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This paper presents an overview of basic concepts, features and difficulties of the boundary element
method (BEM) and examples of its application to exterior and interior problems. The basic concepts of the
BEM are explained firstly, and different methods for treating the non-uniqueness problem are described.
The application of the BEM to half-space problems is feasible by considering a Green’s Function that
satisfies the boundary condition on the infinite plane. As a special interior problem, the sound field in an
ultrasonic homogenizer is computed. A combination of the BEM and the finite element method (FEM)
for treating the problem of acoustic-structure interaction is also described. Finally, variants of the BEM
are presented, which can be applied to problems arising in flow acoustics.
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1. Introduction

The Boundary Element Method (BEM) is a well-
established numerical technique with successful appli-
cation to the calculation of the sound radiation from
vibrating bodies and to the scattering of sound waves.
By means of the BEM, it is possible to perform “virtual
experiments” in order to study the effect of parameter
variations. Such studies may lead to saving of expenses
since only the optimized configurations need to be con-
structed and measured. In this work, we do not intend
to make a review of the development of the BEM in
acoustics but to demonstrate its features and capabili-
ties by showing the results of such virtual experiments
performed in our recent research projects. A compari-
son of the BEM with other deterministic methods like
the FEM is not a purpose of the paper either. A com-
parison in that regard can be found for example in
Bolejko and Dobrucki (2006).
In this work, we treat only the direct BEM ap-

proach where the unknowns are the sound pressure
and particle velocity. The indirect approach, where
the unknowns are the jumps of the acoustical vari-
ables instead of the variables themselves, can be found
for example in the book of Wu (2000). The indi-
rect BEM is used mostly when very thin objects are
part of the structure. An example of application of
the indirect approach can be found in Dobrucki and
Plaskota (2007).

The most important feature of the BEM lies in
the fact, that only the surface of radiating or scat-
tering bodies need to be discretized. On one hand,
the surface discretization makes the method very suit-
able for treating exterior problems. On the other hand,
specifically for the exterior problems, the BEM present
problems with the non-uniqueness of the solutions at
certain critical frequencies, which are of pure numer-
ical nature but can be overcome using regularization
techniques. We show those techniques and present two
examples of the application of the BEM for exterior
problems, one for the free-space and other for the half-
space. The first example is an academic one, i.e. the
radiation of a dipole source and the second example is a
more applied one, which is the computation of the horn
effect in tyre noise determination. Other and diverse
examples of the applications of the BEM can be found
in the literature, for example the calculation of sound
radiation of an engine transmission cover (Tinnsten
et al., 2001), the prediction of noise of power trans-
formers (Rausch et al., 2002), the study of sound dis-
tribution in urban areas (Baulac et al., 2006) or the
estimation of the transmission loss of a sound barrier
(Monazzam et al., 2010), to mention only a few.
The BEM is also well applicable to interior prob-

lems. Since the number of surface elements increases
with frequency, the maximum frequency that can be
considered depends on the storage capacity of the com-
puter. In this regard, the surface discretization allows



454 Archives of Acoustics – Volume 39, Number 4, 2014

in some cases to attain a higher frequency range than
a volume discretization, especially if a tailored Green’s
function is available. As a numerical experiment, we
compute the sound field in an ultrasonic homogenizer
where our parameter to be studied is the boundary
condition at the glass walls. Other examples of the
use of the BEM in interior problems can be found in
Suzuki et al. (1989), Utsuno et al. (1990) or Tadeu
et al. (2012).
The BEM can be combined with other methods

in order to develop hybrid methods in which the
BEM computes the propagation of sound waves due
to sound sources or vibrating surfaces obtained by
other methods. A very common combination is the
FEM-BEM applied to problems of acoustic-structure
interaction. We present such combination applied to
the calculation of the airborne transmission loss of
thin plates in a duct and in a test facility. Other
typical example of that combination is the scatter-
ing of submerged objects (e.g. Seybert, 1990). Ad-
ditionally we present here also a hybrid method that
combines the Large Eddy Simulation (LES) with the
BEM to compute combustion noise. Problems involv-
ing flows, especially non-uniform ones, have become
very important in actual engineering applications but
are very difficult to solve. That type of problems has
lead to the emergence of the Computational Aeroa-
coustics (CAA), a discipline that looks to calculate
the sound due to turbulent flows using numerical
methods, mainly by applying hybrid approaches. Two
other examples of works using the BEM in aeroacous-
tics are found in Schramm (2009) and Tosh et al.
(2012).
The BEM has though a disadvantage, the increase

