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This paper describes a Deep Belief Neural Network (DBNN) and Bidirectional Long-Short Term Mem-
ory (LSTM) hybrid used as an acoustic model for Speech Recognition. It was demonstrated by many
independent researchers that DBNNs exhibit superior performance to other known machine learning
frameworks in terms of speech recognition accuracy. Their superiority comes from the fact that these
are deep learning networks. However, a trained DBNN is simply a feed-forward network with no internal
memory, unlike Recurrent Neural Networks (RNNs) which are Turing complete and do posses internal
memory, thus allowing them to make use of longer context. In this paper, an experiment is performed
to make a hybrid of a DBNN with an advanced bidirectional RNN used to process its output. Results
show that the use of the new DBNN-BLSTM hybrid as the acoustic model for the Large Vocabulary
Continuous Speech Recognition (LVCSR) increases word recognition accuracy. However, the new model
has many parameters and in some cases it may suffer performance issues in real-time applications.
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1. Introduction

Deep Belief Neural Networks (DBNNs) are multi-
layer, densely connected, nets introduced by Hinton
(Hinton et al., 2006). The hidden units in DBNNs
have binary values called feature detectors. The hidden
layers form an associative memory. Following (Hinton
et al., 2013) the two most significant properties of
DBNNs are: 1) a layer-by-layer procedure for learning
the top-down weights that determine how the variables
in one layer depend on the variables in the layer above;
2) once the network is trained, the bottom-up pass that
starts with an observed data vector allows to repro-
duce proper hidden unit states. These properties allow
the network to self-organize. DBNNs must be trained
layer by layer. Eventually, a fine tuning of all weights
is needed and it can be performed the same way as in
Multi-Layer Perceptron networks (MLPs). A DBNN is
a composition of simple learning units, which are Re-
stricted Boltzmann machines (RBMs) (Ackley et al.,
1985) that contain a layer of visible units represent-
ing the input features and a layer of hidden units that
learn how to represent features and capture higher-
order dependencies in the data. The two layers are
connected by a matrix of symmetrically weighted con-

nectionsW. There are no recursive connections within
a layer. Given a vector of activities v for the visible
units, the hidden units (vector h) are all conditionally
independent. By starting with an observed feature vec-
tor on the visible units and alternating several times
between sampling from p(h|v,W) and p(v|h,W), it is
easy to get a learning signal.
While a trained DBNN shares an identical topology

to a multilayer perceptron, they utilize a much better
training procedure, which begins with an unsupervised
pretraining that models the hidden layers. Technically,
a trained DBNN is just a feedforward network with
no internal memory, unlike Recurrent Neural Networks
(RNNs) which are Turing complete and posses internal
memory, which allows them to make use of longer con-
text. In this paper an experiment is performed to make
a hybrid of a DBNN with an advanced RNN on top.
For the purpose of the experiment a corpus of Polish
TV and radio broadcasts is used.

2. DBNN-BLSTM hybrid

Although, a hybrid of DBNN-BLSTM is already
described in the literature (Wollmer et al., 2009;
Graves et al., 2013), this paper presents new imple-
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mentation and is the first attempt to use this tech-
nology for the Polish language. Moreover, unlike other
papers, this work describes the use of DBNN-BLSTM
hybrid in a complete LVCSR system.
Long-Short Term Memory (LSTM) neural nets

are a special type of Recurrent Neural Networks
(RNN), which can be trained using the gradient de-
scent method. The characteristic topology of these net-
works guarantees that the backward propagated error
remains at a constant level. Depends on task such net-
works can learn dependencies 1000 time steps apart
(Hochreiter et al., 1995). This is a feature difficult
to obtain by many standard RNNs. An LSTM network
consists of the so-called memory blocks. Each block
contains three gates which control a special memory
cell used for storing information. The gates are actu-
ally simple perceptrons with sigmoidal activation func-
tions. The values returned by these functions are lim-
ited to the 〈0, 1〉 range. The input of the memory cell is
multiplied by the output of the input gate. Therefore,
if the input gate returns a value close to zero this will
stop the signal trying to reach the memory cell. If the
value of the input gate is close to one, the signal will
reach the memory cell almost unchanged. The output
gate works almost the same way. The only difference is
that it interacts with the output of the network. There
is one more gate inside the memory block used for re-
setting of the memory cell. If the value of the forget
gate is close to zero the value saved in the memory
cell will be erased, but if it is close to one, it will re-
main unchanged. A very good analogy to the memory
block is an electronic chip which performs read, store
and reset memory operations. The memory block of
the LSTM is actually a differentiable version of such
a chip. Figure 1 shows a single LSTM blocks.

