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The paper involves techniques for configure linear, plamathcee-dimensional space-
tapered arrays of radar or sonar system, using novel deb@ged on the Perfect Combi-
natorial Sequencing Theory, namely the concept of Gold Bingdles (GRB)s for finding
the optimal placement of array antenna elements in the mysii¢h respect to minimizing
side lobes, while maintaining or improving on resolvingliéypand the other significant oper-
ating characteristics of the system. Itis shown that thénogeprovides many opportunities of
the concept for configure of non-uniform array with non-nediant aperture of array systems,
including acoustics and hydroacoustics.
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1. Introduction

Modern combinatorial design techniques and modeling are well usinfinfing
optimal solution of wide classes of technological problems, for exantipéeproblem
of structural optimization of sonar systems relates to finding the bestpéatdef struc-
tural elements in spatially or temporally distributed systems with respect t@imgr
the quality indices of the system, including active sonar, and it is closelysmed with
application of fundamental research in an applied finite-field theoryHajvever, the
design based on the traditional mathematical apparatus of the theoryabvagt ap-
plicable for solution problems connected with constructing planar or tiireensional
non-uniform antenna arrays for sonar systems. In this connecti@waapproach to
modeling the systems and processes is needed. In general casepitssdse to take
in consideration a conceptual model of the system as a sequence eficalnordered-
chain of sub-sequences to be of any length as well as number of tethes sequence
can be of any number too. Unfortunately, these numerical modelsoarery interest
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because their data redundancy as well as structural complexity. ®hkepr, is known,
to be of very important for configure non-redundant planar ancetbimensional an-
tenna arrays. Such antenna arrays would cover nearly all of theedgange of spatial
frequencies. However, the classical theory of combinatorial cordiguns based on
finite-field theory can hardly be expected effective for solving 2-D asid problems
using methods, based on the theory. Hence, both an advanced thdaegalar method
for finding optimal solution of this problem are needed. Research interiyidg math-
ematical area involves investigation of novel techniques based on catobal models,
such as multi-dimensional Gold Ring Bundles [2].

2. Gold Ring Bundles

Let us regard the chain sequeng = {ki, ko, ..., ki, ..., kn} @s being cyclic, so
that element,, is followed byk;, we call this a ring sequence.
Table of sums of consecutive terms in ordered-ring sequénce {ki, ko, ..., k;,

., kn} is demonstrated below (Table 1). A sum of consecutive terms in the ring se

quence can have any of theterms as its starting point;, and finishing poing;, and
can be of any length (number of terms) frdnto n—1.

Table 1. Sums of consecutive terms in ordered-ring sequence.
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So, each numerical paip;, ¢;) corresponds to suri; = S(pj, ¢;), and can be
calculated in case, when < ¢;, by equation:

Sj = S(pj, ¢j) = Zk @)

i=p;

In casep; > ¢; aring sum can be calculated by

S —Sp],qj Zk +ka (2)

’LpJ
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Easy to see from the Table 1, that the maximum number of distinct $iymof
consecutive terms of the ring sequence is

Sp=n(n—1)+1. (3)

An n-stage ring sequende€,, = {k1, ko, ..., ki, ..., k, } of natural numbers for which
the set of allS,, circular sums consists of the numbers frono S,, = n(n—1)+1, that
is each number occurring exactly once is called an “Gold Ring BundleRB)Gvith
R=1.

Here is an example of a numerical ring sequence with4 andS,, =n(n—1)+1
= 13, namely{1, 3, 2, 7}, wherek; = 1, ke =3, ks =2, ky = 7.

Table of circular sums for the sequence is given below (Table 2).

Table 2. Table of circular sums for numerical ring sequence {1, 3}2, 7

qj
Pi 1 2 3 4
1 1 4 6 13
2 13 3 5 12
3 10 13 2 9
4 8 11 13 7

Table 2 is calculated in similar way than above, using Egs. (1) and (2eddhés
Table 2 contains the set of dl}, = n(n — 1) +1 = 13 sums to be consecutive elements
of the 4-stage ring sequence {1, 3, 2, 7}, and each sum fromnl-tal occurs exactly
once. So, the ring sequence is an one-dimensional Gold Ring Bundi&RIE) with
n =4.

Here is a graphical representation of one-dimensional Gold Ring Bhx)eGRB)
containing four(n = 4) elements {1, 3, 2, 7}.

Fig. 1. A graph of one-dimensional Gold Ring Bundle (1D-GR®Bhtaining four(n = 4) elements

{1,3,2,7}.

It is known, a number of consecutive elements in a GRB can be of adeyable
length and the more length the more number of GRB [2].
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3. Two-dimensional Gold Ring Bundles

Let us regard the-stage ring sequendé;p = {(k11, k12), (ko1, k22), ..., (i1, ki2),
vy (kn1, kn2)}, where we require all terms in each circular vector-sum to be congecuti
2-stage sequences as elements of the sequence. A circular veutof-sonsecutive
terms in the ring sequence can have any oftlberms as its starting point, and can be of
any length from 1 tee— 1. An n-stage ring sequendésp = {(k11, k12), (ka1, k22), ..,
(ki1, ki2), -, (kn1, kn2)}, for which the set of all

SoD =n(n—1), 4)

circular vector-sum forms two-dimensional grid, where each noddefrid occurs
exactly R-times, is named a two-dimensional Gold Ring Bundle (2D-GRB).