of the number of elements with the second power of
the frequency (N ∼ O(f2)) and the increase of storage
capacity with O(N2) limits the range of application
of the BEM to low and middle frequencies. Moreover,
the fact that the system matrices are full populated
and asymmetric inhibits the use of special techniques
to invert matrices with special properties so that the
number of arithmetic operations to solve the system
using direct solvers increases with O(N3) (O(N2) with
iterative solvers). In recent years, variants of the BEM
have been proposed in order to extend the range of
application of the method to higher frequencies. The
variant which has drawn the major attention for its
potential is the Fast Multipole BEM (FMBEM). The
FMBEM applies iterative solvers to solve the system
of equations and accelerates the matrix-vector multi-
plication to reduce the memory requirement to O(N),
the number of operations to O(N log2N) and the solu-
tion time to O(N)(see Liu, 2009). Other variants that
have been proposed are the Wave BEM for scatter-
ing problems which includes the wave behaviour into
the shape functions of the element and needs a much
coarser mesh than the conventional BEM (Perrey-

Debain et al., 2003) or the Energy Boundary Element
Analysis (EBEA) that can calculate the acoustic field
generated at high frequency from a radiator with in-
coherent intensity boundary conditions (Wang et al.,
2004).

2. Basic concepts of the BEM

The BEM is based on the discretization of an inte-
gral equation derived from the original partial differ-
ential equation (deterministic, element-based method).
The integral equation is defined on the boundary of the
domain and relates the solution on the boundary to the
solution at points in the domain. In acoustics, the dif-
ferential equation is the wave equation in time domain
or the Helmholtz equation in frequency domain.
We consider a three-dimensional body in free space

with boundary Σ which is assumed to have a closed
surface with an outward normal vector n. The exterior
of Σ is denoted by V (see Fig. 1).

Fig. 1. Acoustic domain and boundary surface.

Equation (1) is the Helmholtz integral equation
(HIE) and provides an expression for the sound pres-
sure at every point x in V from the acoustic quantities
at the surface Σ

c(x)p(x) = pinc(x) +

∫

Σ

p(y)
∂g(x,y)

∂n(y)
dS(y)

−
∫

Σ

∂p(y)

∂n(y)
g(x,y)dS(y). (1)

Here g(x,y) is the free space Green’s function

g(x,y) =
e−jkR

4πR
, R = |x− y| ,

j =
√
−1

(2)

with wavenumber k, pinc(x) is the incident pressure
and c(x) is the solid angle of the exterior volume at x
given by

c(x) = 1 +
1

4π

∫

Σ

∂

∂n(y)

(

1

R

)

ds(y). (3)



R. Piscoya, M. Ochmann – Acoustical Boundary Elements: Theory and Virtual Experiments 455

For points in the acoustic domain, c(x) has the value 1.
For points on the surface, if Σ is smooth, i.e. if there ex-
ists only one unique tangent plane at each point, the
constant c(x) has the value 0.5. For radiation prob-
lems, the incident sound pressure is zero.
If both p and ∂p/∂n are known on Σ, the sound

pressure at points in V can be obtained simply by
performing the integral (1). Usually, only one of the
quantities is known and the other has to be calculated.
Depending on which quantity is known, three types
of boundary conditions (BCs) occur: a) Neumann
BC: ∂p/∂n is given; b) Dirichlet BC: p is known,
and c) Robin BC: a combination of p and ∂p/∂n is
defined. In general, the whole surface consists of parts,
on which different BCs are prescribed.
When the whole surface is equipped with a Dirich-

let BC, Eq. (1) becomes a Fredholm integral equation
of the first kind, which in its discretized form produces
matrices that are often ill-conditioned. This case can
be avoided if the normal derivative of Eq. (1)

1

2

∂p(x)

∂n(x)
=
∂pinc(x)

∂n(x)
+

∫

Σ

p(y)
∂2g(x,y)

∂n(x)∂n(y)
dS(y)

−
∫

Σ

∂p(y)

∂n(y)

∂g(x,y)

∂n(x)∂n(y)
dS(y) (4)

is considered, since this equation is a Fredholm integral
equation of the second kind.
The kernels of Eqs. (1) and (4) possess singular-

ities of different degrees. In Eq. (1), there is a weak
singularity proportional to 1/R and a strong singular-
ity proportional to 1/R2. Equation (4) has a strong
singularity proportional to 1/R3. These three types of
singularities need to be handled by using special tech-
niques.
The numerical implementation of the BEM requires

the discretization of the surface of the body and the
corresponding integral equations. Therefore, Σ is di-
vided inN nodes andQ elements. The acoustical quan-
tities on the surface can be assumed to be constant
inside each single element or be interpolated from the
values at the nodes. The size of the resulting system
of equations will be N ×N in the node based case or
Q×Q in the element based case.
In this paper, the second option, i.e. the use of

constant elements is assumed. The integral equations
are solved at the centroid of each element. We write
Eqs. (1) and (4) for c(x) = 1/2 in matrix form as

(

1

2
I−D

)

p+ S
∂p

∂n
= pinc, (5)

(

1

2
I+K

)

∂p

∂n
−Mp =

∂pinc

∂n
, (6)

where I is the identity matrix and S, D, K and M
are Q × Q matrices whose coefficients represent the

interaction between two surface elements and are de-
fined as:

Sij = gij dsj , Dij =
∂gij
∂nj
dsj ,

Kij =
∂gij
∂ni
dsj , Mij =

∂2gij
∂ni∂nj

dsj .

