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This article discusses a system of recognition of acoustic signals of loaded synchronous motor. This
software can recognize various types of incipient failures by means of analysis of the acoustic signals.
Proposed approach uses the acoustic signals generated by loaded synchronous motor. A plan of study of
the acoustic signals of loaded synchronous motor is proposed. Studies include following states: healthy
loaded synchronous motor, loaded synchronous motor with shorted stator coil, loaded synchronous motor
with shorted stator coil and broken coil, loaded synchronous motor with shorted stator coil and two
broken coils. The methods such as FFT, method of selection of amplitudes of frequencies (MSAF-5),
Linear Support Vector Machine were used to identify specific state of the motor. The proposed approach
can keep high recognition rate and reduce the maintenance cost of synchronous motors.

Keywords: acoustic signal, fault detection, loaded synchronous motor, signal processing, pattern recog-
nition.

1. Introduction

The synchronous motor is type of AC motor which
is a constant-speed motor (Fig. 1). These motors are
used in many applications where synchronization of an-
gular position of the rotating elements is required, for
example in gas and oil pumps, rolling machines. The
performance of the electrical machine depends on both
the structure of magnetic circuit as well as the type of
material and its treatment (Krolczyk et al., 2014;
Nadolny, Kaplonek, 2014; Tokarski et al., 2012).

Fig. 1. Investigated synchronous motor.

In the literature diagnostic signals of different
physical nature: electric, thermal, vibro-acoustic are
used to fault detection (Abramov et al., 2014; Bicek
et al., 2015; Czopek, 2012; Glowacz, 2010; 2014;
Glowacz, Glowacz, 2007; Glowacz et al., 2012a;
2012b; 2014; 2015; Gornicka, 2014; Idziak, Raw-
icki, 2010; Koscielny, Syfert, 2014; Kudelcik
et al., 2011; Li et al., 2015;Pleban et al., 2013;Pribil
et al., 2014; Rusinski et al., 2014; Sebok et al., 2011;
Smolnicki et al., 2013; Sulowicz et al., 2010; Wu
et al., 2010; Zhao et al., 2014). The electrical signals
are a good source of information on of all types distur-
bances taking place during operation (Glowacz,
Zdrojewski, 2007; Glowacz, Kozik, 2013;
Glowacz et al., 2015). On the other hand method
based on electric signals is an invasive method of diag-
nostic. Acoustic signals of incipient failures of electric
motors have a lot of disturbances and they are difficult
to process. However, the method based on acoustic sig-
nals is non-invasive and inexpensive but little known.
It is essential to study the incipient failures of mo-

tor. Undetected, they may turn into failure and cause
production shutdowns. These shutdowns may lead to
wasting production time and raw resources.
This paper discusses selected incipient faults such

as broken stator coils and shorted stator coil. They
are mechanical faults caused by natural degradation
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of motor equipment. Detection of such faults is a di-
agnostic task. A new method of diagnostic based on
acoustic signals is proposed in this paper.

2. Proposed method of recognition of acoustic

signal of loaded synchronous motor

The proposed method of recognition consists of 6
steps of processing (Fig. 2). First one is recording of
acoustic signal. To achieve that, OLYMPUS TP-7 mi-
crophone, a sound card and PC computer are used.
The second step is splitting recorded soundtrack into
small samples. The third step of processing is normal-
ization of the amplitude. Next, data is converted by
the FFT method. After that obtained spectrum of fre-
quency is processed by the method of selection of am-
plitudes of frequencies (MSAF-5). The last step of pro-
cessing is a classification. The classification contains 2
substeps – the pattern creation and the identification.
The patterns (processed training samples) are created
in the pattern creation. Test samples are compared in
the identification.

Fig. 2. Recognition of acoustic signal of syn-
chronous motor using FFT, MSAF-5 and LSVM.

2.1. Recording of acoustic signal

Acoustic signals were recorded with the use of
OLYMPUS TP-7 microphone, a sound card and PC
computer. The parameters of WAVE PCM format
of the sound samples were: sampling frequency –
44.1 kHz, number of channels – single channel, 16-bit
depth.

