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The waveguide theory constitutes an important part of akwave theory and the results
are applied in many practical devices. The aim of the paperpgesent a coherent approach
to the problem of propagation of sound and electromagnedices/in ducts by means of po-
tentials. The potential concept simplifies the field desimipand discussion of some basic
conditions, posed on mathematical expressions, which doone their physical meaning.
These conditions are, for example, the Euler equation fondavaves or the Lorentz gauge
condition for electromagnetic field. The analyze of the eesgd field is carried out by means
of velocity potential for sound waves and the Hertz potdsfiar electromagnetic waves. The
acousto-electromagnetic analogies are derived and disdder infinite circular and rectan-
gular duct. The cut-off frequencies, the waveguide impedamd the power transmitted along
the duct is discussed in reference to these analogies.

Keywords: waveguide theory, sound and electromagnetic waves palkentacousto-
electromagnetic analogies, waveguide impedance.

1. Introduction

The fundamental ideas of wave motion are common for all kafddassical waves
and are rooted in electromagnetic elementary forces, estimnfy themselves also in
such features of material media as viscosity, Young modatullexibility which, in
turn, determine the elastic waves proprieties.

Longitudinal sound waves propagating in liquids are chiarazed by fluctuation of
pressure, called acoustic pressure and particle velatdigpl@cement velocity). At first
sight they have not much in common with electromagneticsirarse waves described
by a pair of electromagnetic field vectors — the electric fietdnsityE and the magnetic
inductionB. Despite that, the unified description of the wave field ohdahds could
be obtained by means of potentials.

Analogies play a fundamental role in physics and are goaebyehe principle: the
same mathematical equations have the same solutionshéogeith additional condi-
tions coming from physical meaning posed on them. The fieldvbith the method
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of analogies could be successfully applied is the wavegihidery, which constitutes,
because of its practical meaning, an important part of akwave theory. Chapters
concerning waveguides could be found in classical textb¢bk2], some of which are
entirely devoted to waveguides, limiting the discussedestib strictly to the waveguide
theory [3-5].

Nowadays tendency in physics is to unify the study of waveddweloping abstract
and general features of wave motion of any kind [6, 7]. To ntkese expectations
the common description of sound and electromagnetic wasgggiation in duct is pre-
sented. The solution of the wave equation and derivatiom@fobundary conditions,
crucial for obtaining proper solution, will be shortly dissed. The solutions assuming
absence of sources are sought.

Waveguides are structure which guide waves and are ablensmit wave energy at
long distance. There are different types of waveguidesguidipg on the type of waves
as sound waves, electromagnetic waves (light among them).

In acoustics, ducts of absolutely rigid (hard), absolusdft and absorbing sur-
face are discussed most often. The model of ideal surfacgraluced to simplify the
boundary conditions, even thought the obtained solutioogige a meaningful insight
into real-duct propagation features. Acoustic rigid dwats of particular interest, as
elements of this kind are met frequently in acoustic devitesting and ventilation
systems, exhaust of jet engines etc.) and are widely carside scientific papers, for
example [8-10]. They are often sources of undesired andfblhrmise and thus are
subject of active and passive noise control methods [11-13]

Electromagnetic waveguides, transferring power or coniaation signals, are con-
structed depending on which portion of the electromagrsg@ctrum they are supposed
to transmit. They are constructed from conductive or diele¢for optical frequencies)
materials, the last guide optical waves by total internéécgion. In the following ideal
conductive ducts, applied as power transferring devicésbg/considered.

2. Field potentials in infinite duct

2.1. Acoustic potential in soft and rigid ducts — DirichlatcaNeumann boundary
condition

The acoustic field can be considered as the field of acoust&sprep(r, t) or the
acoustic velocityv (r, t), governed, in the frame of linear theory, by the following-fo
mulae [14]

e Euler's equation

Vp + po%—: =0, po — mean medium density D)
e equation of continuity
1 dp

V-v+ c — wave velocity 2)

P
poc? Ot '
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e state equation
dp 2
— =, 3
5 = ¢ 3)
whereV means nabla operator.
Euler’s equation (1) will become identity if a new quantityr, ¢), called the veloc-
ity potential, is introduced as follows

oD
= pp— 4
P=rogs 4
v = —Vo. (5)
As a result the equation of continuity takes the form of wayeagion
1 0%®(r,t)

which, for harmonic excitation of a given angular frequencywith time depending
factore=?, turns into Helmholtz equation

AP(r,t) + E*®(r,t) =0,  k=w/c— wave number (7

whereA\ is the Laplace operator.

