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In this paper, the computer modelling application based on the modal expansion
method is developed to study the influence of a sound source location on a steady-
state response of coupled rooms. In the research, an eigenvalue problem is solved
numerically for a room system consisting of two rectangular spaces connected to one
another. A numerical procedure enables the computation of shape and frequency of
eigenmodes, and allows one to predict the potential and kinetic energy densities in a
steady-state. In the first stage, a frequency room response for several source positions
is investigated, demonstrating large deformations of this response for strong and
weak modal excitations. Next, a particular attention is given to studying how the
changes in a source position influence the room response when a source frequency
is tuned to a resonant frequency of a strongly localized mode.
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energy densities, localization of modes.

1. Introduction

Theoretical and numerical predictions of the sound field in concert halls, the-
atres and sacral objects have recently attracted considerable attention within
the field of architectural acoustics (Gołaś, Suder–Dębska, 2009; Kamisiński
et al., 2009; Kosała, 2009), since this interest is connected with a growing de-
mand for the acoustical comfort in public spaces. The acoustic behaviour of
coupled rooms has also been studied in the context of the architectural acoustics
(Ermann, 2005; Bradley, Wang, 2010) because coupled-volume systems, com-
posed of two or more spaces that are connected through acoustically transparent
openings, can be found in various buildings or constructions. The orchestra pit
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and balconies in opera houses or theatres coupled to the main floor as well as
churches with several naves and chapels are typical examples of architectural
objects with a structure of coupled rooms (Martellotta, 2009). In order to
obtain a better understanding and control of the acoustics in such room systems,
it is vital to have an efficient theoretical or computational method for predicting
a structure of sound field in coupled rooms. Nowadays, many numerical methods
can be used to estimate the sound field in coupled rooms, like diffusion-equation
models (Billon et al., 2006; Xiang et al., 2009), statistical-acoustic models
(Summers et al., 2004), the geometrical acoustics (Summers et al., 2005; Pu
et al., 2011) and the modal expansion method (Meissner, 2007, 2008b, 2010),
also known as the modal analysis. The geometrical acoustics applies at best to
rooms with dimensions large compared to the wavelength. Moreover, this method
neglects diffraction phenomena since a propagation in straight lines is its main
postulate. A theory that fully represents the phenomenology of the sound field
(but more difficult) is the modal analysis because it bases upon the wave acous-
tics. The wave approach can be used in a low-frequency range, thus this theory
has a practical application for rooms with dimensions comparable with the sound
wavelength.
In the low-frequency limit, the coupled-room systems exhibit some interest-

ing effects like: the mode degeneration due to modification of the coupling area,
confinement of an acoustic energy in a part of room system, called the local-
ization of modes, and a considerable difference between a rate of sound decay
in early and late stages of the reverberant process, known as a double sloped
decay. These phenomena have been investigated by the author in recent papers
(Meissner, 2008c, 2009a,b,c, 2011). The current work focuses on the examina-
tion of an effect of a sound source location on a steady-state response of coupled
rooms. The research explores the geometry that often occurs in the reality when
two rectangular subrooms with the same heights are connected to one another.
A room response is described theoretically by means of a modal expansion of
the sound field for a weakly damped room system. Eigenfunctions, resonant fre-
quencies and modal damping coefficients were calculated numerically by the use
of a computer implementation that exploits the forced oscillator method.

2. Room acoustics in low-frequency range

In the low-frequency range, the sound pressure field inside an air-filled enclo-
sure is determined via a solution of a three-dimensional wave equation with speci-
fied initial and boundary conditions. In this approach, the acoustic room response
is found as a superposition of individual responses of normal acoustic modes gen-
erated inside the room by a harmonic sound source (Kuttruff, 1973). Acoustic
modes are inherent properties of the enclosure, and are determined by a room
geometry and impedance conditions at the room walls. Each mode is defined by
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the natural (resonant or modal) frequency ωn, the modal damping coefficient rn
and the mode shape specified by the eigenfunction Φn(r), where r = (x, y, z)
determines the position of the observation point and n = 0, 1, 2, . . . , N . The nat-
ural number N determines the amount of modes, that should be included in the
room response. It depends on the total room absorption A because the range of
modal frequencies is bounded from above by the frequency (Schroeder, 1996)

fs = c
√

6/A, (1)

where c is the sound speed. Below fs the modal density is low and particu-
lar modes can be decomposed from the room response. Thus, in multi-mode
resonance systems the frequency fs marks the transition from individual, well-
separated resonances to many overlapping modes. The functions Φn are mutually
coupled through the impedance condition on absorptive walls

