
sified. The main advantage of this approach is that in
each iteration the training set is extended by new in-
formation based on classification of new elements from
the test set, so that the learning process can be im-
proved. Unfortunately, not all elements are classified
correctly and each incorrect classification introduces
misleading information to the training set, which is the
main disadvantage of the co-training method. Despite
this, co-training is a common approach in many prob-
lems which are solved when applying machine learn-
ing, such as speech recognition, information extraction,
classification and filtering, and usually gives much bet-
ter results than standard methods. This is the moti-
vation for choosing this method for our experiments,
since it enhances the performance of classification.

3. Experiments and results

The experiments were conducted using the com-
monly used free WEKA machine learning library?,
which supports the evaluation model, implementation
of classification algorithms and cross-validation meth-
ods.

SVM and co-training adapted for the standard
SVM were employed as classification and learning al-
gorithms. The SVM algorithm was selected for test-
ing with the normalization and standardization, both
using the polynomial kernel. For each test setting,
a cross-validation method was used and average re-
sults were calculated. Cross-validation splits the origi-
nal dataset (465 tracks) into n subsets in equal propor-
tions, and for each run (n—1) subsets form the train-
ing set, the remaining data instances form the test set.
Here, the original dataset was split into three 155 data
instance subsets: two for training and one test subset.

2WEKA 3: Data Mining Software in Java,
http: //www.cs.waikato.ac.nz/ml/weka/

As described above, the co-training technique was
applied with “standard” SVM. The algorithm selects
the unknown and unlabeled test set instances which
meet a threshold criteria of minimum confidence in
the class membership after evaluation with a classifica-
tion model trained on the training data. At the begin-
ning, this threshold was set at 0.5 minimum confidence
level, and the instances for which the membership to
the given class was greater or equal were added to the
training set and removed from the test set, so that in
each iteration the training set was extended by new
elements for which the probability of correctness was
sufficiently high. If any elements from the test set met
the threshold criteria, then the threshold was reduced
by 0.1. Those steps were repeated until all elements
from test sets were classified. For the sake of evalua-
tion of the gain reached by such co-training, in each
iteration the accuracy was monitored.

Figures 1 and 2 present results of the correctly clas-
sified tracks, for SVMs and co-training adapted for
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SVM (Co-SVM) methods, using normalization or stan-
dardization for different mixtures of signal, using poly-
nomial kernel.

Figures 1 and 2 show that the best results were
achieved for the OH signal, both for normalization
(~1% of improvement in comparison to the original
signal in the standard SVM case and ~0.9% in case
of Co-SVM) and for standardization (~2.1% of im-
provement in the standard SVM case and ~3% in case
of Co-SVM). The general correctness was the best for
normalization settings, both for the SVM and the Co-
SVM case.

To compare results of the experiments, the True
Positives (TP) and precision measures were taken into
account, where TP stands for the number of correctly
classified positives of class to the total number of ele-
ments in that class and precision stands for the total
number of objects classified as a specific class (includ-
ing false positives) to the total number of elements in
that class.

Figure 3 presents TP and precision values for the
OH signal with normalization settings, both for the
SVM and the Co-SVM methods.
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Fig. 3. True Positives (TP) and Precision (Prec) for the OH
signal with normalization settings (norm=1) for SVM and
Co-SVM, where: 1 — Blues, 2 — Metal, 3 — Pop, 4 — Rock.

Figure 3 shows that for three of the four genres the
co-training version of SVM improves the results of clas-
sification, both while examining true positive (TP) and
precision performance indicators. As seen from Fig. 3
the precision of Metal genre is worse for Co-SVM, what
means that in the process of extending the training set,
test instances are wrongly classified as Metal genre,
which apparently disturbed the process of rebuilding
the training set.

Figures 4 and 5 show the results of precision (Fig. 4)
and TP (Fig. 5) for different genres using different au-
dio features, in each case when utilizing normalization.
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Fig. 4. Precision for different genres, where: 1 — HD,
2 - 0D, 3-0OH, 4 - OHD, 5 — original signal.
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Fig. 5. TP for different genres, denotations as previously
explained.

Generally the best results vere achieved for the OH
signal, however, for the rock genre, the improvement
in classification in comparison to the original signal
is rather small (~0.1%) and for Metal genre the best
result is still achieved for the original signal.

Contrarily, the TP value for Blues and Pop for the
OH signal is ~0.9 in comparison to the original signal,
thus eliminating the drum information from the signal
apparently improves the classification of music styles
where drums do not occur too often in our case. It is
also worth to mention that the TP value for Metal is
approximatelly 6.5% better for the OD signal in com-
parison to the original signal, what confirms the im-
portance of drum information in cases of classes where
drums occur more often.