For obtaining accurate results, the discretized
model should have at least six elements per wave-
length λ. According to this rule of thumb, the number
of elements Q increases proportionally to the square of
the frequency (f2) in three dimensions and the stor-
age capacity required for the computations increases
proportionally to f4.
Since the BEM only requires the discretization of

the surface of the body, it reduces the dimensions of
the problem by one. This constitutes an advantage in
comparison with the FEM which requires a discretiza-
tion of the whole domain.

3. Exterior problems

The main advantage of the BEM over the FEM is
the fact that the Green’s function satisfies the radi-
ation condition at infinity, i.e. the BEM can deal di-
rectly with unbounded domains. In contrast, the FEM
requires special non-reflecting boundary conditions or
regions with artificial high absorption (e.g. Perfectly
Matched Layers). However, the BEM has also difficul-
ties for exterior problems.

3.1. Non-uniqueness at certain frequencies

The solutions of the surface integral equations
(SIEs) are not unique at a number of critical frequen-
cies corresponding to internal resonances of the object.
While the integral Eqs. (1) and (4) fail only at a dis-
crete set of wavenumbers, the linear systems of Eqs. (5)
and (6) become ill-conditioned when k is merely in
the vicinity of a critical value. Under these conditions,
severe loss of accuracy will be experienced. As the
wavenumber k increases, so does the density of crit-
ical values, and hence it becomes increasingly difficult
to get an accurate solution.
To overcome this problem, two approaches are usu-

ally employed, namely the CHIEF method (Schenk,
1968) and the Burton and Miller method (Burton,
Miller, 1971).
In the CHIEF method, the integral equation (IE)

is additionally formulated at a certain number of in-
terior points, forcing the solution to fulfill the condi-
tion that the IE is zero in the interior. As a result, an
over-determined system of equations has to be solved
using, for example, the least squares technique. The
advantage of this method is its simple implementation
but its disadvantage is the need of a properly choice
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of the position and number of “CHIEF-points”. The
interior points are not allowed to lie at nodal points
and the number of points increases with the frequency
due to the increase of the density of internal reso-
nances.
In the Burton and Miller method, one uses a lin-

ear combination of the Eqs. (1) and (4). The coupling
parameter γ has to have a non-zero imaginary part
to ensure the uniqueness of the solution. Amini et al.
(1992) found as a nearly optimal value γ = j/k. The
system of equation to be solved is written as:

(

1

2
I−D− γM

)

p +

(

S+ γ

(

1

2
I+K

))

∂p

∂n

= pinc + γ
∂pinc

∂n
. (7)

Using this approach, the size of the system matrices
is not enlarged. However, now it is needed to evaluate
the hypersingular diagonal coefficients ofM.
The method of Dual Surface Integral Equations

(DSIE) is an alternative method applied mostly in elec-
tromagnetics, but it can be also used to treat to acous-
tic problems as shown in Mohsen et al. (2011). The
DSIE preserves the simplicity of CHIEF and specifies
the location of the interior points to ensure uniqueness.
It locates the interior points on a surface Σδ close to
Σ constructed at a distance δ along the normal to the
surface (see Fig. 2).

Fig. 2. Interior surface used in the DSIE method.

Similar to the Burton and Miller approach, the in-
tegral equation evaluated on the surface is combined
with the one evaluated at the interior surface multi-
plied by a purely imaginary factor α to ensure the
uniqueness. The DSIE in matrix form is given by

(

1

2
I−D− αD

)

p+
(

S+ αS
) ∂p

∂n
= pinc+αp̄inc. (8)

The matrices with an upper bar denote the matrices
evaluated at the interior surface. The resulting system
of equations does not contain the hypersingularities of
Burton and Miller while preserving its square matrix

form. A proof of uniqueness is given in Mohsen et al.
(2011) which also states that δ should be less than
λ/2.
We now present the application of the DSIE

method to an acoustic radiation problem. Other exam-
ples can be found inMohsen et al. (2011). The unique-
ness of the solutions at all frequencies is ensured for a
non-zero imaginary part of α and a maximum value
of δ < λ/2. However, optimal values are not known
a priori for general configurations. In Mohsen et al.
(2011), a parametric study of the values of α and δ was
performed. The results showed that good accuracy was
obtained in several cases using α = j and δ = λ/8. In
the following example, these values are chosen.
We consider a rectangular prism (cuboid) where

one eighth of his volume is removed (see Fig. 3). The
prism has a side L = 1 m and the analysis was made
for frequencies that cover the range kL = 9.1. . .22.

