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The waveguide theory constitutes an important part of classical wave theory and the results
are applied in many practical devices. The aim of the paper isto present a coherent approach
to the problem of propagation of sound and electromagnetic waves in ducts by means of po-
tentials. The potential concept simplifies the field description and discussion of some basic
conditions, posed on mathematical expressions, which comefrom their physical meaning.
These conditions are, for example, the Euler equation for sound waves or the Lorentz gauge
condition for electromagnetic field. The analyze of the respected field is carried out by means
of velocity potential for sound waves and the Hertz potentials for electromagnetic waves. The
acousto-electromagnetic analogies are derived and discussed for infinite circular and rectan-
gular duct. The cut-off frequencies, the waveguide impedance and the power transmitted along
the duct is discussed in reference to these analogies.

Keywords: waveguide theory, sound and electromagnetic waves potentials, acousto-
electromagnetic analogies, waveguide impedance.

1. Introduction

The fundamental ideas of wave motion are common for all kindsof classical waves
and are rooted in electromagnetic elementary forces, manifesting themselves also in
such features of material media as viscosity, Young modulusor flexibility which, in
turn, determine the elastic waves proprieties.

Longitudinal sound waves propagating in liquids are characterized by fluctuation of
pressure, called acoustic pressure and particle velocity (displacement velocity). At first
sight they have not much in common with electromagnetic transverse waves described
by a pair of electromagnetic field vectors – the electric fieldintensityE and the magnetic
inductionB. Despite that, the unified description of the wave field of both kinds could
be obtained by means of potentials.

Analogies play a fundamental role in physics and are governed by the principle: the
same mathematical equations have the same solutions, together with additional condi-
tions coming from physical meaning posed on them. The field onwhich the method
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of analogies could be successfully applied is the waveguidetheory, which constitutes,
because of its practical meaning, an important part of classical wave theory. Chapters
concerning waveguides could be found in classical textbooks [1, 2], some of which are
entirely devoted to waveguides, limiting the discussed subjects strictly to the waveguide
theory [3–5].

Nowadays tendency in physics is to unify the study of waves bydeveloping abstract
and general features of wave motion of any kind [6, 7]. To meetthese expectations
the common description of sound and electromagnetic wave propagation in duct is pre-
sented. The solution of the wave equation and derivation of the boundary conditions,
crucial for obtaining proper solution, will be shortly discussed. The solutions assuming
absence of sources are sought.

Waveguides are structure which guide waves and are able to transmit wave energy at
long distance. There are different types of waveguides, depending on the type of waves
as sound waves, electromagnetic waves (light among them).

In acoustics, ducts of absolutely rigid (hard), absolutelysoft and absorbing sur-
face are discussed most often. The model of ideal surface is introduced to simplify the
boundary conditions, even thought the obtained solutions provide a meaningful insight
into real-duct propagation features. Acoustic rigid ductsare of particular interest, as
elements of this kind are met frequently in acoustic devices(heating and ventilation
systems, exhaust of jet engines etc.) and are widely considered in scientific papers, for
example [8–10]. They are often sources of undesired and harmful noise and thus are
subject of active and passive noise control methods [11–13].

Electromagnetic waveguides, transferring power or communication signals, are con-
structed depending on which portion of the electromagneticspectrum they are supposed
to transmit. They are constructed from conductive or dielectric (for optical frequencies)
materials, the last guide optical waves by total internal reflection. In the following ideal
conductive ducts, applied as power transferring devices, will be considered.

2. Field potentials in infinite duct

2.1. Acoustic potential in soft and rigid ducts – Dirichlet and Neumann boundary
condition

The acoustic field can be considered as the field of acoustic pressurep(r, t) or the
acoustic velocityv(r, t), governed, in the frame of linear theory, by the following for-
mulae [14]
• Euler’s equation

∇p+ ρ0
∂v

∂t
= 0, ρ0 −mean medium density, (1)

• equation of continuity

∇ · v +
1

ρ0c2
∂p

∂t
= 0, c− wave velocity, (2)
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• state equation
∂p