∂p

∂n
= − ρ

Z

∂p

∂t
, (2)

where p(r, t) is the sound pressure, ρ is the air density, Z is the wall impedance
and ∂/∂n is the derivative taken in a direction normal to the surface of the
room walls. However, in the low-frequency limit typical materials covering room
walls are characterized by a low absorption: ℜe(Z)/ρc ≫ 1, thus it is possible
to assume that the shapes of modes are well approximated by the uncoupled
eigenfunctions Φn determined for hard room walls (Dowell et al., 1977).
Taking all this into account and assuming that a source term in the wave

equation has the form −q(r) cos(ωt), where q(r) and ω are the volume source
distribution and the source frequency, the sound pressure in a steady-state can
be determined by (Meissner, 2008a)

p(r, t) =

N∑

n=0

[An cos(ωt) +Bn sin(ωt)]Φn(r), (3)

An =
c2(ω2

n − ω2)Qn

(ω2
n − ω2)2 + 4r2nω

2
, Bn =

2c2ωrnQn

(ω2
n − ω2)2 + 4r2nω

2
, (4)

where Qn are factors describing the sound source strength

Qn =

∫

V

q(r)Φn(r)dv, (5)

where V is the room volume, and the modal damping coefficients rn are deter-
mined by

rn =
ρc2

2

∫

S

Φ2
n

Z
ds, (6)
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where S is the surface of all the room walls. The functions Φn are mutually
orthogonal and are normalized in the volume V by the relation

∫

V

ΦmΦn dv = δmn, (7)

where δmn = 1 for m = n and δmn = 0 for m 6= n. A zero-order mode is the
so-called Helmholtz mode having the resonant frequency ω0 equal to zero and the
following normalized eigenfunction: Φ0 = 1/

√
V , which corresponds to a trivial

solution of the eigenvalue equation

∇2Φn +
(ωn

c

)2
Φn = 0. (8)

In a steady-state, a sound source located in a room produces the acoustic
energy field with a spatial density that depends on the room shape, the surface
impedance on the room walls and the sound source parameters. The potential
acoustic energy is stored in the form of pressure, while the kinetic one is mani-
fested as a particle velocity. In terms of these quantities, the potential and kinetic
energy densities are written as

wp(r) =
1

2ρc2
〈
p2
〉
, wk(r) =

1

2
ρ〈u · u〉, (9)

where 〈·〉 is the time-averaging, u is the particle velocity vector, and a dot denotes
the scalar product. After using Eqs. (3), (4) and the momentum equation

ρ
∂u

∂t
= −∇p, (10)

the potential energy density wp(r) can be expressed as

wp(r) =
1

4ρc2





[
N∑

n=0

AnΦn(r)

]2
+

[
N∑

n=0

BnΦn(r)

]2
 (11)

and the kinetic energy density wk(r) as

wk(r) =
1

4ρω2



(

N∑

n=0

An
∂Φn

∂x

)2

+

(
N∑

n=0

An
∂Φn

∂y

)2

+

(
N∑

n=0

An
∂Φn

∂z

)2

+

(
N∑

n=0

Bn
∂Φn

∂x

)2

+

(
N∑

n=0

Bn
∂Φn

∂y

)2

+

(
N∑

n=0

Bn
∂Φn

∂z

)2

 . (12)

These equations indicate that time-averaged energetic quantities of the acoustic
field depend directly on the modal parameters: ωn, rn, Φn and the source fre-
quency ω, and indirectly on the position and spatial distribution of the sound
source through the parameter Qn.
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When a room is excited by a point sound source with the power P , the
source function q(r) has the form of delta function i.e. q(r) = Qδ(r− r0), where
r0 = (x0, y0, z0) determines the position of source point and the parameter Q is
given by (Kinsler, Frey, 1962)