In acoustics, two idealized types of surfacésre considered — the soft surface on
which acoustic pressure equals zefo, ¢)|x, = 0, what leads to the boundary condi-
tion, known as Dirichlet condition and often referred to dssi-type boundary condi-
tion

O(r,t)|s =0, (8)
and the rigid surface, on which normal component of partigocity equals zero

vp|y = 0, thus the appropriate boundary condition, called Neumadition or
second-type boundary condition, is given by

0P
—1 =0. 9
o, 9)
Assuming that a sound wave of axial wave numb@ropagates in an infinite duct
stretched along-axis, its velocity potential

O(r,1) = D(x,y)e'*Y, (10)
fulfils the eigenvalue differential equation
[A(z,y) + %] D(x,y) =0, (11)
where
B =k -~ (12)

The solution for a rectangular or circular duct of soft oridigurface is well known

and can be found easily in many textbooks on differentiabéiqus, electromagnetism,
theoretical acoustics and others. The method usually eppdi receive the solution is
the variable separation method. As a result the set of eide@s and eigenfunctions
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@ is obtained. Their physical meaning is, respectively,abdiave number of a mode
propagating along the duct and its velocity potential.

If one neglects wave absorption, the wave nunibisrreal, what leads to real value
of v = k2 — 32 if k2 > (32, otherwisey is imaginary and:i(7—«t) = ¢—1lze—ivt
represents term of solution diminishing with distance ewguially. The limit between
propagating and evanescent modes= (3, determines the so-called cut-off angular
frequencyw;’, above which the mode of given radial wave numBgipropagates in a
duct without damping

w, = Be. (13)

For a duct excited with frequenaythere is a limited set of eigenvalues, representing
propagating modes, depending on duct dimensions — radiug/liadrical and length
of sides for rectangular duct. The mode corresponding tethallest eigenvalug is
called the fundamental (principal) mode. For a rigid ciazwduct it is plane wave with
the cut-off frequency equal to zero.

The eigenfunctions corresponding to different eigenvahre orthogonal, what sim-
plifies expressions for the impedance and power transmiittédte case of multimodal
excitation, when more than one mode propagates along theadddhe potential takes
the form of the sum of potentials of cut-on modes. The cut-al@s are modes with
cut-off frequencies less than the excitation frequency.

2.1.1. Soft and rigid cylindrical ducts

Geometry of the system is presented in Fig. 1 — the duct ofisadis aligned along
the z axis. Accounting for the duct symmetry, the solution of theraholtz equation is
expressed in cylindrical coordinatés ¢, z) [15]

B0, ) = ame™? Jin(Bo), (14)
whereJ,,( ) stands for Bessel function of order anda,, is complex amplitude.
A p
a
// \\ 2
/
/ \
A4 :
1 ] >
! ]
\ !
\ /
\\ //
- - a - - Z

Fig. 1. Geometry of an infinite cylindrical duct {p, ¢, z) coordinates.
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For a rigid duct the Neumann boundary condition

o __ 221 (15)
on |y do o—a
leads to a7 (Bo)
m\PO /
qo | =m0 (16)

DenotingJ,, (ttmn) = 0, where,,,, is then-th root of J/, (), the radial wave numbers
and the cut-off frequencies are:

Bn = P i, = RS (17)
a a
thus the corresponding velocity potential, which is finitetioe duct axis [14] is given by
@mn(g7 P, 2, t) - amneimlme (%) ei('Yng—wt, (18)

2
wherey,, = (/k? — (@) anda,,, is the complex amplitude. Then,n) sub-
a

scripts determine the asimuthal (circumferential) andadaatder of a particular mode.
In a soft duct of radius the boundary condition of Dirichlet typg| > = 0 leads to the
equationJ,,(fa) = 0 and so, ifv,,,, denotes the:-th zero ofJ,,,( ), the radial wave
numbers and the cut-off frequencies are given by

VmnnC

gmn = M Oy = . (19)
a

’ mn
a

Hereafter quantities concerning soft duct are distingedshy tilde sign. Finally, the
velocity potential of modém, n) takes the form

Bonn (06, 2:1) = €2 Ty (F22E ) Gz, (20)

where the axial wave number

Fm = A k2 — (”’;—”)2 . (1)

Modes for whichm = 0 are axis-symmetrical and called radial modes, their ve-
locity potential, considered on the duct cross-sectiokgdaero value at circles. The
modes withm # 0 are called circumferential and their potential is zero @son di-
ameters. Figure 2 presents schematically some of thesesm®dme authors numerate
symmetrical radial modes starting fram= 0, what depicts last figure.