Tables 3 and 4 present the results of classification
for various genres involving different mixtures of au-
dio signals in case of co-training, employing SVM with
polynomial kernel and normalization (Table 3) or stan-
dardization (Table 4).
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Table 3. Results of classification for various genres involving different mixtures of audio signals in case of co-training of
SVM, employing polynomial (abrev. poly) kernel and and standardization (abrev. stand=1). Numbers in cells marked
with a boldface present the highest TP and precision score for specific test settings.

Blues Metal Pop Rock
TP Prec TP Prec TP Prec TP Prec Correctly classified Audio signals Settings
w | | | | | | | [ "
94.59 | 91.55 | 70.05 | 70.96 | 83.72 | 83.60 | 73.62 | 75.82 80.86 HD poly stand =1
93.69 | 89.83 | 70.05 | 74.14 | 83.72 | 82.70 | 74.97 | 76.97 81.08 OD poly stand =1
98.20 | 92.45 | 66.10 | 83.13 | 86.05 | 85.60 | 80.37| 76.83 83.87 OH poly stand =1
95.50 | 91.70 | 70.10| 73.12 | 86.82| 85.48 | 74.94 | 77.43 82.37 OHD poly stand =1
95.50 | 95.75 | 67.44 | 68.56 | 82.95 | 82.57 | 74.97 | 75.05 80.86 Original signal | poly stand =1
98.20| 95.75 | 70.10| 83.13 | 86.82 | 85.60 | 80.37 | 77.43 83.87 BEST
Table 4. Results of classification for various genres involving different mixtures of audio signals in case of co-training of
SVM, employing polynomial (abrev. poly) kernel and normalization (abrev. norm=1). Denotations are the same as in
Table 3.
Blues Metal Pop Rock
TP Prec TP Prec TP Prec TP Prec Correctly classified Audio signals Settings
A I I I I I I v
93.69 | 89.17 | 68.87 | 80.21 | 82.95 | 87.99 | 83.10 | 77.22 83.23 HD poly norm=1
93.69 | 89.11 |74.00| 76.01 | 81.40 | 85.46 | 77.71 | 77.59 81.94 OD poly norm=1
97.30| 93.16 | 66.21 | 79.86 |86.05| 86.85 | 83.09 | 78.35 84.52 OH poly norm=1
95.50 | 91.55 | 66.15 | 76.67 | 85.27 | 86.94 | 79.70 | 76.52 82.80 OHD poly norm=1
96.40 | 93.07 | 67.44 | 81.11 | 85.27 | 84.83 | 82.44 | 78.28 84.09 Original signal | poly norm=1
97.30| 93.16 | 74.00| 81.11 | 86.05 | 87.99 | 83.10 | 78.35 84.52 BEST

Table 5. Correctness of classification per each iteration.

Number of instances Number Number of correctly Number of correctly
# iteration | Threshold —in the current of classified instances classified instances classified instances
iteration — in total — in the current iteration — in total

1 0.5 75 75 65 65
2 0.5 39 114 33 98
3 0.5 19 133 16 114
4 0.5 10 143 9 123
5 0.5 5 148 5 128
6 0.5 3 151 2 130
7 0.5 2 153 2 132
8 0.4 1 154 0 132
9 0.4 1 155 0 132

The results presented in Tables 3 and 4 show that

co-training technique improves the results of genre
classification, even if in consecutive iterations the
training set is corrupted by new, incorrectly classified
elements.

As shown in Table 4, in the first iterations approx-
imately 50% instances of the test set are classified and
~86.67% of them are classified correctly. In the next it-
erations the number of classified elements is still about
50% of the remaining test set, and the overall accuracy
is also above 84%.

As seen from that analysis, if the feature vector
is properly chosen, this a may lead to the improve-

ment of the automatic genre classification accuracy.
For that purpose a preliminary experiment was pre-
pared using one of Weka methods for selecting best
attributes which helped achieving best accuracy, i.e.
CfsSubsetEval with BestFirst method in the backward
direction of search. From 382 parameters that were ob-
tained for the OD signal, we select top 52 attributes.
They are presented in Table 6.

Parameters selected for this experiment had at
least 80% of effectiveness in 10-fold Cross-Validation
test for CfsSubsetEval with BestFirst conducted on the
OD mix of signals. As seen from Table 6 many param-
eters occur for both original signals as well as for drum
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Table 6. Parameters used for the reduced feature vector of parameters for the OD signal.

