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In this paper an active multimodal beam vibration reduction via one actuator is considered. The
optimal actuator distribution is analyzed with two methods: an exact mathematical principles and the
LQ problem idea. It turned out that the same mathematical expressions are derived. Thus, these methods
are equivalent.
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1. Introduction

There are several kinds of reduction: a-reduction
([a]ctive) – a special case of a-reduction is p-reduction
([p]rotection) – 0-reduction (lack of reduction) and i-
reduction ([i]ntensify vibration) (Brański, Lipiński,
2011). There are also many structures of which the
vibrations are reduced via actuators, from the sim-
ple beam (Augustyn et al., 2014; Brański, 2011),
through the plate (Wiciak, 2007) to the very compli-
cated structure (Kozień, Wiciak, 2008).
The vibration reduction of the beam can be per-

formed inter alia in an active manner. The a-reduction,
via actuators, is described for example in (de Silva,
2000; Hansen, Snyder, 1997; Fuller et al., 1997;
Wiciak, 2008). It depends on many factors enumer-
ated in (Bruant, 2010; Brański, Lipiński, 2011;
Brański, 2011). It seems that the most important fac-
tor is the distribution of the actuator on the structure,
because once bonded actuator cannot change the place.
In the recent years, a great number of papers has been
published on this subject, see for example (Guney,
Eskinat, 2007; Bruant, Proslier, 2005; Gupta et
al., 2010; Qiu et al., 2007; Żołopa, Brański, 2014a);
a survey is given in (Bruant et al., 2010; Brański,
2011) and references cited therein.
It has been proved, in own papers, that for separate

modes the most effective distribution of actuators is in

the sub-areas with the largest curvatures. Moreover,
the p-reduction of the vibration is possible (Brański,
Lipiński, 2011; Brański et al., 2010). From math-
ematical point of view, this distribution is called an
optimal one (O-distribution). In (Brański, 2013) it is
proved that the maximum efficiency of p-reduction is
obtained for the O-distribution of the single actuator.
All above considerations are based on the exact

mathematical principles. But it is proved in (Żołopa,
Brański, 2014a) that the same results are obtained if
the LQ problem idea is used. The LQ problem is formu-
lated in the control theory (Bruant et al., 2010) and
repeated in (Żołopa, Brański, 2014a) and references
cited therein. In this theory the boundary problem is
formulated in an abstract Hilbert space and the point
control and the distributed output are considered. As a
criterion minimization of beam deflection at any point
is chosen. In this case it means the optimization LQ
problem.
Focusing on the problem of the optimal distribu-

tion of one actuator, the exact mathematical atti-
tude is applied to the (multimodal) beam vibration,
i.e. not only to one mode but to the sum ones. In
this case the a-reduction is possible (not p-reduction).
The preliminary results are presented in (Żołopa,
Brański, 2014b).
It is very interesting – from a cognitive point of

view – and useful in the future to demonstrate that
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the results obtained via the exact mathematics con-
firm the LQ problem idea. The aim of the paper is
the comparison of these two methods. To do this, one
defines the criterion which allows to find an optimal
location actuator and which does not depend on the
time. It turns out that this optimization problem can
be solved using only numerical method.
The comparison of the methods is on the equa-

tions and expressions level. The numerical results are
depicted in (Żołopa, Brański, 2014b). To the best
authors’ knowledge, the above mentioned problem
treated via the LQ problem idea is not known.
All assumptions are based on (Żołopa, Brański,

2014b). The research object is an uniform, straight and
rectangular cross-section beam simple supported at the
ends. For simplicity, the dynamic effects of the actu-
ator and glue added to the research set are omitted.
The vibration excitation is assumed as the point har-
monic force. The force acts with the frequency between
natural frequencies. All results are achieved for steady
state, i.e. for t = 0.

2. Forced beam vibrations and their reduction

via actuator

The beam simple supported at both ends is consid-
ered (Kozień, 2013; Żołopa, Brański, 2014b); ge-
ometrical data of the beam are: ℓ – length, S – sur-
face of the rectangular cross-section, fe = fe(x, t) =
fx(x)ft(t) – external load of the beam, where ft =
exp(iωqt). The beam vibration equation is given by

EJ
(

D4
xu+ µD4

x(Dtu)
)

+ ρS D2
tu = −fe , (1)

where u = u(x, t) – beam (transverse) deflection at
the point x in time t, E – Young’s modulus, J – mo-
ment of inertia, ρ – density of material, µ – retar-
dation time (damping factor), D4(...) = ∂4(...)/∂x4,
Dt(...) = ∂(...)/∂t.
Boundary conditions take the form

u(x = 0, t) = 0, D2
xu(x = 0, t) = 0,

u(x = ℓ, t) = 0, D2
xu(x = ℓ, t) = 0.