The hard duct transfers wave of any frequency and the pahaipde(0, 0) is the
plane wave, contrary to the soft duct for which the cut-affjinency of the fundamental
mode(0, 1) is given bywmi, = &§; = 2.405 ¢/a. Thus the soft duct does not transfer
any wave below that frequency.

Denoting N, number of roots such that< y,,; < ka or number of roots such that
0 < v < ka, N. gives number of modes which can propagate in hard or soft duct
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{0,0} {0,1}
(m,n) (0,1) (1,1) 2,1) (0,2)

ROAwA RO
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4.20 5.31 5.33 6.42 6.70

Fig. 2. Schematic presentation of radial and circumfeatmtiodes in acoustically hard cylindrical duct,
also H-type modes in conducting duct.

without damping. From the above one sees that the dimeesigdiffraction parameter
ka is a suitable quantity for describing modes in duct of a giradiusa. In literature,
the diffraction parameter is also called Helmholtz paramet duct reduced frequency
ka = wreq = wa/c.

In case of multimodal excitation [16], when apart from thagipal mode some
higher modes can propagate, the velocity potential is a sofiputentials expressed by
(18) or (20)

B0, 0,2,t) = Y _ Drn(0, 0, 2,1), (22)

summation covering all pairs of mdmeém,n), corresponding to real values of axial
wave numbers.
To summ up
e in arigid cylindrical duct the plane wave, with the cut-atfjuency equal to zero,
is the principal mode,
e in a soft cylindrical duct the principal mode is the mode with= 0, n = 1, thus
only waves of angular frequenciesgreater thar2.405 c¢/a are transferred along
the duct.

2.1.2. Soft and rigid rectangular ducts

Consider a rectangular duct aligned along thaxis which walls are described in
Cartesian coordinates as follows:= 0,0 < y < b,z =a,0 <y < b,y =0,
0<zx<a,y=0b0<z<aandassume > b.

Solutions of Helmholtz equation (7) obtained by means ofaldes separation
method, with appropriate boundary condition — Neumann (@péor rigid and Dirichlet
type (8) for soft duct, are given by

mmx nmy

@mn(x, Y, z, t) = Qmn COS CcOS Tel(’}’mnz wt) (23)

émn (377 Y, z, t) = Amn sin m sin n_’zyei(:)’mnz—wt) (24)

)
a
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where
o= o = [ (2) 4 (5" @)
o= = 1= () - (7). &

For rectangular duct, rigid or soft, the axial wave numbeesthe same, while ve-
locity potentials are products of two even (cosine) or oduksfunctions.

2.2. Electromagnetic waves Hertz potentials in conducatingt

Consider an infinite conducting duct filled with isotropicdamomogenous medium
transferring electromagnetic waves. To find the field insige2duct one can solve the
set of Maxwell’s equations [1]. As it is not an easy way to abthae solution, scala®
and vectorialA potentials of electromagnetic field were introduced, shelh ft1]

B =VxA, (27)
0A
E=-V¢— — 2
Vo - oo (28)
leading to the gauge Lorentz condition [1]
1 0¢
A+ = 2
\Y +62 5t 0, (29)

which ensures th& potential fulfils the wave equation.
Introducing vectorial potentialI”, called Hertz electric vector or Hertz electric
potential, such that [1]

1 omf

2 ot (30)
(i) ¢ = -v-10",

the Lorentz gauge condition turns into identity, while therta electric potential itself

satisfies the wave equation.

Considering Maxwell’s equations without sources (eledttirrents or charges) one
can introduce dual potentials [1], called also antipotdsth,., A., for which

(i) A =

D = -VxA,, (31)
0A.,
H= -V¢,— T (32)
The Lorentz gauge condition
1 0¢.

2 ot
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turns into identity, if a new quantityI”, called the magnetic Hertz potential or the
magnetic Hertz vector, is introduced in a following way

_ 1 o
W A= Z (34)

The magnetic Hertz potential fulfills the wave equation.

