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This paper presents exploratory problems of regularisaifcthe inverse method for the
investigation of the characteristics of acoustic sourd¢endustrial conditions. The solution
of problem is to find an effective method for the determinatd optimal regularisation pa-
rameters in acoustic inverse problems. The sound powereadghnd source distribution can
be simply deduced from the measured pressure field and tkesiom of the corresponding
matrix of frequency response functions. The accuracy afirstruction of the sound power of
the source is crucially dependent on the conditioning oftlagrix to be inverted. The success
of regularisation depends on the appropriate choice ofapelarisation parameter.
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1. Introduction

Application of numerical methods for the estimation of the sound level digtoib
around industrial objects is based on the determination of the acoustic pbwach
noise source by means of acoustic pressure measurements —ggdorthe relevant
procedures — and estimating its emission level in the measuring point oatidory.
Software based on the noise propagation models in an open spacdlis ajspiéed. An-
other approach for solving such problems, utilising inversion methodésaspossible.
One of the problems formulated in inversion methods is the reconstrudtidififer-
ential operator of a known structure, in which unknown coefficientslatermined on
the basis of information on certain functionals estimated within the solutiorerddg
modelling the process of radiation of vibroacoustic energy from thecsotar the re-
ceiver and knowing the acoustic pressure distribution in measuring @gntell as the
distribution of noise sources in the factory we can reverse the propagsitb model
and estimate acoustic parameters of the sound source [2]. Thus, dvitrse problem
is described by a matrix notation its solution should be looked for by meangesing
the matrix describing the behaviour of the object. Inversion methodseaptlied for
the identification of vibroacoustic energy sources, for the estimationurfdscadiation
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inversion by vibrating surfaces as well as for the acoustic estimation cfiimes on the
basis of the analysis of the sound field parameters.

2. Inversion methods in vibroacoustics

A sound pressure value in the observation ppintesults from the applied calcula-
tion model [1, 2J:
pi=G(i,j) - N;, (1)
where N; — sound power of the source pG(i, j) — value of the transfer function
between the sound power of th¢h source and the sound pressure value injtiie
point.
Equation (1) will be written in the matrix notation:

p=G-N. )

If we take into consideration, that the emission pressure of the soudcéharback-
ground noise are measured in the measuring point, Eq. (2) becomes:

ﬁ:G'N+e7 (2,)

wheree = p — p — error vector, difference between the pressure estimated from the
noise propagation model and its value measured in the observation point.

There are two sources of the error vectorthe first — all disturbances occurring
in the measuring point and influencing the measured value of the soasdupe, the
second — errors resulting from noise distribution modelling on the site ueskang. The
solution is based on the assumption that we know the positiofig abise sources in
the factory and that we measure the sound pressure in the finite nufridzsesvation
pointsO. In order to limit the error vector we optimise parameters of individuatces
in the model. The following methods are applied: the shortest distance astestpuare,
or the singular value decomposition (SVD). Often applied criterion is the nsation
of the expression:

K = efle. ©)

One of the analytical tools is the matrix distribution versus the singular value de
composition (SVD). Usefulness of such decomposition is due to the fatthht the
matrix of transfer functiorG can be expressed in the following form:

G =UxV#?, (4)
whereU, V — orthogonal matrices of the following propertiés? U = UU = | and
vy = vwWH = |, ¥ - diagonal matrixn x n, in which successive singular values

satisfy the conditiorr; > o2 > ... > oninem) = 0, superscriptd denotes the
complex conjugate transposed.
The vector of estimated complex parameters value of the model scamdeecesti-
mated from the dependency:
N =G'p, )

where matrixG* = [GG]~'G! is “pseudo-inversion” of matriG.
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We can estimate matri@ " using theSVD distribution:
Gt =vxtull, (6)

whereX* — matrix of pseudo-inversion of matriX, diagonal matrix with elements

(1/01, 1/0’2, 1/UM)
Thus, the noise source powar.

N =V xtully 7)

The value of the expression for the square matrix is the accuracy meeafsthe per-
formed simulations:

R(G) = [GlIIG7Y 8
since||G|| = omax and||G || = 1/, then
K(Q) = T ®)
Omin

By means of this value we can estimate an efrocommitted at the determination
of the model parameters:

) < a2 (©)
n p
For the matrix, which is not a square one, the condition numbér) is expressed by:
K(G) = [GIIIGT], (10)
where||G™*|| = 1/om, o — the smallest non-ze@ value, thus:
K(G) = Tmax (11)

Om

Such inversion task is not correctly formulated — in a classical sensee simall
changes of investigated functionals can correspond to large chahg@sitions. If we
superimpose additional restrictions on the allowed set of solutions weltaim olu-
tions stable in respect of data changes, it means tasks conditionalgectcorhus, ap-
plying various regularisation methods we can consider the approximatess based
on the approximate data.

3. Selected regularisation methods

Let us consider the possibility of application of the selected regularisatitimotie
for limiting the error vectoe. Ill-conditioned equation sets, which require regularisation
before their solution, occur often during the numerical calculationsuRRggation must
eliminate unreliable solutions dominated by noises and errors during tteureezents
of sound field parameters. The method of the optimal value selection ofgléarisa-
tion parameter, allowing to obtain maximum information from available datayesod
the most useful in such cases.
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We may look for the minimum value of the expression:
J =e'le + FNIN, (12)

wheref — regularisation parameter.

