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This paper presents the Green function for the Neumann lzoyn@lue problem at the
rigid semiinfinite cylinder and the flat rigid infinite bafff€he function has been expressed as
the combination of the Hankel functions of the first and secdkinds, and their derivatives —
all n-th order. The acoustic pressure has been presented in theates: the time harmonic
vibrations of a sector cylinder piston located on the sefmiite cylinder, and the annular
sector piston located on the flat baffle in the vicinity of teendinfinite cylinder.
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1. Introduction

An expression for the acoustic impedance of a radiatingegystonsisiting of a
source located on the surface of an infinitely long and rigidutar cylinder has been
given by ROBEY [1]. The author used the Green function. The acoustic pressu the
mutual radiation impedance of a rectangular pistons lolaitethe surface of a rigid and
infinitely long circular cylinder has been presented lWEENSPONand SHERMAN [2].
The sound pressure distribution located of the source inittieity of the baffle and at
the flat surface has been obtained using the Neumann bouadadytions in the po-
lar coordinates. The velocity potential of a convex infilyiteng pulsating cylinder has
been presented by Leppington for the short waves [3]. Thedapce of the two pulsat-
ing cylindrical rings located on an infinite rigid circulaylimder has been analyzed by
RDzANEK [4-8]. So far, the Green function has not been used for anlytaca com-
putations of the acoustic pressure of a sector cylindeopistcated on the semiinfinite
cylinder, and of an annular sector piston located on the #8étebin the vicinity of the
semiinfinite cylinder. This paper deals with this problem.
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2. The Green function

The Neumann boundary value problem has been defined in thae pombrdinates
(r,p,z) for the region? = {a < r < o0; 0 < 2z < o0; 0 < ¢ < 27}, consisting
of the rigid cylinder of radius: and the rigid plane at = 0 (cf. Fig. 1). The follow-

ing boundary condition(%G(r | ro)\S{Z = 0, satisfied at the surfacg, bounding the
regions2, can be expressed as

0 0
EG(r\ro) =0, gG(r\ro) =0, (1)

r=a z=0
whereG(r | ro) is the Green function in the regid®, r = (7, ¢, z) andry = (79, @0, 20)
are the leading vectors of the field point and of the sourcetpaspectively. The steady
state processes have been considered and the time deperdeficiwt) has been
accepted herein. The following wave equation is satisfigdimwithe whole regiorf?

(A + k%) G(r|rg) = —6(r — ro), (2)

where A = (1/r)(9/0r) (rd/or) + (1/12)(92/00%) + (82/02?) andd(r — ) —
(1/1)d(r —10)d (¢ — ¢0)d(2 — 20).
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Fig. 1. The semiinfinite rigid cylinder and the flat infinitgid baffle in the polar coordinates.

The Green function has been expressed as the Fourier séhasspect to the angle

variablep
+o0o

G(r|rg) = Z exp(ing) Gp(r, z |10, 20) - (3)

n=—oo
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Further it has been inserted into Eq. (2) multiplied sideilg by the factof1/27) 02”
exp(—imy) de and the following equations have been u§§8 expli (n—m)p|dp =
27 0nm andfo27T 0(p — o) exp(—imyp) de = exp(—impy) to give

n? o(r—r )
(Am + k% — r_2> Gn(r,z|ro, 20) = —% 0(z — 2z9) exp(—inyg), (4)

whereA,., = (1/r)(0/0r) (rd/dr) + 02 /9z* andé,, is the Kronecker delta. The fol-
lowing Fourier cosine transforms have been used

2 [o@)
Gn(r,z|ro,20) = \/;/Gn(H?“o)COSCZdC,
0

Gn(r|ro) = \/E/Gn(T,Z’TQ,Z())COSCzdz
0

to satisfy the Neumann boundary conditions at the bounfarfor = = 0 (cf. Eq. (1)).
Equation (5) has been inserted into Eq. (4), multiplied sigside by the factox/2/7
Jo~ cos Coz dz, and the following equationg,® cos ¢z cos Czodz = (7/2) 6(C — (o)
and [;° 6(z — z0) cos (z dz = cos (z have been used to give

2
/9 — .
<Ar,z + ’72 - %) Gn(r | TO) = - ; M e "% cos CZO 5 (6)

2rr

®)

where A, = (1/r)(d/dr) (rd/dr) andy? = k? — (2. The Green function used in
Eq. (6) assumes the form of a plane wave propagated if:tlokrection

Gni(r|rg) = Aanle)('yr) + Bmef) (yr) for a <r <ry < +4oo, @

7

Gna(r|10) = ApeH{Y (9r) + BuaHP (vr)  for a <rg <1 < 400,

Whererll) and 'Y are the Hankel functions of the first and second kinds.
The “sharpened Sommerfeld radiation condition” must bisfsadl within the region