The Hertz potentials, electriEll” and magnetidI”, are adequate for expressing
the electromagnetic field in limited area, such as ductsedtlts from the following
features of the electromagnetic field in duct [19]:

e the electromagnetic wave field in duct is not transversdlhbs also longitudinal

component, along the duct axis,

e any wave in duct could be expressed as a superposition of TahgVersal Mag-

netic) and TE (Transversal Electric) waves,
e TM waves, called also E-waves, with longitudinal comporugrhe electric field
E nonequal zero are described by the electric Hertz potefittal= [0, 0, IT7],

e TE waves, called also H-waves, with longitudinal componainthe magnetic
field H nonequal zero are described by the magnetic Hertz potefitial =
[0, 0, IT1].

According to (27), (28) and (30), the electromagnetic fieddtors of the E-wave
(TM) are equal to

0A 1 O TIE

Vo e 2 o2 +V(V ), (35)
1 orI®
B—VXA—;VXW, (36)

while theadequatéoundaryconditionfor conductingsurfacederivedfrom the Maxwell
equations [1], takes the form
"z =0, (37)

and is identical with the boundary condition in a soft acmudtict (8).
The electromagnetic field vectods H of the H-wave (TE), expressed by means of
the magnetic Hertz potentifil™, according to (31), (32) and (34), are given by

1 ot
D——VXA*——EVXW, (38)
OA., o1 oPTIH
H = -V¢.— 5 =v(v-II )_EW’ (39)
with the boundary condition on conducting surface
HH
M|y, (40)
on |y

in which one can recognize the boundary condition for adousives in a hard duct (9).
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SN KNS

Fig. 3. Electromagnetic waves in cylindrical duct: TM (Tsaersal Magnetic) waves, called also E-waves
and TE (Transversal Electric), called also H-waves.

Thus, the solutions obtained just far for hard and soft daetsin parallel, solutions
for electromagnetic waves of both types. The electric HaotentialI7Z, , correspond-
ing to the wavekE,,,,, has the form of acoustic potentiéL,m of the mode(m, n) in a
soft duct, while the magnetic Hertz potentidf/, corresponding to the wavé,,,,, has
the form of acoustic potentiab,,,, of the mode(m,n) in a hard duct, what allows to
transpose the solutions obtained for acoustic wave modesetectromagnetic ones.

The derived acousto-electromagnetic analogies are asvioll

E 5 E, ~
I, < Prn, wmﬁr = wﬁ@rn' (41)
HH ) Hyr __ | cr tf cr 42
mn <7 Pmn; Winn = Wmns exeptior wy . (42)

It should be emphasized that the analogy between descriptiacoustic and elec-
tromagnetic waves in infinite ducts occurs on a level of pidést+ acoustic velocity po-
tential in soft or rigid duct and Hertz potential of electoicmagnetic type in conducting

Fig. 4. Structures, in which the electromagnetic plane waame propagate: parallel planes (a), pair of
cylinders (b), transmission line (c).
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duct. Waves of both types differ substantially — the acawgtive is described by a scalar
function of acoustic pressupewhile the electromagnetic wave is defined by field inten-
sity vectorsk, H. The most important difference is, that contrary to the plaooustic
wave in a hard duct, the electromagnetic plane wave do npiagetes in a conducting
duct (the corresponding mode potential gives zero valuéeatremagnetic field).

In cylindrical duct theH;; mode is the principal mode between all waves (TM
and TE) and has the lowest cut-off frequengy,, = 1.84¢/a, so waves for which
A/2a < 1.71 are transfered along the duct. Between TM (E-type) wavegithenode
has the lowest cut-off frequency/" = 2.41¢/a, what gives\/2a < 1.31.

In rectangular duct thé’,,, and theFE,,o waves do not exist (compare Eq. (24)),
the fundamental mode of all waves is they, mode (assuming > b), with critical
frequencyw, = mc/a and critical wavelength® = 2a. The lowest critical frequency
between E-waves has tlig; wave.

The electric Hertz potential is connected with polarizafib]. For electric dipole of
momentump it is equal

1 ei(kR—wt)
- 47['80 P R ’
whereR means distance between the field point and the center of &dipo

The magnetic Hertz potentifil is connected with magnetization of a medium [1].
For the magnetic dipole of momentum it is equal to
et(kR—wt)

1% (r,t) (43)

I (r,t) = M0 n

 Arn R (44)

3. Further acousto-electromagnetic analogies

Below some other analogies, useful in depicting fields ohbadhds in ducts are
developed. They refer to decomposition of duct wave into@laves, impedance con-
cept and power transmission.

3.1. Field potential as a superposition of plane waves. @rand phase velocities

In describing some physical phenomena, as for instance #ve weflection at a
boundry between two media, it is convenient to depict paaeif a circumferential
mode as a summ of plane waves and apply formulae governirectieft of a plane
wave.

