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This paper presents the Green function for the Neumann boundary value problem at the
rigid semiinfinite cylinder and the flat rigid infinite baffle.The function has been expressed as
the combination of the Hankel functions of the first and second kinds, and their derivatives –
all n-th order. The acoustic pressure has been presented in the two cases: the time harmonic
vibrations of a sector cylinder piston located on the semiinfinite cylinder, and the annular
sector piston located on the flat baffle in the vicinity of the semiinfinite cylinder.
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1. Introduction

An expression for the acoustic impedance of a radiating system consisiting of a
source located on the surface of an infinitely long and rigid circular cylinder has been
given by ROBEY [1]. The author used the Green function. The acoustic pressure and the
mutual radiation impedance of a rectangular pistons located on the surface of a rigid and
infinitely long circular cylinder has been presented by GREENSPONand SHERMAN [2].
The sound pressure distribution located of the source in thevicinity of the baffle and at
the flat surface has been obtained using the Neumann boundaryconditions in the po-
lar coordinates. The velocity potential of a convex infinitely long pulsating cylinder has
been presented by Leppington for the short waves [3]. The impedance of the two pulsat-
ing cylindrical rings located on an infinite rigid circular cylinder has been analyzed by
RDZANEK [4–8]. So far, the Green function has not been used for any analytical com-
putations of the acoustic pressure of a sector cylinder piston located on the semiinfinite
cylinder, and of an annular sector piston located on the flat baffle in the vicinity of the
semiinfinite cylinder. This paper deals with this problem.



8 W. P. RDZANEK, W. J. RDZANEK, A. RÓ̇ZYCKA

2. The Green function

The Neumann boundary value problem has been defined in the polar coordinates
(r, ϕ, z) for the regionΩ = {a ≤ r < ∞; 0 ≤ z < ∞; 0 ≤ ϕ ≤ 2π}, consisting
of the rigid cylinder of radiusa and the rigid plane atz = 0 (cf. Fig. 1). The follow-

ing boundary condition
∂

∂n
G(r | r0)

∣∣
SΩ

= 0, satisfied at the surfaceSΩ bounding the

regionΩ, can be expressed as

∂

∂r
G(r | r0)

∣∣∣∣
r=a

= 0,
∂

∂z
G(r | r0)

∣∣∣∣
z=0

= 0, (1)

whereG(r |r0) is the Green function in the regionΩ, r = (r, ϕ, z) andr0 = (r0, ϕ0, z0)
are the leading vectors of the field point and of the source point, respectively. The steady
state processes have been considered and the time dependence exp(−iωt) has been
accepted herein. The following wave equation is satisfied within the whole regionΩ

(∆ + k2)G(r | r0) = −δ(r− r0), (2)

where∆ = (1/r)(∂/∂r) (r∂/∂r) + (1/r2)(∂2/∂ϕ2) + (∂2/∂z2) andδ(r − r0) =
(1/r)δ(r − r0)δ(ϕ− ϕ0)δ(z − z0).

Fig. 1. The semiinfinite rigid cylinder and the flat infinite rigid baffle in the polar coordinates.

The Green function has been expressed as the Fourier series with respect to the angle
variableϕ

G(r | r0) =
+∞∑

n=−∞

exp(inϕ)Gn(r, z | r0, z0) . (3)
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Further it has been inserted into Eq. (2) multiplied side by side by the factor(1/2π)
∫ 2π
0

exp(−imϕ) dϕ and the following equations have been used
∫ 2π
0 exp[i (n−m)ϕ] dϕ =

2πδnm and
∫ 2π
0 δ(ϕ− ϕ0) exp(−imϕ) dϕ = exp(−imϕ0) to give

(
∆r,z + k2 − n2

r2

)
Gn(r, z | r0, z0) = −δ(r − r0)

2πr
δ(z − z0) exp(−inϕ0), (4)

where∆r,z = (1/r)(∂/∂r) (r∂/∂r)+∂2/∂z2 andδnm is the Kronecker delta. The fol-
lowing Fourier cosine transforms have been used

Gn(r, z | r0, z0) =

√
2

π

∞∫

0

Gn(r | r0) cos ζz dζ,

(5)

Gn(r | r0) =

√
2

π

∞∫

0

Gn(r, z | r0, z0) cos ζz dz

to satisfy the Neumann boundary conditions at the boundarySΩ for z = 0 (cf. Eq. (1)).
Equation (5) has been inserted into Eq. (4), multiplied sideby side by the factor

√
2/π∫∞

0 cos ζ0z dz, and the following equations
∫∞
0 cos ζz cos ζz0 dz = (π/2) δ(ζ − ζ0)

and
∫∞
0 δ(z − z0) cos ζz dz = cos ζz0 have been used to give

(
∆r,z + γ2 − n2

r2

)
Gn(r | r0) = −

√
2

π

δ(r − r0)
2πr

e−inϕ0 cos ζz0 , (6)

where∆r = (1/r)(d/dr) (rd/dr) andγ2 = k2 − ζ2. The Green function used in
Eq. (6) assumes the form of a plane wave propagated in the0z direction

Gn1(r | r0) = An1H
(1)
n (γr) +Bn1H

(2)
n (γr) for a ≤ r ≤ r0 < +∞,

(7)
Gn2(r | r0) = An2H

(1)
n (γr) +Bn2H

(2)
n (γr) for a ≤ r0 ≤ r < +∞,

whereH(1)
n andH(2)

n are the Hankel functions of the first and second kinds.
The “sharpened Sommerfeld radiation condition” must be satisfied within the region

