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This paper presents the classification of musical instruments using Mel Frequency Cepstral Coefficients
(MFCC) and Higher Order Spectral features. MFCC, cepstral, temporal, spectral, and timbral features
have been widely used in the task of musical instrument classification. As music sound signal is generated
using non-linear dynamics, non-linearity and non-Gaussianity of the musical instruments are important
features which have not been considered in the past. In this paper, hybridisation of MFCC and Higher
Order Spectral (HOS) based features have been used in the task of musical instrument classification.
HOS-based features have been used to provide instrument specific information such as non-Gaussianity
and non-linearity of the musical instruments. The extracted features have been presented to Counter
Propagation Neural Network (CPNN) to identify the instruments and their family. For experimentation,
isolated sounds of 19 musical instruments have been used from McGill University Master Sample (MUMS)
sound database. The proposed features show the significant improvement in the classification accuracy
of the system.

Keywords: feature extraction; MFCC; HOS; bispectrum; bicoherence; non-linearity; non-Gaussianity;
CPNN; Zero Crossing Rate (ZCR).

1. Introduction

The human ability to distinguish among musical
instrument sounds has been a subject of investigation
for the last few decades. Even with minimal musical
knowledge exposure, most people can easily distinguish
among familiar musical instruments, even when they
are played at the same loudness and pitch. Timbre is
the quality of sound by which a listener can distinguish
between two sounds of equal loudness, duration and
pitch, but it has been proven to be difficult to measure
or quantify. In addition, the demand for online access
to music data in the Internet is increasing day by day.
The objective of this paper is to present the impor-

tance of HOS-based features in the task of musical in-
strument classification. HOS-based features provide in-
formation related to non-linearity and non-Gaussianity
of musical instruments. This additional information
helps to improve the overall classification accuracy of
the system.

Musical instrument classification problem consists
of three steps: pre-processing, feature extraction, and
classification. The majority of research on musical in-
strument classification is focused on feature extraction.
The state-of-the art on musical instrument classifica-
tion has been described below.
Kostek (Kostek, Wieczorkowska, 1997; Kos-

tek, Krolikowski, 1997; Kostek, Czyzewski,
2001) has presented effectiveness of spectral and tem-
poral features for musical instrument identification
and classification. Also, she has demonstrated mu-
sical instrument sound classification using a limited
number of parameters and neural network. An ex-
pert system was built for automatic musical instru-
ment classification using a rough set of parameters
with a fuzzy based approach (Kostek, 2004a). Fur-
ther, the use of soft computing techniques in the
field of music acoustics was fully justified for musical
sound classification (Kostek, 2004b; 2007). The per-
formance of different classifiers on the selected feature
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set has also been evaluated using Waikato Environ-
ment for Knowledge analysis (WEKA) (Kostek, Ka-
nia, 2008). Finally she concluded that finding novel
features for musical instrument classification is a ma-
jor challenge and future scope of research.Martin and
Kim (1998) demonstrated the utility of hierarchical
organisation of musical sounds. Log-lag correlogram
acoustic features were extracted to classify 15 mu-
sical instruments. The performance of 90% accuracy
was reported for families of instruments and 70% ac-
curacy was reported for individual instruments. How-
ever, in all taxonomies string and brass family in-
struments have shown consistent results, but wood-
wind instruments were inconsistent. Eronen (2001)
used features including MFCC, delta MFCC, LPCC,
temporal, spectral, and modulation features for instru-
ment classification. MFCC features have shown good
performance among all. Large variations in recogni-
tion accuracies of different instruments have also been
seen. Agostini et al. (2001; 2003) discussed content
based classification of musical timbres. Different pat-
tern recognition techniques such as support vector ma-
chine (SVM), KNN, canonical and quadratic discrimi-
nant analysis have been used to classify the musical in-
strument timbres. Also, Kaminskyj and Czaszejko
(2005) described recognition of isolated monophonic
musical sounds using KNN classifier. Cepstral coef-
ficients, amplitude envelope, constant Q-transform,
multidimensional scaling analysis trajectories, spectral
centroid, and vibrato features have been used for recog-
nition of musical sounds. An accuracy of 93% for in-
dividual instruments and 97% for instrument family
classification was reported for 19 instruments. Con-
sequently, Essid et al. (2006) presented a work on
use of natural and instrument hierarchical taxonomies
for recognition of musical instruments on solo record-
ings. A wide set of features covering temporal, cep-
stral, spectral, wavelet, and perceptual features were
used to classify instruments using a SVM classifier
with selected features. Cepstral, spectral, perceptual,
and MFCC features were included into the selected
feature subset in the proposed taxonomy. The instru-
ment based taxonomy has shown significant improve-
ment using the selected feature subset. Further, Ero-
nen, and Klapuri (2000) presented a study on mu-
sical instrument classification using a wide set of tem-
poral and spectral features. The usefulness of the hi-
erarchical structured classifier has also been demon-
strated. The authors concluded that combining differ-
ent type of features improved the classification accu-
racy of the system. Further, Loughran et al. (2008)
described a work on musical instrument classification
using MFCC features and principal component anal-
ysis. Multilayer perceptron was used as a classifier to
test the performance of the system. Optimum num-
bers of coefficients were determined to classify mu-
sical instrument samples of piano, violin, and flute.