∂ρ
= c2, (3)

where∇ means nabla operator.
Euler’s equation (1) will become identity if a new quantityΦ(r, t), called the veloc-

ity potential, is introduced as follows

p = ρ0
∂Φ

∂t
, (4)

v = −∇Φ. (5)

As a result the equation of continuity takes the form of wave equation

△Φ(r, t)− 1

c2
∂2Φ(r, t)

∂t2
= 0, (6)

which, for harmonic excitation of a given angular frequencyω, with time depending
factore−iωt, turns into Helmholtz equation

△Φ(r, t) + k2Φ(r, t) = 0, k = ω/c− wave number, (7)

where△ is the Laplace operator.
In acoustics, two idealized types of surfacesΣ are considered – the soft surface on

which acoustic pressure equals zerop(r, t)|Σ = 0, what leads to the boundary condi-
tion, known as Dirichlet condition and often referred to as afirst-type boundary condi-
tion

Φ(r, t)|Σ = 0, (8)

and the rigid surface, on which normal component of particlevelocity equals zero
vn|Σ = 0, thus the appropriate boundary condition, called Neumann condition or
second-type boundary condition, is given by

∂Φ

∂n

∣∣∣∣
Σ

= 0. (9)

Assuming that a sound wave of axial wave numberγ propagates in an infinite duct
stretched alongz-axis, its velocity potential

Φ(r, t) = Φ(x, y)ei(γz−ωt), (10)

fulfils the eigenvalue differential equation
[
△(x, y) + β2

]
Φ(x, y) = 0, (11)

where
β2 = k2 − γ2. (12)

The solution for a rectangular or circular duct of soft or rigid surface is well known
and can be found easily in many textbooks on differential equations, electromagnetism,
theoretical acoustics and others. The method usually applied to receive the solution is
the variable separation method. As a result the set of eigenvaluesβ and eigenfunctions
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Φ is obtained. Their physical meaning is, respectively, radial wave number of a mode
propagating along the duct and its velocity potential.

If one neglects wave absorption, the wave numberk is real, what leads to real value
of γ =

√
k2 − β2 if k2 > β2, otherwiseγ is imaginary andei(γz−ωt) = e−|γ|ze−iωt

represents term of solution diminishing with distance exponentially. The limit between
propagating and evanescent modes,k = β, determines the so-called cut-off angular
frequencyωcr

n , above which the mode of given radial wave numberβn propagates in a
duct without damping

ωcr
n = βnc. (13)

For a duct excited with frequencyω there is a limited set of eigenvalues, representing
propagating modes, depending on duct dimensions – radius for cylindrical and length
of sides for rectangular duct. The mode corresponding to thesmallest eigenvalueβ is
called the fundamental (principal) mode. For a rigid circular duct it is plane wave with
the cut-off frequency equal to zero.

The eigenfunctions corresponding to different eigenvalues are orthogonal, what sim-
plifies expressions for the impedance and power transmittedin the case of multimodal
excitation, when more than one mode propagates along the duct and the potential takes
the form of the sum of potentials of cut-on modes. The cut-on modes are modes with
cut-off frequencies less than the excitation frequency.

2.1.1. Soft and rigid cylindrical ducts

Geometry of the system is presented in Fig. 1 – the duct of radiusa is aligned along
thez axis. Accounting for the duct symmetry, the solution of the Helmholtz equation is
expressed in cylindrical coordinates(̺, ϕ, z) [15]

Φm(̺, ϕ) = ame
imϕJm(β̺), (14)

whereJm( ) stands for Bessel function of orderm andam is complex amplitude.

Fig. 1. Geometry of an infinite cylindrical duct in(̺, ϕ, z) coordinates.
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For a rigid duct the Neumann boundary condition

∂Φ

∂n

∣∣∣∣
Σ

= − ∂Φ

∂̺

∣∣∣∣
̺=a

= 0, (15)

leads to
dJm(β̺)

d̺

∣∣∣∣
̺=a

= J ′
m(βa) = 0. (16)

DenotingJ ′
m(µmn) = 0, whereµmn is then-th root ofJ ′

m( ), the radial wave numbers
and the cut-off frequencies are:

βmn =
µmn

a
, ωcr

mn =
µmnc

a
, (17)

thus the corresponding velocity potential, which is finite on the duct axis [14] is given by