If 3. means the radial wave number in a circular duct,(then) mode potential
takes the form

27
1 (z, , .
($ y) :/f(a) ezﬁmn(mcosa+ysma) dCt, (45)
P(z,y) )

where A
fla) =2mi™ "™, (46)
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or, in the cylindrical co-ordinates = o cos p, y = osin ¢,

21
I (o, , .
(Q 90) — 9™ / pima 6z@m@cos(a—w) do . (47)
P(0,¢) /
Application of the integral form of the Bessel function [20]
m 2
Jm(l’) — Z2_7T /eima eimcosa dOé, (48)
0
leads to expression for the:, n) mode potential
(o, ) :
=€ Jin(Bmn 0)- (49)
P(0,¢)

The wave of longitudinal wave numbey,,,, and radial wave numbe?,,,,, is rep-
resented by an infinite summ of plane waves, what is pictuneBig. 5. In rectan-
gular duct, decomposition of moden,n) into a summ of plane waves is even eas-
ier and is based on expressing the sine or cosine functiondanmof Euler formula
e = cosz +isin z. In general, the mode is a summ of four plane waves [18], rediuc
for H,,o and Hy,, modes to two £,,o and Ey,, waves do not exist in rectangular duct).

Y=kcos®
B=ksin®

Fig. 5. Directions of propagation of plane waves constimitihe cylindrical wave — wave vectors are
displayed on a cone.

The wave phase velocity, and group velocity:, could be denoted by the cut-off
angular frequencies
C

Co = T (50)
(1 - “;)
Wr 2
cg = C- 1_<w)’ (51)

their product is equal te’.
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3.2. Wave impedance

There are some others similarities between the equati@tsideg the propagation
of sound and electromagnetic waves in ducts. Here the inmoedeoncept is to be
developed.

In mechanical systems (for example waves on a rod) impedareceatio of force
to particle velocity, in electrical circuits — electric img@ance is a ratio of voltage to
current.

For sound waves the acoustic wave impedance is the quofi@tbastic pressure
and particle velocity [14]

zok = P (52)
A%
The value obtained for a plane wave propagating in a freeesigamalled the character-
istic impedance of the medium and for the sound wave it twretZ2< = pyc, where
po is the medium density.

If a real or hypothetic surface is introduced, then the attouspedance referred to
the surface is expressed as

gk = P (53)
Vin
wherev,, is the particle velocity component, normal to the surface.

For acoustic waves in ducts, apart from the plane wave, thestic pressure and
velocity are functions of displacement and thus it seentsttheompute the impedance
one should apply the general definition of the impedanceatasaf the powefP trans-
mitted through the duct cross-section to product of the nsg@iare of particle velocity
(vZ) and the duct surfacé

7= s 4
where
2\ _ 1 *
<Vn> - § </ann d5> ) (55)
S T

where( )7 denotes mean value versus time.

Anyhow, for a single modém, n) propagating along the duct, the acoustic pressure
is proportional to the acoustic velocity, in every point of the duct cross-section, thus
impedance of the hard and soft waveguide can be calculateddiag to (53)

1
7% = 7 eee— (56)

. (w_)2
w

wherew is given by (17) for hard and by (19) for soft duct.
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For electromagnetic waves the wave impedance is defined asti@iot of two nor-
mal to the direction of propagation, components of the atleahd magnetic field [6]

ZEM _ & _ ’EL|€iargEJ_
HJ_ |HJ_|eiargHL ’
In homogenous, isotropic, nondissipative and noncongeictnlimited medium the

electromagnetiplanewaveimpedancegalledthecharacteristiempedancef amedium
ZEM s expressed by dielectricand magnetig: constants

ZEM = \/uje = 1/ec. (58)

Calculating, along with equations (35), (36), (38) and (8% adequate components
of the electricE and the magneti&l field intensity, the waveguide impedance of the
H-wave and the E-wave turns to be

(67)

EM
Zc

VARES = (59)
wH,cr
1—
(%)
E.cr 2
7B = zBM,[1 <w ) , (60)
w

where, according to (41), (42)7" = w, WP = G are cut-off frequencies.