Deng et al. (2008) reviewed past research work on
instrument classification and described feature analy-
sis for musical instrument classification using different
machine learning techniques. A large set of features
including MPEG-7, perceptual based features, statis-
tical features of MFCC, statistical features of ZCR,
RMS energy, spectral centroid, and spectral flux were
used to form feature subset for instrument recognition.
MFCC features were found dominating among the se-
lected features subset.
In addition, literature review on HOS analysis for

signal processing has been carried out and briefly de-
scribed. Dubnov and Tishby (1994; 1997) demon-
strated the use of the higher order statistics of acous-
tic signals for different spectral estimation and mod-
elling various auditory perceptual phenomena. Sound
textures and machine sound has also been analysed us-
ing HOS-based features. It has been shown that the
higher order statistics captures timbral information
better and provides additional information about mu-
sical instrument sound signals. Again, Dubnov and
Tishby (1998) have shown that the non linear prop-
erties in musical sound signals are attributed to ex-
citation source of musical instruments, and spectral
properties are attributed to resonating chambers of
musical instruments. Skewness and kurtosis features
have been used to characterise the residual part of
musical sound signal and exhibit similar results using
higher order spectra based features. Choudhury et al.
(2002) used the higher order statistics to detect and
quantify the non-Gaussianity and non-linearity of reg-
ulated processes or control error variables which were
the main contributors to the poor performance of many
of the control loop. Bicoherence plots and bicoherence
index were used to detect non-linearities. Li and Liu
(2010) extracted features from lung sounds of normal,
pneumonia, and asthma patients in bi-frequency do-
main. Further, Dubnov and Rodet (2005) demon-
strated that phase coupling is an important character-
istic of a sustained portion of sound of individual musi-
cal instruments, and effect of phase coupling has been
compared by means of higher order statistics. In ad-
dition, the timbre of pitched musical instrument was
analysed by Liu et al. (2010) using excitation signature
by means of the higher order statistics and subspace
analysis. It has been demonstrated that HOS-based
features provide more significant timbre patterns in
both time and frequency domains in comparison with
the second order statistics. Ajmera et al. (2012) ex-
tracted MFCC features from bispectrum which have
been used to reconstruct the spectrum of the original
signal from its noisy version and observed improve-
ment in recognition accuracy. Goshvarpour et al.
(2012) used the bispectrum for EEG signal analysis.
Bordoloi et al. (2012) used hybrid features of bispec-
trum for classification of Motor imagery (MI). Also,
Bhalke et al. (2014) have demonstrated the signif-
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icance of the bispectrum and bicoherence in musical
instrument classification. In general the literature re-
view can be summarised as follows: various feature
schemes and classification algorithms have been pro-
posed for musical instrument classification. However,
MFCC features were found dominating for musical in-
strument classification. It has also been seen that find-
ing new acoustic features is a challenging and future
scope of the work. Further, HOS-based features have
been utilised in many applications to provide informa-
tion about non-linearity, non-Gaussianity, and phase
related information of musical sound signals, but they
have not been used for musical instrument classifica-
tion. In this paper, an attempt has been made to im-
prove the classification accuracy of the system using
hybridisation of HOS-based features and MFCC fea-
tures.
Following the introduction and state-of-the-art of