Φmn(̺, ϕ, z, t) = amne
imϕJm

(µmn̺

a

)
ei(γmnz−ωt, (18)

whereγmn =

√
k2 −

(µmn

a

)2
andamn is the complex amplitude. The(m,n) sub-

scripts determine the asimuthal (circumferential) and radial order of a particular mode.
In a soft duct of radiusa the boundary condition of Dirichlet typẽΦ|Σ = 0 leads to the
equationJm(β̃a) = 0 and so, ifνmn denotes then-th zero ofJm( ), the radial wave
numbers and the cut-off frequencies are given by

β̃mn =
νmn

a
, ω̃cr

mn =
νmnc

a
. (19)

Hereafter quantities concerning soft duct are distinguished by tilde sign. Finally, the
velocity potential of mode(m,n) takes the form

Φ̃mn(̺, ϕ, z, t) = amne
imϕJm

(νmn̺

a

)
ei(γ̃mnz−ωt), (20)

where the axial wave number

γ̃mn =

√
k2 −

(νmn

a

)2
. (21)

Modes for whichm = 0 are axis-symmetrical and called radial modes, their ve-
locity potential, considered on the duct cross-section, takes zero value at circles. The
modes withm 6= 0 are called circumferential and their potential is zero alsoonm di-
ameters. Figure 2 presents schematically some of these modes. Some authors numerate
symmetrical radial modes starting fromn = 0, what depicts last figure.

The hard duct transfers wave of any frequency and the principal mode(0, 0) is the
plane wave, contrary to the soft duct for which the cut-off frequency of the fundamental
mode(0, 1) is given byω̃min = ω̃cr

01 = 2.405 c/a. Thus the soft duct does not transfer
any wave below that frequency.

DenotingNc number of roots such that0 ≤ µml < ka or number of roots such that
0 < νml < ka, Nc gives number of modes which can propagate in hard or soft duct
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Fig. 2. Schematic presentation of radial and circumferential modes in acoustically hard cylindrical duct,
also H-type modes in conducting duct.

without damping. From the above one sees that the dimensionless diffraction parameter
ka is a suitable quantity for describing modes in duct of a givenradiusa. In literature,
the diffraction parameter is also called Helmholtz parameter or duct reduced frequency
ka = ωred = ωa/c.

In case of multimodal excitation [16], when apart from the principal mode some
higher modes can propagate, the velocity potential is a summof potentials expressed by
(18) or (20)

Φ(̺, ϕ, z, t) =
∑

Φmn(̺, ϕ, z, t), (22)

summation covering all pairs of indices(m,n), corresponding to real values of axial
wave numbers.

To summ up
• in a rigid cylindrical duct the plane wave, with the cut-off frequency equal to zero,

is the principal mode,
• in a soft cylindrical duct the principal mode is the mode withm = 0, n = 1, thus

only waves of angular frequenciesω greater than2.405 c/a are transferred along
the duct.

2.1.2. Soft and rigid rectangular ducts

Consider a rectangular duct aligned along thez axis which walls are described in
Cartesian coordinates as follows:x = 0, 0 ≤ y ≤ b, x = a, 0 ≤ y ≤ b, y = 0,
0 ≤ x ≤ a, y = b, 0 ≤ x ≤ a and assumea ≥ b.

Solutions of Helmholtz equation (7) obtained by means of variables separation
method, with appropriate boundary condition – Neumann type(9) for rigid and Dirichlet
type (8) for soft duct, are given by

Φmn(x, y, z, t) = amn cos
mπx

a
cos

nπy

b
ei(γmnz−ωt), (23)

Φ̃mn(x, y, z, t) = amn sin
mπx

a
sin

nπy

b
ei(γ̃mnz−ωt), (24)
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where

βmn = β̃mn = π

√(m
a

)2
+
(n
b

)2
, (25)

γmn = γ̃mn =

√
k2 −

(mπ
a

)2
−
(nπ
b

)2
. (26)

For rectangular duct, rigid or soft, the axial wave numbers are the same, while ve-
locity potentials are products of two even (cosine) or odd (sine) functions.