The Tichonov's method is one of the most often used regularisationitpehnrhe
solution is of an adequately residual norm and after meeting additiotattiess it will
be not further than the expected unknown solution. The combinationesfidual norm
square and the additional restriction defined as the weighted value caméasare of
difference between the measured data and identified values.

The following expression is the error criterion [3]:

J =GN —p|* + B|ILN |2, (13)

wheref — regularisation parametér,— identity matrix.

Tichonov’s regularisation method does not provide an accurate sal®egularisa-
tion parametep is the only introduced value at the defining the regularisation mhatrix
In this case matrixt reflects a range of weights of unknown boundary values. When
£ = 0 we will obtain the solution consistent with the least square method but unstable
when without the regularisation. On the other hand the large valdéasfours solutions
of small dimensions. Thus, parametecontrols the degree at which the regularised so-
lution will be more fitted to the obtained results or to the solution range.

When we select the continuous parameteat the Tichonov’'s regularisation, this
regularisation becomes not objective. The proper selection of thé&aregaiion param-
eter allows obtaining the highest possible accuracy of the solution, whigbveo, is
unknown to us. Parameter determination methods should not requirestdoiniorma-
tion on error distribution at the sound pressure measurements. #feesis of the Ti-
chonov’s regularisation method depends on the proper selectionarhpter3, which
causes deviation between disturbance errors and the regularisatsarOdovéously, we
are dealing here with two contradicting requirements. Large value of hubatéon pa-
rameter( is preferred in the case of a numerical problem, however, for arased
estimation accuracy the applied parameéteshould be as small as possible.

Another method of the regularisation parameter determination is the gahpteth-
od, called Curvel, method. It is based on plotting — in a logarithmic scale — the reg-
ularised parameter values versus the minimum error. NdulN || of the regularised
solution is plotted versus the residual nofi&p — || for all possible regularisation
parameters. The curve — of the shape similar to the Iéttgor logarithmic plots) — is
plotted for the regularised parameterange (Fig. 1).

Thus, the optimal regularisation parameter value marked, corresponds to coor-
dinates of the curve L corner. The horizontal part of the curve clteriges too smooth
solutions (over-regularised), while the perpendicular part showsieatudominated by
errors (under-regularised). The solutions found in-between thessmees represent the
required compromise. Optimal value of the regularising parametersatthe corner
of L curve. By selecting the propétvalue we can control the filtration degree of the
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Fig. 1. CurveL [3].
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solution. Searching for the optimal deviation between the disturbancasasrn regu-
larisation error is the base of the Generalised Cross Validation Meth6dV}. The
value of Gocv is needed here for a minimisation of the generalised cross validation

function determined as [3]:
! IT-B(B)p|?
m p

(L) miBen|

wherem — number of measuring pointd;,, — matrix trace (sum of orthogonal ele-
ments);B(/3) — influence of the matrix defined by:

GCV(B) =

(14)

B(3) = G (GG + 1) ' G (15)

Error of disturbances caused by the regularisation of the error criténioith addi-
tion of 3 is being estimated by the expression occurring in a denominator (14ar&qu
sum of the residue of the regularised solution is presented in a hume3atoe. a nu-
merator is less than unity it increases th€V(/3) value, if parametep is increased.
Thus, the GCV function estimates both errors in solution and the inaccerpcgssed
by matrix G will be inverted by being included into the selected regularisation parame-
ter. Figure 2 presents an example of @@V function and the regularisation parameter
Bacv leading toGCV. The method provides right results when disturbances are sim-
ilar to a white noise, it means when they are independent and of an ideraitahce.
The GCV method allows determination of optimal estimates on the basis of measure-
ment results only, however it requires huge number of calculatiorishwakes it quite
impractical.
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Fig. 2. Function GCV course [3].

4. Results of an experiment

59 measurements of the sound pressure on the hemisphere swtigddewas sur-
rounding the machine placed on a sound reflecting surface — werermed in the
experiment. The actual machine was modelled by 4 monopole noiseescanmmanged
in space. A sound power of the machine was determined with taking intidesagon

mutual configuration of substitute sources and observation points aasekk Green’s

function for substitute sources. Elements of ma@ifor omni-directional sources are
given by the following dependency [2]:

G, = Exp(—ikrmo)

)
T'mo

(16)
wherer,,, — distance between the-th source and the-th observation point; — wave
number.

The plot showing the accuracy of determining the parameters of thelrfusieg
formula (8)) as well as the characteristics of machine radiation is shown in Fig. 3.
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Fig. 3. Accuracy coefficient of a sound power determinatiod the radiation characteristics [2].

Figure 4 presents the results of fitting sound power of 4 noise sourcésefoeg-
ularisation parametes while using criterion (13) for the selected frequency for two

different machines. The results are confirmed our previous stu2jekd accuracy of
estimation the parameters of substitute sources.
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Fig. 4. Example of the sound power estimation while usingii@gsation formula (13) for two different
machines.

5. Conclusions

Inversion methods can be applied in investigations of vibroacoustic gges@lue to
the advancements in the calculation possibilities and process modelling assvaele
to the development of effective methods of obtaining and processigg &anounts of
data. Inversion tasks are usually not correctly formulated — in a clssicse. As a con-
sequence small changes in investigated functionals can correspomge@leanges in
solutions. In cases of an ill-conditioned problem the regularisation metredspplied
for its solution. Inverse determination of sound power levels of indivichechines — on
the basis of sound pressure measurements in the observation pointsry $ensitive
to disturbances in receiving points.
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