2.2. Preprocessing

A preprocessing of acoustic signal includes splitting
recorded soundtrack into small samples, normalization

of the amplitude, FFT. The recorded soundtrack was
split into 5-seconds sound samples. The normalization
of the amplitude divided each point of the discreet sig-
nal by maximum value. The FFT method is well de-
scribed in the literature (Glowacz, Glowacz, 2008).
The FFT method creates vector of 16384 elements as
window size equals 32768 (32768/44100 = 0.743, du-
ration of 0.743 s).

2.3. Method of selection of amplitudes of frequencies
(MSAF-5)

The proposed method of selection of amplitudes of
frequencies MSAF-5 uses differences between ampli-
tudes of acoustic signals of loaded synchronous motor.
Different states and incipient faults of the loaded syn-
chronous motor generates characteristic acoustic sig-
nals. Steps of proposed approach MSAF-5 are pre-
sented below:

1. Calculate the frequency spectrum of acoustic sig-
nal for each incipient failures and healthy state
of loaded synchronous motor. The spectrum of
frequency of acoustic signal of healthy loaded
synchronous motor is denoted by vector d =
[d1, d2, ..., d16384]. The spectrum of frequency of
acoustic signal of loaded synchronous motor with
shorted stator coil is denoted by vector f =
[f1, f2, ..., f16384]. The spectrum of frequency of
acoustic signal of loaded synchronous motor with
shorted stator coil and broken coil is denoted by
vector g = [g1, g2, ..., g16384]. The spectrum of fre-
quency of acoustic signal of loaded synchronous mo-
tor with shorted stator coil and two broken coils is
denoted by vector h = [h1, h2, ..., h16384].

2. Calculate differences between spectra of frequencies
of incipient failures and healthy state of loaded syn-
chronous motor: d−f , d−g, d−h, f−g, f−h, g−h.

3. Calculate absolute values of differences between
spectra of incipient failures and healthy state of
loaded synchronous motor: |d−f |, |d−g|, |d−h|,
|f−g|, |f−h|, |g−h|.

4. Choose 5 maximum amplitudes for each differ-
ence between spectra of frequencies of incipient
failures and healthy state of loaded synchronous
motor: max1 |d−f |, ..., max5 |d−f |, max1 |d−g|,
..., max5 |d−g|, max1 |d−h|, ..., max5 |d−h|,
max1 |f−g|, ..., max5 |f−g|, max1 |f−h|, ...,
max5 |f−h|, max1 |g−h|, ..., max5 |g−h|.

5. Find common amplitudes of frequencies (1–5) for
each state of loaded synchronous motor.

6. Choose these amplitudes and create feature vector.

The method of selection of amplitudes of frequen-
cies of loaded synchronous motor MSAF-5 is showed
in Fig. 3.
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Fig. 3. Steps of MSAF-5.

Differences between spectra of frequencies for in-
cipient failures and healthy state of loaded syn-
chronous motor with rotor speed 1500 rpm are shown
in Figs. 4–9.

Fig. 4. The difference between spectra of frequencies of
acoustic signal of healthy state of loaded synchronous mo-
tor and acoustic signal of loaded synchronous motor with

shorted stator coil (|d−f |).

Fig. 5. The difference between spectra of frequencies of
acoustic signal of healthy state of loaded synchronous mo-
tor and acoustic signal of loaded synchronous motor with

shorted stator coil and broken coil (|d−g|).

Fig. 6. The difference between spectra of frequencies of
acoustic signal of healthy state of loaded synchronous mo-
tor and acoustic signal of loaded synchronous motor with
shorted stator coil and two broken coils (|d−h|).

Fig. 7. The difference between spectra of frequencies of
acoustic signal of loaded synchronous motor with shorted
stator coil and acoustic signal of loaded synchronous motor

with shorted stator coil and broken coil (|f−g|).