(2. Therefore, the acoustic waves can disperse the growingevadf the variable
within the regionr < ry, and consequently,,» = 0. One of the boundary conditions
in Eq. (1) has been expressed as

d
EG”(T | 70) . =0 (8)
using some similar computations as in the case of the wavatiequ The solution (7)

has been inserted into Eq. (8) which givesdm, = — B, H?' (va)/HY (ya) and

Gni(r|ro) = B |HY (va)HP (yr) — HP (va) HOD (vr) | JHY (va),

9)
Gra(r|1m0) = AnaHY (yr),

where the symbol “prime” represents differentiation by aingument.
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The Green function is continues for all the values @fs well as forz = z; which
implies thatG,,1 (r | 7o) = Gna(r | ro) and gives

(1)
Hy
Gua(r10) = Bu —n—00)
Hy " (va)Hy ' (y70)
< [HY () HP (r0) = HP (i) HD (r0) | (10)

Equation (6) has been multiplied side by sideshyintegrated within the limits: €
[ro — €; 79 + €] and the limite — 0 has been computed to give

d d 2 1 .
il _ = R el —inpo
FOnlrln)|  —fomlm)| V2 e sty (D
and consequently
—in (1)
e o T
Gni(r|rg) = W cosCz()# [J’('ya) w(yr) — Y’(’ya)Jn('yr)],
(va) (12)
Gl 70) = o cos g PO (31 v () = Ve )]
n2 0) — 01y, n n o) — Iy n 0)]>
2v/2m ' (ya)

whereJ,, (yr), J;,(va), Yo (vyr), Y, (va) are the Bessel and Neumasth order functions
and their derivatives.

The solution (12) has been inserted into Eq; (8hd then to Eq. (3) and the Green
function has been expressed as the Fourier series

+oo
Gui(r|rg) = Y ™G, (r, 2| 7o, 20) (13)
with coefficients
(1)
Gni(r,z|r0,20) = —/cosCZCOSCZO HTE (yro)
Hn (’Ya)
x [T (va) Yo (yr) — Y w(ya)Ju(yr)]d¢  for a <7 < 7o < +oo, (14
(1)
Gra(r,z|r0,20) = — cos(zcosCzOH (yr)
(1)’( )

X [Jn(va)Ya(yro) — Yé(va) n(yro)]d¢  for a <rg <r < +oo.
SinceG_,,(r, z |10, 20) = Gn(r, 2|70, 20) the Green function can be expressed in its
equivalent form

+00
G(r|ro) =Y encosn(p — po)Gn(r, 2|10, 20), (15)
n=0
wheree,, = 1 for n = 0 ande,, = 2 forn > 0.
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3. Acoustic pressure

From the practical viewpoint the following two cases on tinamonic vibrations
are the most interesting: the vibrating sector piston kdain the semiinfinite cylinder,
and the vibrating annular sector piston located on the flfitebiaa the vicinity of the
semiinfinite cylinder.

a) z b)

\
e 1 1
‘\ \\\ ll !
\ S . /
\ < o ,’l
\ SZ 9 ,,:’,/
e
2. 1 (

o r,9,0)

Fig. 2. The acoustic source located: a) on the surface ofdiméisfinite cylinder and b) on the surface of
the flat baffle.

The relation between the acoustic pressplie t) = p(r)e~™! and the acoustic
potentialg(r,t) = ¢(r)e ™!

p(r1) = o5 b(e,1) = ~iwpod(r, ),

p(r) = —iwpod(r),  B(r) = / o (r0) G(r | rg) dSo

So

(16)

has been used whetg;(ry) is the normal component of the vibration velocity of the

source,Sy is its surface.
In the case when the source has been placed on the semiiafiliitder, the sound

pressure is (cf. Fig. 2a)

po(r) = —iwgo/vN(ro)Gg(r\ro) dSy a7)
So

fora <r.
In the case when the source is located on the flat baffle in tieityi of the semiin-
finite cylinder, the sound pressure is (cf. Fig. 2b)
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/UN(I‘()) Gi(r|ro)dS; for r <ay,

S1

/ on(xo) Gi(r | o) dSy

pr2(r) = —iwgp { 1 (18)
—i—/vN(ro) Ga(r|rg)dSs for a; <r < ag,
Sa
/ o (ro) Galr|xo)dSs  for as <r.
Sa

It is worth noticing that the following Wronski T(LQ)’(x)H,(LI)(x)—H}LI)'(x)Hf) (x) =
—4i/mz [9] can be useful while using Eqg. (17).

4. Concluding remarks

The Green function for the semiinfinite cylinder and the fidihite baffle have been
presented in its Fourier representations. It is usefuldanesfurther computations of the
acoustic pressure radiated by some vibrating source siuat the baffle. The results
presented herein can also be useful for some computatiotige aGictive and reactive
acoustic power radiated by such source or by a system of sucbss
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