(2)

Besides, initial conditions are assumed to be equal to
zero, i.e. u0 = {u(0, x) = 0, Dtu(0, x) = 0}.
In the steady state, fx(x) is the sum of the con-

centrated excitation force fq and the equivalent force
between beam-actuator f(x) (Fuller et al., 1997;
Kasprzyk, Wiciak, 2007; Kozień, 2013; Żołopa,
Brański, 2014b) – see Fig. 1, hence

fx(x) = −fq δ(x− xq) + f(x)

= −fq δ(x− xq) + (fa δ(x− x1a)

− 2fa δ(x− xa) + fa δ(x+ x2a)), (3)

where fq – force amplitude, xq – excitation point,
x1a = xa − ℓa/2, x2a = xa + ℓa/2, xa – location of
the actuator center.

Fig. 1. Geometry of the beam and external forces.

The solution of the above problem for ν = 1, . . .,
∞ can be given by

ue(x, t) = uq(x, t) + ua(x, t)

=
∑

ν

C∗
e;ν Ie;ν Xν(x) exp(iωqt)

=
∑

ν

Ae;ν Xν(x) exp(iωqt), (4)

where

Ae;ν = Aq;ν ±Aa;ν

= C∗
e;νIe;ν = C∗

e;ν(Iq;ν ± Ia;ν), (5)

C∗
ν =

1

(1 + iµωq)ω2
ν − ω2

q

1

ρS

1

βν
, (6)

βν =

l
∫

0

X2
ν (x)dx, (7)

Iq;ν = −fq
l
∫

0

δ(x − xq)Xν(x)dx

= −fqXν(xq), (8)

Ia;ν = ±faℓ2a κν(xa), (9)

Xν(x) = K2(λνℓ)K2(λνx)−K4(λνℓ)K4(λνx) (10)

and κν(xa) – curvature of Xν(x) at the point x = xa;
the sign κν(xa) arises from the directions of the forces
fa (Brański, 2011), ωq – excitation frequency, Kν(.) –
Krylov functions (Kaliski, 1986), λν – they are the
solution of the equation K2

2(λνℓ)−K2
4(λνℓ) = 0.

Hereunder the steady state of the problem is con-
sidered for t = 0. Because of harmonic type of excita-
tion for steady state instead of Eq. (4) is

ue(x) =
∑

ν

∣

∣C∗
e,ν

∣

∣ Ie,ν Xν(x) sin(ϕν), (11)

where ϕν is solution of the equation

cosϕν =
ω2
ν − ω2

q
(

(ω2
ν − ω2

q)
2 + (µωq ω2

ν)
2
)1/2

. (12)

In the future consideration, the curvature of the beam
κ(x) plays a major part; it is defined as κ(x) =
±D2uq(x) (Brański, Lipiński, 2011; Brański, 2011)
and references cited therein and it is the result of the
excited force fq only.
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3. Optimal actuator location,

mathematical attitude

The task is to find such location of the actuator, de-
scribed with xa, which minimize the efficiency reduc-
tion coefficient E(x), i.e. min

{xa}
E(x) = min

{xa}
ue(x)/fΣ,

4fa = fΣ (Żołopa, Brański, 2014a). This coefficient
is a goal function of the optimal problem. The min-
imization of E(x) means that the a-reduction is the
most effective. If the energy added to the actuator is
constant, the fΣ is constant too and the optimal prob-
lem takes the form

min
{xa}

ue(x) = ue;min(x) (13)

or in explicit form via Eq. (11)

min
{xa}

ue(x) = min
{xa}

∑

ν

∣

∣C∗
e,ν

∣

∣

(

−fqXν(xq)

+ fa ℓ
2
a κν(xa)

)

Xν(x) sin(ϕν), (14)

where the real part of ue(x) is taken into account.
The necessary condition of the minimization is

Daue(x) =
∑

ν

∣

∣C∗
e,ν

∣

∣ fa ℓ
2
aDa κν(xa)

·Xν(x) sin(ϕν) = 0, (15)

where Da(...) = Dxa(...).
The sufficient condition is

D2
aue(x) =

∑

ν

∣

∣C∗
e,ν

∣

∣ fa ℓ
2
aD

2
aκν(xa)

·Xν(x) sin(ϕν) > 0. (16)

The above problem is solved and the results are pre-
sented in (Żołopa, Brański, 2014b).

4. Optimal actuator location based

on the idea of LQ problem

The optimal position of the actuator which depends
on the time is not acceptable from technical point of
view. So it is necessary to formulate another criterion.
For this purpose let us introduce new labels and vari-
ables, i.e.

z1 = ue(x, t), z2 = Dtue(x, t), (17)

hence z1 = z1(x, t), z2 = z2(x, t).
Substituting Eq. (17) into Eq. (1) one obtains an

equations in a matrix form
[

Dtz1

Dtz2

]

=

[

0 I

−γ D4
x −γ µD4

x

] [

z1

z2

]

+

[

0

−1/(ρ S) fx(x)

]

ft(t), (18)

where I is an identity operator and γ = (E J)/(ρ S).