Next, we consider two-dimensionatstage ring sequence GRB with folut = 4)
terms in the ring topology, where, = (0,2), k2 = (1,0), k3 = (1,1), ks = (2,2)
which graph is depicted below (Fig. 2).

Fig. 2. A graph of two-dimensional Gold Ring Bundle (2D-GR&)ntaining four(n = 4) elements
{(0,2), (1,0), (1,1), (2,2)}-

We can calculate easy the all circular two-dimensional vector-sumsgtakiaiulo
my = 3 for the first component of vector-sum and modute = 4 for the second its

AN AN AN AN AN AN NN N
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D= O W~k O W

(2,3) =(0,2) + (1,0) + (1,1).

So long as the elements, 2), (1,0), (1, 1), (2, 2) of the ring sequence themselves
are circular vector-sums too, the circular vector-sums set configaiex 4 matrix as
follows:
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(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2.3)

The result of the calculation forms tti3ex 4 grid which exhausts the circular 2D
vector-sums and each of its meets exactly offe¢e= 1). So, the ring sequence of the
2D vectors {0,2), (1,0), (1,1), (2,2)} is two-dimensional Gold Ring Bundle (2D-
GRB) withn =4, R =1, andmy = 3, ms = 4.

4. Non-redundant 2-D antenna arrays

The present method relates to constructing thinned planar phasedaatesyncon-
figurations, which have the antenna or sensor elements positioned inremnznpre-
scribed by the GRB, using appropriate variant of two-dimensional Goid Rundle
for the constructing. The method involves technique for minimizing sizestenna ar-
rays prescribed by parametgrof appropriate GRB. The search algorithm allows find-
ing optimal solution in the simplest way based on regarding selected matiscafar
two-dimensional vector-sums on the GRB as well as crossing outtapesaTl hese pro-
cedures make it possible to configure mask system with the smallestlpassihber
of grids.

Here is example of constructing the planar antenna array configuradsedion
the two-dimensional Gold Ring Bundle with parameters- 4, R = 1, andm; = 3,
meo = 4 (Fig. 3).

We search needed solution after construction of 2-D matrix of all cirawar
dimensional vector-sums on the GRB and regarding each of its withategpsearch
minimum of the sum using crossing out. The method described is illustrated.i.F

Fig. 3. An antenna array ov8rx 3 grids reconstructed from the array ok 4 grids based on the 2-D
GRB{(0,2), (1,0), (1,1), (2,2)}-

The example shows that the grid order based on the GRB can be refuuttest
without loss of the possibility to construct an antenna array.

5. Non-redundant 3-D aperture constructions

The three-dimensiondgt = 3) GRB of ordern can be represented asstage ring-
like sequence k11, k21, k31), (k12, koo, k32),- - ., (k1n, kon, k3n )} Which give us a set
of circular 3-vector-sums on the sequencéssx My x Ms-matrix exactlyR times.
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Let the first of six(n = 6) mask elements is th@, 0,0) cell of 2 x 3 x 5-matrix
cycling. Now, we can obtain coordinates of the remaining five elementzr@diogly
the underlying 3-D perfect distribution cycling modulug = 2, my = 3, ms = 5:
(1,1,1), (0,2,3), (1,2,1), (1,1,3), (1,2, 2).

Fig. 4. A non-redundar x 3 x 5-matrix, based on the 3-D Gold Ring Bundle with parametets 6,
R = 1,andm1 =2,m9 =3, m3 = 5.

Now, to obtain configuration with smaller grids, we can exclude all rightdhan
columns (Fig. 4), and one can be reconstructed on smaller n2atrig x 4.

It existsa priori an infinite set of GRBs, and its parameters can be of any large
number. Underlying technique can be used both for configure sgatanss with high
quality indices due to all spacing vectors between their elements are diffei@der to
avoid of interference of components of the same spatial frequendypadevelopment
methods of non-redundant 3-D mask construction.

6. Conclusions

Two- and three-dimensional Gold Ring Bundles (GRB)s are perfenbawatorial
models of non-redundant planar or 3-D space-tapered arraysnaf.sThese models
provide the optimal its structure from the point of the convenience to deje the
maximum number of combinatorial varieties in the system with the limited number
of elements. Method allows finding optimal solution in the simplest way usitegtsel
matrix of circular two- or three-dimensional vector-sums on the GRBedlsas crossing
out operations. These procedures make it possible to configure difgrpance arrays
of sonar systems, including synthesis of wide-aperture equipped witirettundant
sets of opening for space and underwater acoustics.
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