Fig. 3. Rectangular prism.

We assume that the normal velocity at the surface
of the prism is due to a dipole located inside the body
(rd). The sound pressure pd and sound power Wd of
the dipole are given by the expressions

pd(r) = h
(2)
1 (k |r− rd|)P 0

1 (cos θ),

Wd =
2π

3ρck2
,

(9)

where h
(2)
1 (x) is the spherical Hankel function of the

second kind and first order, P 0
1 (x) is the associated

Legendre function and θ is the angle between (r− rd)
and the z-axis.
The radiated sound power level and the radiation

pattern at f = 779 Hz are presented in Fig. 4. The
DSIE method provides very good results. All irregu-
lar peaks of the sound power are eliminated and the
typical eight-pattern of the dipole is very well repro-
duced at the critical frequency, whereas the normal
Helmholtz integral equation gives completely wrong re-
sults.
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a)

b)

Fig. 4. Radiation of the rectangular body:
a) sound power, b) directivity.

3.2. Half-space problems

Half-space problems are more realistic than free
space problems. For those problems, in Eq. (1) or
Eq. (4) the integration should include the object sur-
face plus the surface of the infinite plane. The integra-
tion over the infinite plane can be avoided if a Green’s
function that satisfies the boundary condition on the
plane is available. Hence, the integral equation for the
half-space is written as

c(x)p(x) =

∫

Σ

p(y)
∂gh(x,y)

∂n(y)
dS(y)

−
∫

Σ

∂p(y)

∂n(y)
gh(x,y)dS(y)

+ pinc(x) + pref (x), (10)

where gh(x,y) is the half-space Green’s function and
pref (x) is the reflection of pinc(x) in absence of the

body and c(x) is given by Eq. (3) for all points except
for those belonging simultaneously to Σ and to the
infinite plane. For those particular points, the constant
c is given by Seybert andWu (1989)

c(x) = 1 +
1

2π

∫

Σ+Σc

∂

∂n(y)

(

1

R

)

ds(y). (11)

Generally, the Green’s function above an infinite plane
with a surface impedance Z can be written as

gh(x,y) =
e−jkR1

4πR1
+
e−jkR2

4πR2
+ C(γ) (12)

with γ = jρω/Z, R1 = |x− y| , R2 = |x− ym|, where
ym is the image source point with respect to the plane.
Considering the infinite plane at the XY plane, if the
source point is placed at y = (y1, y2, h), the image
source point is placed at ym = (y1, y2,−h). C(γ) is
a correction term due to the value of the impedance.
The two limiting cases are a) rigid plane and b) soft
plane. For the first one C(γ) = 0 and for the second
one, the Green’s function is written as

gh(x,y) =
e−jkR1

4πR1
− e−jkR2

4πR2
. (13)

In the literature, one can find different formulas for
the correction term. One expression for C(γ) has been
derived in the work from Ochmann (2004):

C(γ)=
jγ

2π

0
∫

−∞

(

e−jk
√

x2+y2+(z+h+jζ)2

√

x2+y2+(z+h+jζ)2

)

ejγζ dζ. (14)

The line integral can be interpreted as the superposi-
tion of source functions along an “imaginary z-axis”
at the points z = −h − jζ. The main advantage of
this formula is that the line integral is convergent for
all kind of surface impedances on the infinite plane.
For points very near to the plane and for low frequen-
cies, the integrand oscillates strongly and the compu-
tation can be time consuming. It is also possible to
find exact solutions for the Green’s function for mov-
ing monopole above impedance planes (Ochmann,
2013) or for a steady point source in time domain
(Ochmann, 2011). An overview about such halfspace-
Green’s functions can be found in (Ochmann, 2013).
An example of the application of the half-space

BEM is the computation of the so-called horn effect.
The horn effect is an amplification of the sound ra-
diation of the source due to the hornlike geometry of
a tyre/road interface. In the numerical implementation
of the method, the integration over the elements lying
very near the plane requires especial attention (e.g.
adapted integration, finer re-meshing, etc.). A compar-
ison between numerical simulations and measurements
(see Fig. 5) shows good agreement for two types of
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a)

b)

Fig. 5. Amplification due to the horn effect:
a) for a rigid surface, b) for an absorbing
surface (taken from (Brick, 2011)).