Fig. 1. A single Long-Short Term Memory block
and it’s circuitry.

Bidirectional Long-Short Term Memory (BLSTM)
is a network consisting of two unidirectional LSTM

models. The input features are presented forwards and
backwards to two separate recurrent networks, both of
which are connected to the same output layer. This
allows the model to make use not only of past con-
text but also future context of the presented sequence.
The Bidirectional Recurrent Neural Networks (RNNs)
were first introduced in (Schuster et al., 1997) and
they were further extended to BLSTMs. Graves et al.
(2005) show that BLSTMs are superior to most other
neural network frameworks available by 2005 in terms
of acoustic modeling. In 2006 the Connectionist Tem-
poral Classification (CTC) training algorithm was in-
troduced and allowed to further improve phoneme
recognition accuracy (Graves et al., 2006). However,
in 2009 Hinton et al. shows that DBNNs are supe-
rior even to BLSTM-CTC (Mohamed et al., 2009).
The superiority of DBNNs comes from the fact that
when networks with many hidden layers are applied
to structured data like speech, backpropagation algo-
rithm works much better if the weights in the hidden
layers are first initialized by learning the model of the
structure in the input data.
The DBNN-BLSTM hybrid is trained like a regu-

lar DBNN network, however the final weight tuning is
performed using the CTC algorithm which is proven to
generate better results than ordinary framewise classi-
fication (Graves et al., 2006). A DBNN-BLSTM hy-
brid consists of a single DBNN which is trained iter-
atively layer-by-layer. However, on top there are two
LSTM networks: one processing in forward direction,
the other in backward direction. Input to both LSTM
networks is simply the output from the last DBNN
layer. Finally, both LSTM models are merged together
with the same output layer using a Softmax activation
function (Bishop et al., 1995). The main idea behind
this hybrid is that a single DBNN network will act as
a feature detector much better than the LSTM itself
and the BLSTM network on top will act better then
standard vector of simple perceptrons used typically
in DBNNs. In order to find out which topology is bet-
ter one should compare directly DBNN with DBNN-
BLSTM hybrid. However, this was not possible as our
ASR system uses CTC training algorithm, which was
designed with RNNs in mind. Therefore a comparison
between standard BLSTM and DBNN-BLSTM hybrid
(both trained with CTC) was made.

3. LVCSR architecture

The system used in the paper is an evolution of the
authors’ system used in previous projects (Korzinek
et al., 2011). The acoustic layer is a BLSTM trained
with the CTC algorithm. The feature front-end is
the standard 12 MFCCs and energy with delta and
accelertation coefficients (Young, 2000). The speech
is analyzed using a 25-ms Hamming window with a
10-ms fixed frame step. The system uses a modified
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Viterbi-style decoder extended to utilize the acoustic
model CTC outputs properly. On the TIMIT corpus it
achieved 74% phoneme recognition rate, which is com-
parable to other systems (Graves, 2006). The system
was previously designed to work with a grammar-based
language layer used to successfully recognize domain-
constrained tasks with up to several thousands of con-
cepts per grammar state. It achieved word recogni-
tion rates in excess of 90% which was also true when
the system was used in noisy telephony environments.
A preprocessing subsystem was independently trained
to perform preliminary sound level normalization and
speech detection. The normalization was performed
in batch to achieve unit variance and zero mean on
all files individually. The speech detection was then
trained in a similar fashion to the acoustic model to
recognize speech, non-speech and silence events. The
training was performed on a small development cor-
pus and achieved >90% accuracy on the test set. For
the purposes of the current system, a language model
was developed to aid the process of LVCSR. Since
Polish language is highly inflected, a straightforward
n-gram approach does not work too well. The inflec-
tion causes the vocabulary size to grow several times
compared to languages like English. Larger vocabular-
ies usually require more training data and they con-
siderably reduce the speed and accuracy of the de-
coding process. On the other hand, the different in-
flected forms of a particular lemma play a consistent
role in the sentence structure. That is why a combina-
tion of three language models responsible for words,
word lemmas and grammar classes was used. The
models were linearly interpolated and their interpo-
lation weights were determined using a machine learn-
ing approach minimizing the perplexity on a valida-
tion set.
For language modeling, the transcriptions of 100