2.2. Electromagnetic waves Hertz potentials in conductingduct

Consider an infinite conducting duct filled with isotropic and homogenous medium
transferring electromagnetic waves. To find the field insidethe duct one can solve the
set of Maxwell’s equations [1]. As it is not an easy way to obtain the solution, scalarφ
and vectorialA potentials of electromagnetic field were introduced, such that [1]

B = ∇×A , (27)

E = −∇φ− ∂A

∂t
, (28)

leading to the gauge Lorentz condition [1]

∇ ·A +
1

c2
∂φ

∂t
= 0, (29)

which ensures theA potential fulfils the wave equation.
Introducing vectorial potentialΠE , called Hertz electric vector or Hertz electric

potential, such that [1]

(i) A =
1

c2
∂ΠE

∂t
,

(ii) φ = −∇ ·ΠE ,

(30)

the Lorentz gauge condition turns into identity, while the Hertz electric potential itself
satisfies the wave equation.

Considering Maxwell’s equations without sources (electric currents or charges) one
can introduce dual potentials [1], called also antipotentialsφ∗, A∗, for which

D = −∇×A∗, (31)

H = −∇φ∗ −
∂A∗

∂t
. (32)

The Lorentz gauge condition

∇ ·A∗ +
1

c2
∂φ∗
∂t

= 0, (33)
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turns into identity, if a new quantityΠH , called the magnetic Hertz potential or the
magnetic Hertz vector, is introduced in a following way

(i) A∗ =
1

c2
∂ΠH

∂t
,

(ii) φ∗ = −∇ ·ΠH .

(34)

The magnetic Hertz potential fulfills the wave equation.
The Hertz potentials, electricΠE and magneticΠH , are adequate for expressing

the electromagnetic field in limited area, such as ducts. It results from the following
features of the electromagnetic field in duct [19]:
• the electromagnetic wave field in duct is not transversal, but has also longitudinal

component, along the duct axis,
• any wave in duct could be expressed as a superposition of TM (Transversal Mag-

netic) and TE (Transversal Electric) waves,
• TM waves, called also E-waves, with longitudinal componentof the electric field

E nonequal zero are described by the electric Hertz potentialΠE = [0, 0, ΠE ],
• TE waves, called also H-waves, with longitudinal componentof the magnetic

field H nonequal zero are described by the magnetic Hertz potentialΠH =
[0, 0, ΠH ].

According to (27), (28) and (30), the electromagnetic field vectors of the E-wave
(TM) are equal to

E = −∇φ− ∂A

∂t
= − 1

c2
∂2ΠE

∂t2
+∇(∇ ·ΠE), (35)

B = ∇×A =
1

c2
∇× ∂ΠE

∂t
, (36)

while theadequateboundaryconditionfor conductingsurface,derivedfrom theMaxwell
equations [1], takes the form

ΠE |Σ = 0, (37)

and is identical with the boundary condition in a soft acoustic duct (8).
The electromagnetic field vectorsD, H of the H-wave (TE), expressed by means of

the magnetic Hertz potentialΠH, according to (31), (32) and (34), are given by

D = −∇×A∗ = − 1

c2
∇× ∂ΠH

∂t
, (38)

H = −∇φ∗ −
∂A∗

∂t
= ∇

(
∇ ·ΠH

)
− 1

c2
∂2ΠH

∂t2
, (39)

with the boundary condition on conducting surface

∂ΠH

∂n

∣∣∣∣
Σ

= 0, (40)

in which one can recognize the boundary condition for acoustic waves in a hard duct (9).
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Fig. 3. Electromagnetic waves in cylindrical duct: TM (Transversal Magnetic) waves, called also E-waves
and TE (Transversal Electric), called also H-waves.

Thus, the solutions obtained just far for hard and soft ductsare, in parallel, solutions
for electromagnetic waves of both types. The electric HertzpotentialΠE

mn, correspond-
ing to the waveEmn has the form of acoustic potential̃Φmn of the mode(m,n) in a
soft duct, while the magnetic Hertz potentialΠH

mn corresponding to the waveHmn has
the form of acoustic potentialΦmn of the mode(m,n) in a hard duct, what allows to
transpose the solutions obtained for acoustic wave modes onto electromagnetic ones.