planes, rigid and absorbing (Brick, 2011). The larger
deviations in the second case may be due to the re-
verberant environment and the finite size of the real
absorbing layer (mineral wool).
The sound level difference ∆L is defined as

∆L = 20 log

∣

∣

∣

∣

pwith tyre
pno tyre

∣

∣

∣

∣

. (15)

4. Interior problems

The computation of the sound field in bounded do-
mains does not have any feature different to the exte-
rior problem. The resonances in this case are real. If
no absorption at the boundaries is considered, the re-
sults will not be accurate around the resonances, but if
there is enough absorption, no additional care should
be taken.
An example of the application of the BEM for in-

terior problems is the study of the sound field in a ho-

mogenizer. An ultrasonic homogenizer consists on an
electronic generator, a transducer and a horn. When
the horn is introduced in a fluid, the longitudinal oscil-
lations of the horn tip produce sound waves that prop-
agate through the medium. The intense sound pressure
produces phenomena like streaming, cavitation, turbu-
lence and shock waves. All these different mechanisms
contribute to reduce small particles in the liquid im-
proving uniformity and stability. A simulation of all
physical processes mentioned before would be a very
difficult task. However, knowledge of the sound field
distribution is useful, since regions of higher pressure
are related to regions of high cavitation.
The sound pressure distribution in a glass vessel

with a special geometry was studied. The vessel has a
conical shape with three narrow hollow handles con-
necting the upper and lower parts of the vessel. Fig-
ure 6 shows one third of the model.

a) b)

Fig. 6. One-third model of ultrasonic homogenizer:
a) boundary conditions in the acoustic model, b) mesh

used for the numerical calculations.

The ultrasonic horn vibrates at 20 kHz. The vessel
is partially filled with water. Since the sound speed
in water is 1500 m/s, the wavelength is about 7.5 cm.
We thank the Bandelin electronic GmbH&Co. KG,
which provided us with the model of the vessel and
the sonotrode.
The glass walls of the vessel can be considered as

soft if they are thin or as rigid if they are thick (Yasui
et al., 2007). The interface liquid-air can be also con-
sidered as soft (Klima et al., 2007).
Two aspects were studied: the effect of the bound-

ary condition at the wall of the vessel and the influence
of the handles on the pressure distribution.
The sound pressure was calculated at several field

points in the middle of the vessel just below the horn
tip.
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Figure 7 shows the sound pressure at the field
points. The plot in 7a shows the effect of the bound-
ary condition. The pressure was computed consider-

a)

b)

Fig. 7. Sound pressure at the field points: a) comparison
between different boundary conditions at the walls, b) com-
parison between vessel without handles and with handles.

a)

b)

Fig. 8. Sound pressure level on the surface: a) comparison
between different boundary conditions at the walls, b) com-
parison between vessel without handles and with handles.

ing in one case rigid walls, and in a second case soft
walls. The pressure distributions differ significantly,
meaning that a proper determination of the bound-
ary condition is required. A more accurate result can
be obtained if a coupling between fluid and struc-
ture is considered. No absorption in the fluid was
considered. The plot 7b shows that the presence of
the handles has a minor influence on the sound pres-
sure in the vessel when hard walls are considered.
There is no influence at all when soft walls are as-
sumed. The presence of the handles has an influence
on the fluid circulation. Figure 8 shows the pressure
distributions on the surface elements computed by
the BEM.

5. Acoustic-structure interaction

The BEM can be coupled to the Finite Element
Method (FEM) to handle problems involving acoustic-
structure interaction. As an example of such coupling,
we consider the computation of the transmission loss
(TL) of thin structures.
When thin structures are studied, it is more con-

venient to use 2D shell elements in a FEM calculation
instead of 3D solid elements. If sound radiation from
both sides of a thin structure is considered, a so-called
indirect BEM approach has to be applied.

5.1. Thin plate in a duct

In a first numerical experiment, the thin plate is
placed in a duct. The acoustic domain is divided in
two subdomains: behind and in front of the plate. Two
integral equations are solved, one in each subdomain.
The equations are coupled through the motion of the
plate.
Figure 9 shows the two computational domains ΩI

and ΩII and the five different surfaces of the model
with their respective normal vectors. The boundary
conditions on all surfaces are listed in Table 1.

Fig. 9. Sound field in Kundt’s tube.

Table 1. Boundary conditions.