Ω. Therefore, the acoustic waves can disperse the growing values of the variabler
within the regionr ≤ r0, and consequentlyBn2 = 0. One of the boundary conditions
in Eq. (1) has been expressed as

d

dr
Gn(r | r0)

∣∣∣∣
r=a

= 0 (8)

using some similar computations as in the case of the wave equation. The solution (7)
has been inserted into Eq. (8) which gives inAn1 = −Bn1H

(2)′
n (γa)/H

(1)′
n (γa) and

Gn1(r | r0) = Bn1

[
H(1)′

n (γa)H(2)
n (γr)−H(2)′

n (γa)H(1)
n (γr)

]
/H(1)′

n (γa),
(9)

Gn2(r | r0) = An2H
(1)
n (γr),

where the symbol “prime” represents differentiation by theargument.
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The Green function is continues for all the values ofz as well as forz = z0 which
implies thatGn1(r | r0) = Gn2(r | r0) and gives

Gn2(r | r0) = Bn1
H

(1)
n (γr)

H
(1)′
n (γa)H

(1)
n (γr0)

×
[
H(1)′

n (γa)H(2)
n (γr0)−H(2)′

n (γa)H(1)
n (γr0)

]
. (10)

Equation (6) has been multiplied side by side byr, integrated within the limitsr ∈
[r0 − ǫ; r0 + ǫ] and the limitǫ→ 0 has been computed to give

d

dr
Gn2(r | r0)

∣∣∣∣
r=r0

− d

dr
Gn1(r | r0)

∣∣∣∣
r=r0

= −
√

2

π

1

2πr0
e−inϕ0 cos ζz0 (11)

and consequently

Gn1(r | r0) =
e−inϕ0

2
√

2π
cos ζz0

H
(1)
n (γr0)

H
(1)′
n (γa)

[
J ′

n(γa)Yn(γr)− Y ′
n(γa)Jn(γr)

]
,

(12)

Gn2(r | r0) =
e−inϕ0

2
√

2π
cos ζz0

H
(1)
n (γr)

H
(1)′
n (γa)

[
J ′

n(γa)Yn(γr0)− Y ′
n(γa)Jn(γr0)

]
,

whereJn(γr), J ′
n(γa),Yn(γr),Y ′

n(γa) are the Bessel and Neumann-th order functions
and their derivatives.

The solution (12) has been inserted into Eq. (5)1, and then to Eq. (3) and the Green
function has been expressed as the Fourier series

Gn1(r | r0) =

+∞∑

n=−∞

ein(ϕ−ϕ0)Gn(r, z | r0, z0) (13)

with coefficients

Gn1(r, z | r0, z0) =
1

2π

+∞∫

0

cos ζz cos ζz0
H

(1)
n (γr0)

H
(1)′
n (γa)

× [J ′
n(γa)Yn(γr)− Y ′

n(γa)Jn(γr)] dζ for a ≤ r ≤ r0 < +∞,
(14)

Gn2(r, z | r0, z0) =
1

2π

+∞∫

0

cos ζz cos ζz0
H

(1)
n (γr)

H
(1)′
n (γa)

× [J ′
n(γa)Yn(γr0)− Y ′

n(γa)Jn(γr0)] dζ for a ≤ r0 ≤ r < +∞.
SinceG−n(r, z | r0, z0) = Gn(r, z | r0, z0) the Green function can be expressed in its
equivalent form

G(r | r0) =

+∞∑

n=0

εn cosn(ϕ− ϕ0)Gn(r, z | r0, z0), (15)

whereεn = 1 for n = 0 andεn = 2 for n > 0.
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3. Acoustic pressure

From the practical viewpoint the following two cases on timeharmonic vibrations
are the most interesting: the vibrating sector piston located on the semiinfinite cylinder,
and the vibrating annular sector piston located on the flat baffle in the vicinity of the
semiinfinite cylinder.

Fig. 2. The acoustic source located: a) on the surface of the semiinfinite cylinder and b) on the surface of
the flat baffle.

The relation between the acoustic pressurep(r, t) = p(r)e−iωt and the acoustic
potentialφ(r, t) = φ(r)e−iωt

p(r, t) = ̺0
∂

∂t
φ(r, t) = −iωρ0φ(r, t),

(16)
p(r) = −iωρ0φ(r), φ(r) =

∫

S0

vN (r0)G(r | r0) dS0

has been used wherevN (r0) is the normal component of the vibration velocity of the
source,S0 is its surface.

In the case when the source has been placed on the semiinfinitecylinder, the sound
pressure is (cf. Fig. 2a)

p0(r) = −iω̺0

∫

S0

vN (r0)G2(r | r0) dS0 (17)

for a ≤ r.
In the case when the source is located on the flat baffle in the vicinity of the semiin-

finite cylinder, the sound pressure is (cf. Fig. 2b)
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p1,2(r) = −iω̺0





∫

S1

vN (r0)G1(r | r0) dS1 for r < a1 ,

∫

S1

vN (r0)G1(r | r0) dS1

+

∫

S2

vN (r0)G2(r | r0) dS2 for a1 ≤ r < a2 ,

∫

S2

vN (r0)G2(r | r0) dS2 for a2 ≤ r.

(18)

It is worth noticing that the following WronskianH(2)′
n (x)H

(1)
n (x)−H(1)′

n (x)H
(2)
n (x) =

−4i/πx [9] can be useful while using Eq. (17).

4. Concluding remarks

The Green function for the semiinfinite cylinder and the flat infinite baffle have been
presented in its Fourier representations. It is useful for some further computations of the
acoustic pressure radiated by some vibrating source situated on the baffle. The results
presented herein can also be useful for some computations ofthe active and reactive
acoustic power radiated by such source or by a system of such sorces.
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