Fig. 8. The difference between spectra of frequencies of
acoustic signal of loaded synchronous motor with shorted
stator coil and acoustic signal of loaded synchronous motor
with shorted stator coil and two broken coils (|f−h|).

Fig. 9. The difference between spectra of frequencies of
acoustic signal of loaded synchronous motor with shorted
stator coil and broken coil and acoustic signal of loaded
synchronous motor shorted stator coil and two broken coils

(|g−h|).
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Analysis of 4 states of loaded synchronous motor
was conducted for frequency 202 Hz (Fig. 10).

Fig. 10. Selected amplitude of frequency
202 Hz for incipient failures and healthy
state of loaded synchronous motor. This
amplitude of frequency was selected by

MSAF-5.

Common frequencies of incipient failures and
healthy state of loaded synchronous motor formed fea-
ture vectors (in this case – amplitude of frequency
202 Hz). Next, these vectors were used by Linear Sup-
port Vector Machine classifier.

2.4. Linear Support Vector Machine Classifier

A classification of data is a difficult task in ma-
chine learning. Many classification methods were dis-
cussed in recent literature (Augustyniak et al., 2014;
Czech et al., 2014; Dudek-Dyduch et al., 2009;
Hachaj, Ogiela, 2011; 2013; Igras, Ziolko, 2014;
Jakubiec et al., 2007; Jaworek-Korjakowska,
Tadeusiewicz, 2014; Jun, Kochan, 2014; Khan,
Kannan, 2014; Krolczyk, 2014; MathWorks, 2014;
Mazurkiewicz, 2014; Turchenko et al., 2006;
Valis, Pietrucha-Urbanik, 2014; Valis et al.,
2014; Zuber et al., 2013). A Linear Support Vector
Machine classifier (LSVM) analyzed data and recog-
nized patterns. This classifier was described as a clas-
sification problem in (Cristianini, Shawe-Taylor,
2000; MathWorks, 2014; Suykens et al., 2002). This
classifier found the best hyperplane that separated fea-
ture vectors of the first class from vectors of the sec-
ond class. Separating hyperplane was used for classi-
fication. This hyperplane had two more hyperplanes.
Hyperplanes were parallel to separating hyperplane.
Support vectors (nearest training examples) were cut
by these two hyperplanes.

A group of classes ri with their vectors pi was
tested. A separating hyperplane was defined as follows:

〈k,p〉+ c = 0, (1)

where k ∈ Rd, pi ∈ Rd, Rd (datapoints), c – real
number, ri = ±1, 〈k,p〉 – the inner product of k and p.
Finding k and c that minimize ||k|| for all training
examples (pi, ri) was the solution of the considered
classification problem.

ri(〈k,pi〉+ c) ≥ 1. (2)

The LSVM classifier was described in more detail
in (Cristianini, Shawe-Taylor, 2000; MathWorks,
2014; Suykens et al., 2002).

3. Analysis of acoustic signal of loaded

synchronous motor

The loaded synchronous motor rotated at rotor
speed of 1500 rpm. A load resistance was equal 1 Ω.
Broken coils and short circuit were prepared in the sta-
tor circuit of the loaded synchronous motor (Figs. 11–
13). A shorted resistance was equal 0.85 Ω. Other op-
erating parameters depended on states of the motor.
These parameters are presented below:

• healthy loaded synchronous motor, Iobc = 10 A,
IT = 44.9 A, URS = 150 V,

• loaded synchronous motor with shorted stator coil
(U3-X3), Iobc = 10 A, IT = 42.7 A, URS = 150 V,
Izw = 42.5 A,

• loaded synchronous motor with shorted stator coil
and broken coil (U3–X3, Y1–Y4), Iobc = 10 A, IT =
47.2 A, URS = 150 V, Izw = 38.8 A,

• loaded synchronous motor with shorted stator coil
and two broken coils (U3–X3, Y1–Y4, Z1–Z4), Iobc =
10 A, IT = 32.3 A, URS = 150 V, Izw = 32 A,

where Iobc – current load, IT – the current of phase T ,
URS – the voltage between phases R and S, Izw –
current of short circuit.