Surface Description Boundary condition

S0 loudspeaker vn = vL

S1, S3 side wall vn = 0

S2 plate ∂pI/∂n = ∂pII/∂n = ρω2uP

S4 termination Z = Zt
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The boundary integral equations in ΩI and ΩII are
given by

CIpI =

∫

S0

(

pI0
∂g

∂n
+ jρωvLg

)

dS +

∫

S1

pI1
∂g

∂n
dS

−
∫

S2

(

pI2
∂g

∂n
− ρω2uP g

)

dS, (16)

CIIpII =

∫

S2

(

pII2
∂g

∂n
− ρω2uP g

)

dS +

∫

S3

pII3
∂g

∂n
dS

+

∫

S4

pII4

(

∂g

∂n
− jρωg

Zt

)

dS (17)

and the equation of motion of the plate

(K − ω2M)uP = F. (18)

pI0, pI1, pII3 and pII4 are the pressures on the walls,
pI2 and pII2 are the pressures at both sides of the plate
and uP is the normal displacement of the plate.
Discretizing Eqs. (16) and (17) on all surfaces and

combining the system of equations with Eq. (18), the
sound pressure and the normal velocity of the plate
can be computed.
The transmission loss (TL) of the plate is defined

as

TL = −10 lg(τ), τ =
Wt

Wi
, (19)

where τ is the transmission coefficient and Wt and Wi

are the transmitted and incident sound power, respec-
tively.
The TL obtained from measurements is determined

assuming only plane wave propagation, therefore, this
method is valid only below the first cut-on frequency.
The TL is computed from the pressure values obtained
by three microphones assuming an anechoic termina-
tion. In the simulation, the TL is obtained emulating
the measurement procedure. By the numerical simu-
lations, an anechoic termination can be easily imple-
mented while in real measurements an anechoic termi-
nation may be difficult to accomplish.
In the downstream section of the duct, only a plane

wave in the +x direction propagates while in the up-
stream section two plane waves propagate in the +x
and −x directions respectively (see Fig. 10).

Fig. 10. Plane waves and microphone positions.

The transmission coefficient τ can be expressed in
terms of the sound pressure at the microphones pM1,
pM2 and pM3 as:

τ =
|2 sink∆x1|2 |pM3 |2

|pM1 − pM2e
−jk∆x1 |2

. (20)

The results of (20) will be accurate under the condition
that ∆x1 < c/f .
The transmission loss of a 1 mm thick aluminium

plate was simulated. The plate was placed in a 4 m long
duct with square cross section (0.25 m side length).
The anechoic termination was implemented by using
the free field impedance Z = ρc on S4. The sound pres-
sure in the duct was determined using (16) and (17)
and the transmission coefficient was computed using
(20). To validate the numerical model, the results of
the simulation were compared with the results of a
measurement. Since the plate was fixed to the duct
walls using an adhesive material, an “elastic BC” was
assumed. The rigidities of the translational and rota-
tional springs were chosen in such a way that a good
agreement between simulation and measurement is ob-
tained. Fig. 11 shows the comparison of simulated and
measured TL.

Fig. 11. Comparison of simulation and measurement.

5.2. Plate in a test facility

In a second numerical experiment, the thin plate
is placed in a test facility. The test facility consists in
a source room and a receiver room connected by an
opening where the specimen is placed. Equation (19)
cannot be used to determine the TL, since incident and
transmitted power cannot be determined due to the
reflections from the walls. For specimens measured in
test facilities, the TL is determined through pressure or
intensity measurements. Three formulas found in the
norms were tested and the corresponding results were
compared.
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5.2.1. TL from pressure levels

The norm DIN EN ISO 10140-2 defines the trans-
mission loss by the expression

Rp = L1 − L2 + 10 lg

(

S

A

)

, (21)

where L1 is the mean pressure level in source room in
dB, L2 the mean pressure level in receiving room in
dB, S the area of the opening where the element is
mounted (in m2) and A the equivalent absorbing area
in the receiving room (in m2).
Equation (21) requires that the sound fields in both

rooms are diffuse and that the sound in the receiving
room is exclusively due to the sound coming through
the test element.
According to the norm DIN EN ISO 10140-4, the

spatial averaged sound pressure level is defined as

L = 10 lg

(

1

n

n
∑

i=1

p2i
p20

)

, (22)

where n is the number of microphone positions in the
room, pi the rms value of the pressure and p0is a ref-
erence pressure (in air p0 = 2 · 10−5 Pa). The norm
recommends placing the microphones outside the di-
rect field (e.g. a minimum of 1 m from the source)
and at least 0.7 m away from the room borders and
1 m away from the specimen. The separation between
microphone positions should be greater than 0.7 m.
A minimum of 5 positions distributed in the room has
to be considered, but they should not form a regular
grid and no pair of microphones should lie in the same
plane parallel to the room borders.
A diffuse sound field is to be produced by loud-

speakers in at least two positions or by a single loud-
speaker moved to at least two positions. At low fre-
quencies, especially below 100 Hz, the minimum num-
ber of loudspeakers increases to three. The sound field
should be constant and have a uniform spectrum, i.e.
the difference in the pressure level between adjacent
1/3-octave bands should not exceed 6 dB. The lack of
diffusivity can be compensated by averaging the sound
pressure obtained by different source positions. The
norm recommends positions at least 0.7 m away from
the room borders. The separation between source po-
sitions should be greater than 0.7 m, no pair of sources
should lie in the same plane parallel to the room bor-
ders or be symmetric respect to the middle planes.