The derived acousto-electromagnetic analogies are as follows

ΠE
mn ↔ Φ̃mn, ωE,cr

mn = ω̃ cr
mn, (41)

ΠH
mn ↔ Φmn, ωH,cr

mn = ωcr
mn, exept for ωcr

00 . (42)

It should be emphasized that the analogy between description of acoustic and elec-
tromagnetic waves in infinite ducts occurs on a level of potentials – acoustic velocity po-
tential in soft or rigid duct and Hertz potential of electricor magnetic type in conducting

a)

b)

c)

Fig. 4. Structures, in which the electromagnetic plane wavecan propagate: parallel planes (a), pair of
cylinders (b), transmission line (c).
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duct. Waves of both types differ substantially – the acoustic wave is described by a scalar
function of acoustic pressurep, while the electromagnetic wave is defined by field inten-
sity vectorsE, H. The most important difference is, that contrary to the plane acoustic
wave in a hard duct, the electromagnetic plane wave do not propagates in a conducting
duct (the corresponding mode potential gives zero value of electromagnetic field).

In cylindrical duct theH11 mode is the principal mode between all waves (TM
and TE) and has the lowest cut-off frequencyωcr

min = 1.84c/a, so waves for which
λ/2a < 1.71 are transfered along the duct. Between TM (E-type) waves theE01 mode
has the lowest cut-off frequencyωE,cr

min = 2.41c/a, what givesλ/2a < 1.31.
In rectangular duct theE0n and theEn0 waves do not exist (compare Eq. (24)),

the fundamental mode of all waves is theH10 mode (assuminga > b), with critical
frequencyωcr

min = πc/a and critical wavelengthλcr = 2a. The lowest critical frequency
between E-waves has theE11 wave.

The electric Hertz potential is connected with polarization [1]. For electric dipole of
momentump it is equal

ΠE(r, t) =
1

4πε0
p
ei(kR−ωt)

R
, (43)

whereR means distance between the field point and the center of a dipole.
The magnetic Hertz potentialΠH is connected with magnetization of a medium [1].

For the magnetic dipole of momentumm it is equal to

ΠH(r, t) =
µ0

4π
m
ei(kR−ωt)

R
. (44)

3. Further acousto-electromagnetic analogies

Below some other analogies, useful in depicting fields of both kinds in ducts are
developed. They refer to decomposition of duct wave into plane waves, impedance con-
cept and power transmission.

3.1. Field potential as a superposition of plane waves. Group and phase velocities

In describing some physical phenomena, as for instance the wave reflection at a
boundry between two media, it is convenient to depict potential of a circumferential
mode as a summ of plane waves and apply formulae governing reflection of a plane
wave.

If βmn means the radial wave number in a circular duct, the(m,n) mode potential
takes the form

Π(x, y)

Φ(x, y)

}
=

2π∫

0

f(α) eiβmn(x cos α+y sin α) dα, (45)

where
f(α) = 2πim eimα, (46)
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or, in the cylindrical co-ordinatesx = ̺ cosϕ, y = ̺ sinϕ,

Π(̺, ϕ)

Φ(̺, ϕ)

}
= 2πim

2π∫

0

eimα eiβmn̺ cos(α−ϕ) dα . (47)

Application of the integral form of the Bessel function [20]

Jm(x) =
i−m

2π

2π∫

0

eimα eix cos α dα , (48)

leads to expression for the(m,n) mode potential

Π(̺, ϕ)

Φ(̺, ϕ)

}
= eimϕ Jm(βmn ̺). (49)

The wave of longitudinal wave numberγmn and radial wave numberβmn is rep-
resented by an infinite summ of plane waves, what is pictured in Fig. 5. In rectan-
gular duct, decomposition of mode(m,n) into a summ of plane waves is even eas-
ier and is based on expressing the sine or cosine function by means of Euler formula
eix = cosx+ i sinx. In general, the mode is a summ of four plane waves [18], reduced
for Hm0 andH0n modes to two (Em0 andE0n waves do not exist in rectangular duct).