Fig. 11. Shorted stator coil (U3–X3) of loaded synchronous
motor.
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Fig. 12. Shorted stator coil and broken coil (U3–X3,
Y1–Y4) of loaded synchronous motor.

Fig. 13. Shorted stator coil and two broken coils (U3–X3,
Y1–Y4, Z1–Z4) of loaded synchronous motor.

The method of selection of amplitudes of frequen-
cies (MSAF-5) selected frequency 202 Hz – 1 feature
(Fig. 10). Measurements and analysis were conducted
for acoustic signals of incipient failures and healthy
state of loaded synchronous motor. Incipient failures
were as follows: motor with shorted stator coil (U3–
X3), motor with shorted stator coil and broken coil
(U3–X3, Y1–Y4), motor with shorted stator coil and
two broken coils (U3–X3, Y1–Y4, Z1–Z4). 16 training
and 120 test 5-second samples were used in the analy-
sis.
Efficiency of acoustic signal recognition was ana-

lyzed. For this purpose the following formula (3) was
introduced:

EASR =
NPRTS

NATS
100%, (3)

where EASR denoted efficiency of acoustic signal
recognition, NPRTS denoted number of properly rec-
ognized test samples, NATS denoted number of all test
samples.
Next, total efficiency of acoustic signal recognition

(TEASR) was analyzed. For this purpose the following
formula (4) was introduced:

TEASR =
EASR1+EASR2+EASR3+EASR4

4
, (4)

where TEASR denoted total efficiency of acoustic sig-
nal recognition, EASR1 denoted efficiency of acoustic

signal recognition of healthy loaded synchronous mo-
tor, EASR2 denoted efficiency of acoustic signal recog-
nition of loaded synchronous motor with shorted sta-
tor coil (U3–X3), EASR3 denoted efficiency of acoustic
signal recognition of loaded synchronous motor with
shorted stator coil and broken coil (U3–X3, Y1–Y4),
EASR4 denoted efficiency of acoustic signal recogni-
tion of loaded synchronous motor with shorted stator
coil and two broken coils (U3–X3, Y1–Y4, Z1–Z4).
The efficiency of acoustic signal recognition of

loaded synchronous motor depending on considered
states is presented in Table 1. It also presents total
efficiency of acoustic signal recognition of loaded syn-
chronous motor.

Table 1. Results of recognition of acoustic signal of loaded
synchronous motor using FFT, MSAF-5 and LSVM.

State of loaded synchronous motor EASR [%]

Healthy loaded synchronous motor 100

Loaded synchronous motor with shorted
stator coil (U3–X3)

96.77

loaded synchronous motor with shorted sta-
tor coil and broken coil (U3–X3, Y1–Y4)

87.09

loaded synchronous motor with shorted sta-
tor coil and two broken coils (U3–X3, Y1–
Y4, Z1–Z4)

96.77

TEASR [%]

4 analyzed states of loaded synchronous
motor

95.16

The results presented in Table 1 were very good.
The analyzed efficiency of acoustic signal recognition
(EASR) was in the range of 87.09–100%. The total
efficiency of acoustic signal recognition (TEASR) was
equal 95.16%.

4. Conclusions

In this article a system and a method of recognition
of acoustic signal of loaded synchronous motor were
proposed. The proposed approach uses acoustic sig-
nals generated by loaded synchronous motor. Studies
include following states: healthy loaded synchronous
motor, loaded synchronous motor with shorted sta-
tor coil, loaded synchronous motor with shorted sta-
tor coil and broken coil, loaded synchronous motor
with shorted stator coil and two broken coils. The pro-
posed approach based on FFT, MSAF-5 and LSVM
classifier was used to identify specific state of the mo-
tor. The results of analysis were good. The total ef-
ficiency of acoustic signal recognition (TEASR) was
equal 95.16%.
Proposed approach can be used to advise on condi-

tion of synchronous motors. Moreover, it is inexpensive
approach to protect rotating electrical machines.
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