hours of radio and TV broadcasts were primarily used,
but even the largest acoustic corpora make for weak
language corpora, because the amount of text data is
limited. Therefore this was combined with the usual
up-to-date data available online (newspapers, blogs,
encyclopedias). The final model was built from 3 dif-
ferent sub-models: a model of grammar features, word
lemmas and words themselves combined together us-
ing linear interpolation. An Evolution Strategy that
minimized the perplexity of the final model on the de-
velopment set was used to find the optimal weights of
this interpolation process. The weights of the different
corpora were also optimized in this process. The lan-
guage models were initially trained on a manually pre-
pared language corpus (Korzinek, 2011) where they
achieved a perplexity of 376 with a lexicon of around
40K words. They were then used to annotate and dis-
ambiguate the texts of the core training and test sets.
After retraining the models with the new data the per-
plexity on the core test set was 246.

4. Experimental setup

To train the acoustic models, a database of TV
and radio broadcasts was recorded using a DTV/radio
tuner hardware and downloaded from online streams.
A collection of around 120 hours of various shows was
saved in 16 kHz 16-bit uncompressed audio format.
The database was then manually transcribed as ob-
taining accurate transcriptions turned out to be impos-
sible. To save time, all incomplete and inaudible words
(as judged by the transcribers) were also removed. This
greatly helped in acquiring a completely correct data
set useful for training of clean acoustic models.
Word recognition experiments were performed on

the mentioned corpus. The data set was split into
90% for training and development and 10% for test-
ing. However acoustic models (BLSTM and DBNN-
BLSTM hybrid) were trained only on ca. 12 hours
of speech. This was due to speed issues that are de-
scribed in sections 6 – Discussion. The MFCC speech
features were normalized so that, they had zero mean
and unit variance. We used 36 target class labels
(36 phonemes). The DBNN had 7 layers with 1024
units in each layer. Mohamed (2009) empirically
proved that adding more hidden layers gives better
performance, although the gain diminishes as the num-
ber of layers increases. Using more hidden units per
layer also improves performance. Because of compu-
tational and time limitations only one DBNN topol-
ogy was tested in this research. DBNN was trained
for 75 epochs with a learning rate of 0.005 and a
momentum rate of 0.9. The RBM units were binary.
A final tuning was performed after adding a BLSTM
layer with 200 blocks (100 forward and 100 backward).
A learning rate was empirically set to of 10−7 and
momentum was set to 0.9. BLSTM initial synaptic
weights were uniformly randomized between −0.1 and
0.1. These settings were used for both BLSTMs (stan-
dalone and DBNN-BLSTM hybrid). However, a stan-
dalone BLSTM had only 39 inputs (speech features)
and circa 113.000 synaptic connections. A BLSTM
used in the hybrid had 1024 inputs which increased
the number of weights to over 900.000 slowing down
training significantly.
Trained acoustic models were incorporated to al-

ready working LVCSR system (Korzinek, 2011).
A standard system based on GMM models was also
trained in HTK toolkit (Young, 2000) and tested in
the Julius (Lee, 2001) decoder using a language model
created by IRSTLM toolkit (Federico, 2008). One
must underline that GMMs were trained using full cor-
pus (120 hours of speech). However, this system per-
formed considerably worse compared to our own, which
was trained only on 12 hours of speech. It seems that
worse result may be due to the sensitivity of GMMs to
challenging acoustic data and less advanced language
model.
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Table 1. Results of experiments.

Decoder Accoustic
model

Acoustic
corpus size
(hours)

Lexicon
size

Language
model
perplexity

Word
accuracy

Viterbi-like BLSTM 120 40K 246 65%

Viterbi-like DBNN-BLSTM 12 40K 246 61%

Viterbi-like BLSTM 12 40K 246 56%

Julius+IRSTLM GMM 120 60K 276 47%

Julius+IRSTLM GMM 120 30K 289 44%

5. Results

Experiment results are summarized in the Table 1.
The highest word accuracy was achieved by BLSTM
acoustic model trained on the full corpus (120 hours).
However, if BLSTM was trained only on 12 hours of
speech it’s performance dropped drastically and was
worse then DBNN-BLSTM hybrid. It is very indicative
that if one trained DBNN-BLSTM hybrid on the full
corpus it would have achieved best result. However,
this was not possible due to the amount of time that
would be needed to train such a big model. It must be
also highlighted that all systems in Table 1 apart from
DBNN-BLSTM hybrid work close to or faster than real
time.
The size of the vocabulary was limited to 40K

words because of the design issues and memory re-
quirements of the current system implementation.
Most common recognition errors were related to Out-
Of-Vocabulary words in a limited vocabulary language
model. Another problem would often arise when speak-
ers suddenly changed, which is very common in news
and talk shows. It seems that these rapid changes
would interfere with the acoustic model contexts. Fi-
nally, background noise and many people speaking
at the same time would cause greatest errors. Even
though the data set was cleaned to remove all the non-
speech and inaudible speech, it was decided to leave
background noise in the recordings as long as the per-
son transcribing the data could understand the spoken
word without too much effort.