5.2.2. TL from pressure and intensity levels

The norm DIN EN ISO 15186-1 defines an expres-
sion that includes the case that the receiving room
can be replaced by the open space. For this reason,
the method considers the sound intensity measured on
a surface involving completely the specimen at the re-
ceiving side Sm. The formula reads

RI = L1 − 6−
[

LI + 10 lg

(

Sm

S

)]

, (23)

where LI is the normal intensity level averaged
over Sm.
Equation (23) requires that the normal distance d,

between partition and enveloping surface lies in the
range 0.1 < d < 0.3 and the difference between the
intensity level and pressure level satisfies 0 < Lp−LI <
10 dB.

5.2.3. TL at low frequencies

In rooms with small volumes and not favourable
dimensions is not always possible to obtain reliable re-
sults at low frequencies using (21) or (23). Both require
that at least one room dimension contains a wave-
length and another room dimension at least a half
wavelength of the lowest band middle frequency.
For frequencies between 50 and 160 Hz, the norm

DIN EN ISO 15186-3 introduces the following formula
for R

Rlow = LpS − 9−
[

LI + 10 lg

(

Sm

S

)]

, (24)

where LpS is the mean pressure level in the source
room averaged over the surface of the partition.

5.2.4. Comparison of Rp, RI and Rlow

To compare the results from (21), (23) and (24),
10 source positions, 30 microphone positions in the
source room and 24 microphone positions in the re-
ceiving room meeting the norm recommendations were
considered.
In Fig. 12, all source and microphone positions, the

partition and the enveloping surface used for the inten-
sity measurements are shown.

Fig. 12. Source positons (o) and microphone positions (+).

According to the norm 10140-4, one calculation
is performed for each source position and the aver-
aged transmission loss 〈R〉 is determined using the for-
mula

〈R〉 = −10 lg
(

1

Q

Q
∑

i=1

10−Ri/10

)

, (25)

where Q is the number of source points.
The curves of transmission loss Ri and the aver-

aged value 〈R〉 were calculated for 1/3-octave bands
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from 31.5 Hz up to 800 Hz. The 1/3-octave band sound
levels are obtained from the narrow band values using
the expression

L1/3 =

(

1

n1/3

n1/3
∑

i=1

p2i
p20

)

, (26)

where n1/3 is the number of frequencies in the 1/3-
octave band. In this calculation, n1/3 = 8 for all bands.
The first 3 plots in Fig. 13 show the curves of R

for each source position (coloured solid lines) and the
mean value (dotted black line). The last plot shows
a comparison between the mean values. These results
show the sensitivity of expressions (21) and (23) to the
source position at low frequencies and confirm their
validity above 100 Hz. The expression (24) is com-
pletely independent of the source position not only be-

a)

b)

c)

d)

Fig. 13. Transmission loss curves obtained with different
source positions using: a) Eq. (21), b) Eq. (23), c) Eq. (24).
The averaged values of all source positions are shown in d).

low 100 Hz but at all frequencies. The mean values of
R obtained by the three expressions are very similar.
Looking at the sound pressure distribution in the

source room (Fig. 14), we find that at low frequencies
the microphones are placed always in the direct field
of the source. Therefore, it is expected that the results
differ significantly from one position of the source to
another.

a) SPL at 50 Hz

b) SPL at 100 Hz

c) SPL at 500 Hz

Fig. 14. Pressure level distributions in the source room at
three frequencies for six different source positions.

6. Flow acoustics

Industrial and general engineering applications of-
ten include the presence of flows. Flows can affect the
sound propagation but can also generate sound them-
selves.

6.1. Compact sources

Usual BEM implementations assume a medium at
rest and simple sound sources like point sources or
plane waves. The usual methods can be directly ap-
plied to problems containing flow if the region of sound
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sources is spatially limited, so that a fictitious surface
can be considered which encloses all sources and inho-
mogeneities. In the work from Piscoya et al. (2008),
the sound radiation from an open jet flame was com-
puted. A cylindrical surface enclosed the flame, and
the boundary condition was the normal velocity of the
fluid obtained by a Large-Eddy-Simulation (LES).

Fig. 15. Flame enclosed by a control surface.