Fig. 5. Directions of propagation of plane waves constituting the cylindrical wave – wave vectors are
displayed on a cone.

The wave phase velocitycϕ and group velocitycg could be denoted by the cut-off
angular frequenciesωcr

cϕ =
c√

1−
(
ωcr

ω

)2
, (50)

cg = c ·

√

1−
(
ωcr

ω

)2

, (51)

their product is equal toc2.
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3.2. Wave impedance

There are some others similarities between the equations describing the propagation
of sound and electromagnetic waves in ducts. Here the impedance concept is to be
developed.

In mechanical systems (for example waves on a rod) impedanceis a ratio of force
to particle velocity, in electrical circuits – electric impedance is a ratio of voltage to
current.

For sound waves the acoustic wave impedance is the quotient of acoustic pressure
and particle velocity [14]

Zak =
p

v
. (52)

The value obtained for a plane wave propagating in a free space is called the character-
istic impedance of the medium and for the sound wave it turns to beZak

c = ρ0c, where
ρ0 is the medium density.

If a real or hypothetic surface is introduced, then the acoustic impedance referred to
the surface is expressed as

Zak =
p

vn
, (53)

wherevn is the particle velocity component, normal to the surface.
For acoustic waves in ducts, apart from the plane wave, the acoustic pressure and

velocity are functions of displacement and thus it seems that to compute the impedance
one should apply the general definition of the impedance, as ratio of the powerP trans-
mitted through the duct cross-section to product of the meansquare of particle velocity
〈v2

n〉 and the duct surfaceS

Z =
P

S〈v2
n〉
, (54)

where

〈v2
n〉 =

1

S

〈∫

S

vnv∗
n ds

〉

T

, (55)

where〈 〉T denotes mean value versus time.
Anyhow, for a single mode(m,n) propagating along the duct, the acoustic pressure

is proportional to the acoustic velocityvn in every point of the duct cross-section, thus
impedance of the hard and soft waveguide can be calculated according to (53)

Zak = Zak
c

1√

1−
(
ωcr

ω

)2
, (56)

whereωcr is given by (17) for hard and by (19) for soft duct.
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For electromagnetic waves the wave impedance is defined as a quotient of two nor-
mal to the direction of propagation, components of the electric and magnetic field [6]

ZEM =
E⊥

H⊥
=
|E⊥|ei argE⊥

|H⊥|ei argH⊥

, (57)

In homogenous, isotropic, nondissipative and nonconductive unlimited medium the
electromagneticplanewaveimpedance,calledthecharacteristicimpedanceof amedium
ZEM

c is expressed by dielectricε and magneticµ constants

ZEM
c =

√
µ/ε = 1/εc. (58)

Calculating, along with equations (35), (36), (38) and (39), the adequate components
of the electricE and the magneticH field intensity, the waveguide impedance of the
H-wave and the E-wave turns to be

ZH =
ZEM

c√

1−
(
ωH,cr

ω

)2
, (59)

ZE = ZEM
c

√

1−
(
ωE,cr

ω

)2

, (60)

where, according to (41), (42)ωH,cr = ωcr, ωE,cr = ω̃cr are cut-off frequencies.
To summ up, discussion of the waveguide impedance leads to the following conclu-

sions
• for the TE and sound waves the waveguide impedance is a quotient of the char-

acteristic impedance of a mediumZc and a term
√

1− (ωcr/ω)2, while for the
TM waves it is a product of these two terms, whereωcr is the cut-off angular
frequency of a given type of wave,
• if ω → ωcr andω > ωcr the TM and sound waves impedance tends to infinity,

the TE waves impedance goes to zero,
• for ωcr > ω the impedance of a nondissipative medium becomes imaginary(re-

actance).
In the preceding discussion the waveguide has been assumed to be infinitely long.