Q =
√

8πρcP . (13)
In this case, the potential and kinetic energy densities are as follows:

wp(r) =
Q2

4ρc2





[
N∑

n=0

anΦn(r0)Φn(r)

]2
+

[
N∑

n=0

bnΦn(r0)Φn(r)

]2
, (14)

wk(r) =
Q2

4ρω2
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]2
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∂z

]2
, (15)

where an = An/Qn and bn = Bn/Qn. Since the right-hand side of Eq. (14) is
a symmetric function of the sound source and the observation points coordinates,
in the case of the potential energy density the reciprocity principle is valid. This
means that when we put the source at r, we observe at point r0 the same potential
energy density as we did before at r, when the source was located at r0. As it
is evident from Eq. (15), the reciprocity principle is not satisfied for the kinetic
energy density.

3. Computer simulation of steady-state room response

A computer program written in Pascal language was developed for this re-
search to investigate the influence of the sound source position on the potential
and kinetic energy densities in a steady-state. The numerical simulation was per-
formed for the enclosure consisting of two connected subrooms. A shape of this
room system is shown schematically in Fig. 1. This geometry is an example of
the situation often occurring in practice when two rectangular subrooms with
the same heights are joined together in such a way that an energy can be trans-
mitted between them, thus they constitute a two-room coupled system. In the
numerical study, subrooms had the height h of 3 m and their lengths and widths
were the following: l1 = 5.7 m, l2 = 4 m, w1 = 8 m and w2 = 5 m. The opening
realizing an acoustic coupling between subrooms had the height h, the width w
of 2 m and the thickness d of 0.3 m. The room system was excited by a point
sound source having the power P of 0.1 W.
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Fig. 1. Irregularly shaped enclosure consisting of two connected rectangular subrooms
denoted by A and B.

In the simulation it was assumed that the walls of the subrooms are covered
by an absorbing material providing a low sound damping, and the random-
absorption coefficient α characterizes the damping properties of this material.
For the sake of the model simplicity, the wall impedance corresponding to this
absorption coefficient was purely real, i.e. the mass and stiffness of the absorbing
material were neglected. This is equivalent to the damping of a sound wave with
no phase change upon reflection. In this case, for a given value of the coefficient
α, the wall impedance on the subrooms’ walls was found from the equation
(Kinsler, Frey, 1962)

α =
8

ξ

[
1 +

1

1 + ξ
− 2

ξ
ln(1 + ξ)

]
, (16)

where ξ = R/ρc is the impedance ratio and R is the wall resistance.
In the case of an irregular room geometry, the first step towards determin-

ing the room response in a steady-state is a computation of the eigenfunctions
Φn, the resonant frequencies ωn and the modal damping coefficients rn. Since
a lightly damped room is considered, the functions Φn may be approximated by
eigenfunctions computed for perfectly rigid room walls. Thus, the expression for
Φn can be written as

Φn(r) =

Θk cos

(
πkz

h

)
Ψm(x, y)

√
h

, (17)

where k = 0, 1, 2, . . . ,K and Θk = 1 for k = 0 and Θk =
√
2 for k > 0. The

eigenfunctions Ψm, m = 0, 1, 2, . . . ,M , are normalized over the room horizontal
cross-section and Ψ0 = 1/

√
Sc, where Sc = V/h is the surface of this cross-

section. The distributions of Ψm were found by means of a direct solution of the
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two-dimensional wave equation by a numerical procedure employing the forced
oscillator method. This method is based on the principle that the response of
a linear system to a harmonic excitation is large when the driving frequency is
close to the resonant frequency (Nakayama, Yakubo, 2001). Using Eq. (17) in
Eq. (8) it is easy to find that a formula for the resonant frequencies ωn is as follows