Since the LES data were given in time domain, they
had to be previously Fourier transformed into the fre-
quency domain. In order to compare the simulated re-
sults with measurements, the complete simulated time
series was divided into sub-series. A BEM calculation
was performed with each sub-series and thereafter av-
eraged to obtain the final result. Fig. 16 shows a com-
parison of the simulated and measured sound power.
A reasonable agreement was obtained.

Fig. 16. Simulated and measured sound power of the flame.

To achieve good accuracy it was seen that it is
very important to provide the correct acoustic bound-
ary condition. Therefore, a separation of acoustic
and hydrodynamic components in the flow (splitting
technique) should be previously performed (Piscoya,
Ochmann, 2009).

6.2. Uniform mean flow

Special implementations of the BEM can solve
problems including the flow under the condition that

the sound propagation does not affect the flow (weak
coupling or one-way coupling).
If the flow (or in many cases the mean flow) can be

assumed to be constant, a convective Helmholtz equa-
tion describes the sound propagation

∇2φ− 2jk(Ma · ∇)φ − (Ma · ∇)2φ+ k2φ = 0, (27)

where φ is the velocity potential and Ma is the Mach
number Ma = v/c.
Introducing the Green’s function of the form

g(x,y) =
e−jk(R−β)/(1−M2)

4πR
, (28)

where

β =M0 · (x− y), R =

√

(1 −M2) |x− y|2 + β2,

M2 = |Ma|2

the integral form of Eq. (27) is given by

c(x)φ (x)=

∫

Σ

[(

∂g(x,y)

∂n(y)
+2jk(Ma ·n(y))g(x,y)

− (Ma ·n(y))(Ma ·∇yg(x,y))

)

φ(y)

− ∂φ(y)

∂n(y)

(

1−(Ma ·n(y))2
)

g(x,y)

]

ds(y) (29)

with

c(x)=1−
∫

Σ

[

(Ma ·n(y)) (Ma ·∇yG(x,y))−
∂G(x,y)

∂n(y)

]

ds(y)

and G =
1

4πR
.

Equation (29) is then solved in the same way as
the usual BEM. Figure 17 shows the sound pressure
of a dipole. The model was a sphere where its normal
surface velocity equals the velocity of a dipole.

Fig. 17. Sound pressure due to a dipole; left: medium at
rest; right: in a flow M = 0.3.
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6.3. Non-uniform mean flow

A more general but also more complex problem
arises when the flow in certain region of the domain
(usually near the sound sources) is not uniform. In that
case, the convected Helmholtz equation is not valid
anymore and another equation including usually non-
linear terms is required. For this type of problems, a
special implementation of the BEM called the Dual
Reciprocity BEM (DRBEM) can be used, but knowl-
edge of the flow from physical considerations or from
previous flow simulations (CFD), is needed. First, the
governing equation has to be rewritten in a way that
the left hand side has the same form as (27) and all
other remaining terms are moved to the right hand
side. Proceeding in such a way, an inhomogeneous con-
vective equation with a source term b, which may also
depend on the unknown velocity potential φ, is ob-
tained. The integral form of this new equation will be
equal to (29) plus an additional term given by a volume
integral

−
∫

Ω

b(φ,Ma)g(x,y)dV (y). (30)

In order to solve Eq. (30), Ma has to be known, as
previously mentioned.

a)

b)

Fig. 18. a) z-component of the Mach number; b) pulsating
sphere in medium without flow (left) and with non-uniform

flow (right).

In the second step, the DRBEM is introduced. By
expanding the source term b in known functions fµ as-
sociated to the functions ψµ that satisfy the equation:

∇2ψµ − 2jk(M∞ · ∇)ψµ − (M∞ · ∇)2ψ + k2ψµ = fµ,
(31)

where M∞ = 〈Ma〉, and applying the Green’s iden-
tity, the volume integral can be replaced by a series of
surface integrals. The final integral equation contains
only surface integrals which are solved using the usual
BEM procedure. Details of the method can be found in
Lee et al. (1994). Figure 18 shows the distribution of
the component Mz of the flow and the sound pressure
of a pulsating sphere without and with flow.

7. Conclusions

The BEM is a powerful tool for acoustical simu-
lations. The method is especially useful to solve free-
space and half-space problems since no additionally
non-reflecting boundary conditions are needed. It faces
some difficulties like the appearance of critical frequen-
cies or singularities, but they can be overcome by ap-
plying special techniques. Coupling to other methods
like FEM for acoustic-structure interaction and CFD
for aero-acoustic radiation is feasible. The method is
limited today to low and middle frequencies due to the
size of the models and the nature of the matrices in-
volved (full-populated, complex, unsymmetric). Incor-
porating special tailored Green’s functions can lead to
very efficient variants of the BEM, e.g. for sound prop-
agation above in half-spaces above impedance planes
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