6. Discussion

Training DBNNs for speech recognition is compu-
tationally very expensive. Therefore many researchers
accelerate processing by incorporating graphics cards
(Dahl, 2011). Mohamed et al. (2009) uses GPUs in
a NVIDIA Tesla S1070 system, together with the CU-
DAMAT library. They report that single GPU learns
at 20 times faster than a single 2.66 GHz Xeon core.
This is a significant improvement that allowed the
researchers to make more experiments with different
settings and achieve better results. Unfortunately, in

this work no GPUs were used as BLSTM trained with
the CTC algorithm is quite complex to be easily im-
plemented for GPUs. GPUs are great if they are to
multiply or add large matrices and that is exactly
what is needed for DBNNs (as they are similar to
MLPs). On the other hand BLSTM are bidirectional
complicated networks built from blocks with much
more advanced recursive circuitry then standard feed-
forward networks like DBNNs. Moreover, as BLSTMs
are RNNs they are trained with a Backprogragation
Through Time algorithm (Werbos, 1987) which “un-
folds” the networks states through all time frames and
because of that it needs significant amount of mem-
ory. The last aspect that makes GPUs far from perfect
solution in case of DBNN-BLSTM hybrid is the CTC
learning algorithm, which uses dynamic programming,
similar to the forward-backward algorithm for HMMs
(Rabiner, 1989). The key idea of CTC algorithm is
that the sum over paths corresponding to a labeling
can be broken down into an iterative sum over paths
corresponding to prefixes of that labeling. The itera-
tions can then be computed with recursive forward and
backward variables. Considering all these problems the
authors decided to implement their programs in stan-
dard C without GPU acceleration.
A properly trained DBNN-BLSTM hybrid is supe-

rior to BLSTM in terms of speech recognition accu-
racy. However, when it comes to using a trained model
it is obvious that it runs orders of magnitude slower
then a compact BLSTM (not to mention GMM-HMM
tandem which is even faster). A standalone BLSTM
used in this experiments has 39 input features, 100
blocks (in each direction) and 38 output neurons (36
phonemes + 1 so-called “blank” unit (Graves, 2006)).
The whole model has around 113.000 weights and can
be run in real time (100 passes per second) on every
standard PC. The DBNN-BLSTM hybrid is a com-
pletely another case. The DBNN net alone (without
the BLSTM on top) has 7 layers consisting of 1024
units each. Consecutive layers are densely connected
with each other which gives 1.048.576 weights for each
layer. The whole DBNN net alone has almost 6.5 mil-
lion weights. Adding BLSTM on top makes things
even worse. The BLSTM in the hybrid has the same
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number of blocks as standalone BLSTM, however it
has 1024 input features apart from 39. Therefore the
top layer BLSTM has 900.000 weights in comparison
to 113.000 in standalone BLSTM. The whole DBNN-
BLSTM model has much over 7 million synaptic con-
nections which makes this model over 60 times larger
then standalone BLSTM. Running such model in real
time on current PCs without any advanced accelera-
tions is truly impossible. Training the DBNN-BLSTM
hybrid is also a very computationally demanding pro-
cess and that is the reason why in these experiments
only 12 hours of audio were used for training.

7. Conclusions

This paper presents recent work on extending the
DBNN to a DBNN-BLSTM hybrid. A framewise-
phoneme-based training is further extended with Con-
nectionnist Temporal Classification algorithm. The
DBNN-BLSTM hybrid is a powerful topology that
is superiors in terms of speech recognition accuracy
when compared to standalone BLSTM and GMM. We
have shown that DBNN-BLSTM hybrid can be imple-
mented for LVCSR. Although our experiments show
that DBNN-BLSTM provide improvements in recogni-
tion accuracy, training such models is computationally
much more expensive compared to BLSTM. Moreover,
DBNN-BLSTM hybrid has 60 times more synaptic
connections then BLSTM and therefore it is not possi-
ble to run it in real time which might generate issues in
real-world applications. The authors believe that this
research is only the first step towards a more accurate
and speed efficient acoustic models for LVCSR.
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