ωn =

√(
πkc

h

)2

+ ω2
m, (18)

where ωm are the resonant frequencies corresponding to Ψm. When the eigenfunc-
tions Ψm were known, ωm were calculated from the eigenvalue equation, ∇2Ψm+
(ωm/c)2Ψm = 0, multiplying it by Ψm, integrating and applying the orthogonal
property. Next, using Eq. (6) the modal damping coefficients rn were computed.
The computer simulation of a steady-state room response was performed for

the absorption coefficient α of 0.1. Since the total room absorption A is simply
equal to αS, where, as earlier, S denotes the surface of all the room walls, then,
using Eq. (1), it is easy to calculate that the frequency fs, corresponding to this
value of α, is 165 Hz, approximately. Below this frequency 130 acoustic modes
were found. The distribution of the modulus of the eigenfunction Ψm for some
modes is plotted in Fig. 2. These graphs illustrate four fundamental shapes of
resonant modes. In the first case (Fig. 2a), the acoustic mode may be identified
as a delocalized mode because its energy is reasonably uniformly distributed

Fig. 2. Modulus of the eigenfunction Ψm for the mode number m:
a) 27, b) 34, c) 36, d) 45.
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inside the room. On the other hand, the next three modes are recognized as
localized modes since their energy is concentrated in different parts of the room
system: the subroom A (Fig. 2b), the subroom B (Fig. 2c) and a portion of the
subroom A (Fig. 2d). Confinement of the acoustic energy in a restricted part of
rooms, known as the mode localization, is characteristic for systems of coupled
rooms and enclosures with an irregular geometry (Meissner, 2005), because in
rectangular rooms all eigenmodes are delocalized.
When a lightly damped room is excited by the harmonic point source, a sound

signal received at the observation point is dominated by an individual response
of the normal acoustic mode whose modal frequency is very close to the source
frequency ω. Thus, if the source frequency varies, the acoustic signal perceived
at this point may change considerably because the response of a single mode
depends on the value and slope of its eigenfunction at the source and observation
points, as it results from Eqs. (14) and (15). This is clearly confirmed by the

Fig. 3. Frequency dependence of the potential energy density wp at the observation point
x = 3 m, y = 5 m, z = 1.8 m for the source positions (in meters): a) x0 = 2, y0 = 6, z0 = 1,

b) x0 = 2, y0 = 3, z0 = 1, c) x0 = 5, y0 = 3, z0 = 1, d) x0 = 8, y0 = 3, z0 = 1.
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simulation data depicted in Fig. 3 showing, for four different source positions, an
evolution of the potential energy density wp with the source frequency f = ω/2π.
As it may be seen, there is a substantial influence of the source position on the
value of wp. However, more interesting from the practical point of view is the
finding that the frequency response of the room is highly deformed by modes
which strongly respond to a sound excitation because it manifests itself as a high,
narrow peak in the frequency dependence of wp.
Now, if simulation results from Fig. 3b are shown in a logarithmic scale, one

can easily discover that there are some modes which, for a given position of the
source and observation points, respond very weakly to a sound excitation. In
Fig. 4 such examples are modes with the mode number n of 3, 78, 107 and 124.
Equation (14) shows that, for the potential energy density, the weak modal re-
sponse occurs when the absolute value of the product Ψm(x0, y0)Ψm(x, y) has
a minimum. In the extreme case this value may be equal to zero, since the
eigenfunction Ψm possesses both positive and negative values due to the or-
thogonality property. Obviously, the number of sign changes of Ψm increases for
the growing mode number m. This regularity is illustrated by graphs in Fig. 5,
where solid lines indicate zeros of the eigenfunction Ψm for different acoustic
modes.
As mentioned previously, localization of eigenmodes is a phenomenon inti-

mately associated with systems of coupled rooms. This effect is of special interest
in this study because the location of a sound source in a part of the room where

Fig. 4. Frequency dependence of the potential energy density wp at the
observation point x = 3 m, y = 5 m, z = 1.8 m for the source position
x0 = 2 m, y0 = 3 m, z0 = 1 m. Numbers above maxima and below

minima represent the mode number n.
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Fig. 5. Lines indicating zeros of the eigenfunction Ψm for the mode number m:
a) 10, b) 20, c) 35, d) 50.