To formally formulate the LQ problem, the bound-
ary problem described in the above section should
be described with abstract model. For this purpose
one introduces an abstract Hilbert state space H :=

D(A
1/2
0 )×L2(0, ℓ), where the operators are defined as

A0 = γ D4
x,

D(A0) =
{

z ∈ L2(0, ℓ) : Dxz, D
2
xz ∈ L2(0, ℓ),

D3
xz, D

4
xz ∈ L2(0, ℓ), z(0) = 0,

z(ℓ) = 0, D2
xz(0) = 0, D2

xz(ℓ) = 0
}

. (19)

In this space the scalar product is defined 〈z, w〉H =

〈z1, w1〉L2(0,ℓ) + 〈A1/2
0 z2, A

1/2
0 w2〉L2(0,ℓ), where

w = [w1, w2]
T. (20)

For fixed time t ≥ 0, the state vector

z(t) = [z1(·, t), z2(·, t)]T (21)

belongs to the space H. So, the set Eq. (18) may be
formulated in an abstract form as

Dtz(t) = Az(t) +Bw(t), y(t) = C z(t). (22)

The state operator A : (D(A) ⊂ H) → H is defined as
follows:

A

[

z1

z2

]

=

[

z2
−γ D4

xz1 − γ µD4
xz2

]

. (23)

the control vector B takes the form

B =

[

0

−1/(ρ S) fx(x)

]

/∈ H. (24)

An output operator is Cz = z1. Because of that one
observes the first state variable, viz. the beam deflec-
tion at the point x and the fixed t. The LQ problem,
with the finite time horizon T , lies in minimization of
the quadratic cost functional

J(u0, w) = ‖w‖2L2(0,T ;C) + ‖y‖2L2(0,T ;C) (25)

over trajectories of Eq. (22).
This functional is not standard for LQ problem

with finite time horizon; it is sligthly modified. For
standard LQ problem, the control theory gives the
answer how to construct optimal regulator to ensure
an asymptotic stability closed loop system and also is
known form of optimal control. It will be the subject
of the future research.
Next, the control is assumed in the form ft =

exp(iωf t) ∈ L2
loc(0,∞;C), C is the complex number

set; note that ft is not optimal. For such ft the value of
the functional is calculated. This value depends, among
others, on actuators distribution. Minimizing the value
of J(u0, ft) one finds the actuators distribution.
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The criterion which allows to find the optimal loca-
tion of actuator (not depending on time) is to minimize
the following function (the value of the cost functional
for particular control ft)

J(xa) =

T
∫

0

|exp(iωqt)|2 dt+
T
∫

0

|ue(x, t)|2 dt

= T +

T
∫

0

|ue(x, t)|2 dt. (26)

As can be seen, the optimal location of actuator does
not depend on the time t and it can be solved using
numerical method. In explicit form J(xa) takes the
form

J(xa) = T + |ue(x)|2 ‖1‖L2

= T +

∣

∣

∣

∣

∑

ν

|C∗
e,ν | (−fqXν(xq)

+ fa ℓ
2
a κν(xa))Xν(x) sin(ϕν)

∣

∣

∣

∣

2

. (27)

To find xa, which minimize J , the necessary condi-
tion is

DaJ(xa) = 2ue(x)

(

∑

ν

|C∗
e,ν | fa ℓ2a

·Da κν(xa)Xν(x) sin(ϕν)

)

= 0, (28)

while the sufficient condition is

D2
aJ(xa) = 2ue(x)

(

∑

ν

|C∗
e,ν | fa ℓ2aD2

a κν(xa)

·Xν(x) sin(ϕν)

)

+2

(

∑

ν

|C∗
e,ν | fa ℓ2aDaκν(xa)

·Xν(x) sin(ϕν)

)2

> 0. (29)

If for some xa, DaJ(xa) = 0, and at this point the
second derivative of J is greater than zero, then the
J takes the local minimum. This case is correct from
mathematical point of view and the necessary condi-
tion Eq. (28) is equivalent to the condition Eq. (15).
Substituting these conditions in Eq. (29) one obtains
Eq. (16). It means that the LQ attempt can be applied
instead of the analytical one.

5. Summary and conclusions

Up to now it is proved for one mode that the op-
timal distribution of one actuator is in the sub area

with the largest curvatures. The considerations are
performed twofold: first, based on the exact mathe-
matical principles and next, based on the LQ problem
idea. As a result, both methods give the same mathe-
matical expressions. So, the numerical calculations are
also the same.
In this paper, the above mentioned methods are

compared in the case of the multimodal beam vibra-
tions. One actuator can be also applied to reduction
multimodal case of vibration. Using formulated crite-
rions, see (14), (26), it is possible to determinate the
best location of actuator. Formula (15) or equivalent
(28) provides the necessary condition. Formula (16) or
equivalent (29) gives the sufficient condition. The same
mathematical expressions are obtained . Thus, both
methods can be applied alternatively. But it seems that
the LQ method is more useful and must not to be as-
sume the moment of time, however the pure mathe-
matical method is more handy.
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