No. | Effectiveness for 10-fold Cross-Validation [%] | # of attribute in the original feature vector | Attribute name

1 80 17 ASE14

2 100 24 ASE21

3 80 25 ASE22

4 100 26 ASE23

5 100 28 ASE25

6 80 32 ASE29

7 90 34 ASE31

8 100 35 ASE32

9 100 36 ASE33
10 100 37 ASE34
11 100 39 ASEv1
12 100 65 ASEv27
13 100 67 ASEv29
14 90 72 ASEv34
15 80 7 ASS_v
16 80 92 SFM15
17 100 99 SEFM22
18 100 101 SFM24
19 90 102 SFM_m
20 90 109 SEMvT7
21 100 110 SFMv8
22 100 111 SFMv9
23 100 115 SFMv13
24 100 117 SFMv15
25 80 118 SFMv16
26 100 124 SFMv22
27 100 125 SFMv23
28 100 126 SFMv24
29 100 127 SEFM_mv
30 90 132 mfcch
31 100 137 mfccl0
32 100 139 mfccl2
33 80 143 mfccl6
34 100 150 mfccv3
35 90 174 thr_2rms_10fr_var
36 100 185 ZCD_10fr_var
37 100 194 d_SC_v
38 100 225
39 100 226 d_ASE32
40 100 227 d_ASE33
41 80 228
42 100 229 d_ASE_m
43 90 255 d_ASEv26
44 100 258 d_ASEv29
45 80 276 d_SFMS8
46 100 283
47 80 289 d_SFM21
48 100 290 d_SFM22
49 90 292
50 100 293
51 90 316
52 100 376 d_ZCD_10fr_var
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signals (parameters which starts with “d_” letter). In
green there are features that have the same effective-
ness in the 10-fold Cross-Validation test for both types
of signals (original and drum) and in blue — the ones
which have different effectiveness. There is also one
parameter (ASS_v) marked in red color which didn’t
occur for the same test conducted in case of original
signal.

The total correctness of classification increased
from 80.4% to 81.72% while using reduced vector of
52 parameters resulted from the Weka SVM classifica-
tion using normalization and 10-fold Cross-Validation
method. Also the TP for Rock genre increased from
77% to 82% and a significant increase of precision was
observed for Metal genre (from 68% to 78%). As ex-
pected, the improvement for the class with high occur-
rence of drum instrument was gained. That confirms
that the reduction parameters of the feature vector is
a proper direction for further experiments.

4. Conclusion and further work

The experiments demonstrated that separating the
input signal may have a positive impact on genre clas-
sification. The results confirm also that the co-training
technique improves the results in case of the original
signal by ~1.5% in comparison to the standard SVM
and by 1% for the OH (original and harmonic) signal,
which actually produced the best general correctness
of the classification. On the whole, it may be said that
ranking SVM in a co-training algorithm produces bet-
ter ranking results than the standard ranking SVM al-
gorithm.

The study conducted revealed some promising ar-
eas of further research. We plan to investigate the pre-
sented approach using larger dataset with more gen-
res that would provide a more representative instru-
ment content context. Also, for further improvement
of classification performance, the feature vector should
be optimized, i.e. the number of parameters should be
reduced. This was already confirmed in our prelimi-
nary experiments in which the feature vector was re-
duced. The True Positives predictions indicator (TP)
increased for Rock genre from 77% to 82%, and for
Metal genre the TP gain was even more promising as
it rose from 68% to 78%.

It should, however, be remembered that cer-
tain phenomena occurring in music, as e.g. mu-
sical articulation like tremolo, glissando, transients
with non-harmonic spectra make problematic towards
seamless music source separation. This is stated in
many related studies in the literature (KLECZKOWSKI,
2012; BEAUCHAMP, 2011; LOHRI et al., 2012; MIKA,
KLECZKOWSKI, 2011; SOFIANOS et al., 2012; TERA-
SAWA et al., 2012). Another type of problem concerns
the overlapping harmonics of individual sounds. This
phenomenon impedes obtaining the original timbre of

the separated sound sources. An obvious solution to
this problem is having all sound sources recorded sep-
arately and then mixed. This, however, requires a lot
of additional effort and resources, and in most cases is
unattainable.

In future experiments the reduced vector could be
expanded with new parameters, which would represent
the features of a specific instrument. Following this,
the full drum feature set might be reduced to a sin-
gle feature vector containing only few most important
parameters.
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