the modal energy is very small may result in large decreases in the potential and
kinetic energy densities. This problem will be analysed in detail for a mode with
the mode number n of 73, which was found to be localized in the subroom A.
The modulus of the eigenfunction Ψm for this mode is depicted in Fig. 2b. The
results of computer simulations of wp and wk in the observation plane, situated
at a constant height from the floor, are shown in Figs. 6 and 7. In the simulation
it was assumed that a source frequency is tuned to the resonant frequency of
the mode and there are two positions of the source: one in the subroom A and
another one in the subroom B. Figures 2b and 6a show that placing of the sound
source at an appropriate point of the subroom A results in a strong modal re-
sponse because the distribution of the potential energy density wp in (x, y) plane
reproduces the square of the eigenfunction Ψm corresponding to the mode 73.
On the other hand, the room response is very weak when the source is situated
in the subroom B where the energy of this mode is small (Fig. 6b). Moreover,
the distribution of wp looks completely different from the previous case because
the room response is now created by the surrounding modes. The kinetic energy
density wk, as seen in Fig. 7, is several dozen times smaller than the potential
one, and according to Eq. (15), in the case of strong room response, its distri-
bution in (x, y) plane is proportional to (∂Ψm/∂x)2 + (∂Ψm/∂y)2, where Ψm is
the eigenfunction for the mode 73. This means that maxima of wp correspond to
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a)

b)

Fig. 6. Potential energy density wp in the observation plane z = 1.8 m for the source
positions (in meters): a) x0 = 2.8, y0 = 4.2, z0 = 1, b) x0 = 7.5, y0 = 2, z0 = 1. The

source frequency is 128.6 Hz.

minima of wk and vice versa. Of course, as earlier, in the case of the weak room
response the distribution of wk looks quite different from the case of the strong
response (Fig. 7b). In order to illustrate more clearly the differences between
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a)

b)

Fig. 7. Kinetic energy density wk in the observation plane z = 1.8 m for the source
positions (in meters): a) x0 = 2.8, y0 = 4.2, z0 = 1, b) x0 = 7.5, y0 = 2, z0 = 1. The

source frequency is 128.6 Hz.

the strong and weak room responses, in Fig. 8 the dependencies of wp and wk

on the coordinate y for a constant value of the coordinate x are shown. For the
strong response, the intense wavy changes in wp and wk are noted, because for
the mode considered acoustic resonance is excited between the walls separated
by the distance w1 (Fig. 1). The weak response also has a wave-like nature but its
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Fig. 8. Changes in the potential and kinetic energy densities wp and wk with the
coordinate y for x = 2 m, z = 1.8 m and the source positions (in meters): x0 = 2.8,
y0 = 4.2, z0 = 1 (solid lines), x0 = 7.5, y0 = 2, z0 = 1 (dashed lines). The source

frequency is 128.6 Hz.

maximal amplitude is several dozen times smaller as compared to this amplitude
for the strong response.

4. Summary and conclusions

In this paper, the modal expansion method is used to examine the effect
of the sound source location on the steady-state response of coupled rooms in
the low-frequency range. In the theoretical part, underlying assumptions of the
modal expansion method are briefly presented and influence of modal and sound
source parameters on the potential and kinetic energy densities is discussed. De-
tails of the numerical method, together with the results of computer simulations,
are presented in the next part of the work. The room system under consideration
consisted of two connected rectangular subrooms denoted by A and B, and in
numerical simulations, a configuration of the sound-absorbing material on the
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room walls was assigned to the system. The simulation results have shown that
in the case of a harmonic excitation the sound signal received at the observation
point is dominated by an individual response of the normal acoustic mode whose
frequency is close to the source frequency. Therefore, if the source frequency
varies, the acoustic signal perceived at this point changes considerably because
the response of a single mode depends on the value and slope of its eigenfunc-
tion at the source and observation points. It was found that for different source
positions this results in large deformations of the frequency room response for
strong and weak modal excitations because they manifest themselves either as
high peaks or as large drops in the response. The influence of the source position
on the room response is especially evident for localized modes. This problem was
examined in detail for the mode strongly localized in the subroom A. Simulations
revealed that when a source frequency is tuned to a resonant frequency of this
mode placing of the point source inside the subroom A may result in the strong
room response, while location of the source inside the subroom B, where there is
a small concentration of the modal energy, always leads to a very weak response.
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