To summ up, discussion of the waveguide impedance leads foltbwing conclu-
sions

e for the TE and sound waves the waveguide impedance is a quofi¢he char-

acteristic impedance of a mediuff and a termy/1 — (w /w)?, while for the
TM waves it is a product of these two terms, wher€ is the cut-off angular
frequency of a given type of wave,
o if w — W andw > w the TM and sound waves impedance tends to infinity,
the TE waves impedance goes to zero,
e for w® > w the impedance of a nondissipative medium becomes imag(nery
actance).
In the preceding discussion the waveguide has been assonhedintfinitely long.
If the waveguide is finite and is attachedzat | to some device of impedancgl) =
Z; (the waveguide outlet can be regarded as such a load) thalyzag the plane
wave reflection phenomena and having in mind the assumedd@pendence —**,
the impedance at = 0 is equal to [6]

7 —iZ.tankl
Z0)=Z;————
(0) “Z.—iZ;tankl’
whereZ. means the adequate characteristic impedance.

The last formula is basic and frequently applied in the thedacoustic and electro-
magnetic systems — transmission lines and electricalitérand attends for calculating

(61)
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the wave velocity or material constants. It is derived bysidering reflection coeffi-
cient of a plane wave at a plane interface between two mediahvwakes the same
form for sound and electromagnetic waves [6]. It does nolieppo empty conducting
ducts, as they do not carry plane waves (TEM).

3.3. Power transmission in ducts

Wave, propagating through medium, carries energy. In releegnetic field the
complex energy flux is described by the Poynting ve&tft]
S=ExH". (62)
It points in the direction of energy flow and its magnitudetie power per unit area

crossing a surface that is normal to it. It is also called tivéase power density or wave
intensity. The real part of the time-averaged power densigyven by

Re (S)7 — %Re (B x HY). (63)

The averaged complex power of electromagnetic wave tratesirthrough the surface
turns to be

1
PEM — 3 /(E x H*) - ds, (64)
S
and can be expressed by means of wave impedance
1 1
PEM — 3 /ELHI ds = §/ZEM\HL|2ds. (65)
S s

In acoustics, the complex power flux density is a product efdaboustic pressure and
conjugate particle velocity [14]

I(t) = pv", (66)
thus the real part of its time-average value, called soutahgity vector, is equal to
1
Re (I)r = §Re (pv™). (67)
The averaged power transmitted through the surface
1 1
Pakzi/Lds:i/pv*-ds, (68)
S S
can be, according to (53), expressed by means of the acaug@tiance
1 1
pak = 3 /pvn ds = §/Zak\vn\2ds. (69)
S S

Thus, the consecutive acousto-electromagnetic analbgiesbeen derived

p<—>EL7
vp —— Hy | (70)
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whereE |, H; mean components normal to the direction of propagationgsumed
geometry to thez-axis), whilev,, means particle velocity normal to the cross-section
area, thus,, = v,.

In case of multimodal excitation, when more than one modegwates along the
duct, the wave potential is a summ of subsequent modes [@i{ead is expressed in
(22). The power transmitted is a sum of powers of consecutivees, even though
power is not, in general, the additive quantity.

Calculatingpoweralongto (69) for soundwavesand(65)for electromagnetiwvaves,
one obtains terms of the form [17]

2

/ MM dp e Gt
a 0 (71)
/Jm(ﬂmng)t]m’(ﬁm’n’@)@d@ ~ 6mm’5nn’7
0
if B = pmn/a (hard duct, H-waves) 06,,, = v, /a (SOft duct, E-waves). As a

result one obtains
P (Z sbmn) = P(Brn); (72)

where in the last formule,,,, stands for potential ofm, n) mode of sound or electro-
magnetic wave. In conclusion, consecutive modes may beettess excited by inde-
pendent (incoherent) sources.

Theexpliciteformula for sound waves in hard duct is given by [17]

2

1 m
(P)p = 577(12/)00]{: !Z > Yomn| A <1 - > + k| Agol?

2
m=0n=1 Fmn

the last term representing the plane wave and summatiomngifor all real values of
axial wave numbers,,,,.

, (79)

4. Conclusions

Despite all differencies, there are some basic aspects @ ppagation in ducts
common for sound and electromagnetic waves, for which tlifgedrwaveguide theory
may be developed and the method of analogies applied.

The most important of these aspects are:

e analogies between velocity potential in hard and soft atwdsct and the Hertz

potentials of electromagnetic waves in conductive duct,

e decomposition of wave mode potential into plane waves,

e additivity of power transmitted along the duct in case of timubdal excitation,

e analogies between acoustic and electromagnetic wave enpedallowing for

coherent description of in-duct phenomena.
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The derived analogies may be helpful in applying solutiotawied for one kind of
waves to the other, still having in mind all essential difecies.
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