If the waveguide is finite and is attached atz = l to some device of impedanceZ(l) =
Zl (the waveguide outlet can be regarded as such a load) then, analyzing the plane
wave reflection phenomena and having in mind the assumed timedependencee−iωt,
the impedance atz = 0 is equal to [6]

Z(0) = Zc
Zl − iZc tan kl

Zc − iZl tan kl
, (61)

whereZc means the adequate characteristic impedance.
The last formula is basic and frequently applied in the theory of acoustic and electro-

magnetic systems – transmission lines and electrical circuits and attends for calculating
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the wave velocity or material constants. It is derived by considering reflection coeffi-
cient of a plane wave at a plane interface between two media, which takes the same
form for sound and electromagnetic waves [6]. It does not applies to empty conducting
ducts, as they do not carry plane waves (TEM).

3.3. Power transmission in ducts

Wave, propagating through medium, carries energy. In electromagnetic field the
complex energy flux is described by the Poynting vectorS [1]

S = E×H∗ . (62)

It points in the direction of energy flow and its magnitude is the power per unit area
crossing a surface that is normal to it. It is also called the surface power density or wave
intensity. The real part of the time-averaged power densityis given by

Re 〈S〉T =
1

2
Re (E×H∗). (63)

The averaged complex power of electromagnetic wave transmitted through the surface
turns to be

PEM =
1

2

∫

S

(E×H∗) · ds, (64)

and can be expressed by means of wave impedance

PEM =
1

2

∫

S

E⊥H
∗
⊥ ds =

1

2

∫

S

ZEM|H⊥|2 ds. (65)

In acoustics, the complex power flux density is a product of the acoustic pressure and
conjugate particle velocity [14]

I(t) = pv∗, (66)

thus the real part of its time-average value, called sound intensity vector, is equal to

Re 〈I〉T =
1

2
Re (pv∗). (67)

The averaged power transmitted through the surface

Pak =
1

2

∫

S

I · ds =
1

2

∫

S

pv∗ · ds, (68)

can be, according to (53), expressed by means of the acousticimpedance

Pak =
1

2

∫

S

pvn ds =
1

2

∫

S

Zak|vn|2 ds. (69)

Thus, the consecutive acousto-electromagnetic analogieshave been derived

p←→ E⊥ ,

vn ←→ H⊥ ,
(70)
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whereE⊥, H⊥ mean components normal to the direction of propagation (in assumed
geometry to thez-axis), whilevn means particle velocity normal to the cross-section
area, thusvn = vz.

In case of multimodal excitation, when more than one mode propagates along the
duct, the wave potential is a summ of subsequent modes potential, as is expressed in
(22). The power transmitted is a sum of powers of consecutivemodes, even though
power is not, in general, the additive quantity.

Calculatingpoweralongto (69)for soundwavesand(65)for electromagneticwaves,
one obtains terms of the form [17]

2π∫

0

eimϕeim′ϕ dϕ ∼ δmm′ ,

(71)a∫

0

Jm(βmn̺)Jm′(βm′n′̺)̺d̺ ∼ δmm′δnn′ ,

if βmn = µmn/a (hard duct, H-waves) orβmn = νmn/a (soft duct, E-waves). As a
result one obtains

P
(
∑

m,n

Φmn

)
=
∑

m,n

P(Φmn), (72)

where in the last formulaΦmn stands for potential of(m,n) mode of sound or electro-
magnetic wave. In conclusion, consecutive modes may be treated as excited by inde-
pendent (incoherent) sources.

Theexpliciteformula for sound waves in hard duct is given by [17]

〈P〉T =
1

2
πa2ρ0ck

[
∑

m=0

∑

n=1

γmn|Amn|2
(

1− m2

µ2
mn

)
+ k|A00|2

]
, (73)

the last term representing the plane wave and summation running for all real values of
axial wave numbersγmn.

4. Conclusions

Despite all differencies, there are some basic aspects of wave propagation in ducts
common for sound and electromagnetic waves, for which the unified waveguide theory
may be developed and the method of analogies applied.

The most important of these aspects are:
• analogies between velocity potential in hard and soft acoustic duct and the Hertz

potentials of electromagnetic waves in conductive duct,
• decomposition of wave mode potential into plane waves,
• additivity of power transmitted along the duct in case of multimodal excitation,
• analogies between acoustic and electromagnetic wave impedance allowing for

coherent description of in-duct phenomena.
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The derived analogies may be helpful in applying solution obtained for one kind of
waves to the other, still having in mind all essential differencies.
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