work, Sec. 2 outlines the methodology used in tackling
the problem of instrument classification including fea-
ture extraction and classification algorithms. The ex-
perimental settings and results based on the proposed
approach are presented in Sec. 3. Finally, conclusions
are presented in Sec. 4.

2. Methodology

The proposed methodology for instrument classifi-
cation has been depicted in Fig. 1. It consists of train-
ing and testing phase. In the training phase, initially
a signal is pre-processed to remove the silence part of
a signal using energy and ZCR features. It helps to
reduce the computational complexity of the system.
After pre-processing, suitable features like MFCC and
HOS-based features are extracted. The extracted fea-
tures have been presented to CPNN to build classifi-
cation model for each feature scheme. In the testing
phase, a signal is again pre-processed and similar fea-
tures as in the training are extracted. The extracted
features are then presented to CPNN to make a deci-
sion. The feature extraction and experimental details
have been presented in Subsecs. 2.1 and 2.2, respec-
tively.

Fig. 1. Musical instrument classification system.

Database used:
McGill University Master Samples (MUMS) musi-

cal sound database has been used for the experiments.
The database has been created by Frank Opolko
and Joel Wapnick (1987). The music samples were
recorded at 44.1 KHz with a wide variation of artic-
ulation styles and pitch ranges. Nineteen instruments
from four families have been used for experimentation.
The list of the instruments used for experimentation
has been given in Table 1. These instruments have been
widely used in various research studies as discussed in
the literature review. Forty isolated notes of each in-
strument have been used for experimentation.

Table 1. List of the musical instruments.

Sr. No. Instruments Family

01 Trumpet, Cornet, Tuba,
Trombone, French Horn Brass

02 Saxophone, Oboe classical,
Oboe D, English horn Woodwind

03 Violin, Viola, Guitar, Cello, Lute,
Piano, Harpsichord, Bass String

04 Steel drum, Tympani Percussion

2.1. Feature extraction

Feature extraction is used to obtain the relevant
and significant information about a signal. Features
including MFCC and HOS-based features have been
extracted. The MFCC feature extraction and HOS-
based feature extraction have been briefly presented
in Subsecs. 2.1.1 and 2.1.2, respectively. Table 2 shows
the features used for experimentation.

Table 2. List of features.

Feature No. Name of the feature

1–13 Mean value of MFCC coefficients

14–20 Bispectrum features: normalized bispec-
tral entropy, bispectrum phase entropy,
normalized bispectral squared entropy,
normalized bispectral cubed entropy,
mean bispectrum magnitude, and mean
value of bicoherence

2.1.1. Mel Frequency Cepstral Coefficients (MFCC)

The MFCC features have proved their significance
in speech recognition, speaker recognition, and also
in musical instrument classification, Eronen (Eronen,
2000; Eronen, Klapuri, 2001), Martin and Kim
(1998), Deng et al. (2008), Loughran et al. (2008),
Bhalke et al. (2015). MFCC represents the short
time power spectral representation of a sound signal.
It provides useful information regarding psychoacous-
tic properties of human auditory system. The block
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Fig. 2. MFCC Feature extraction.

scheme of MFCC has been depicted in Fig. 2. It con-
sists of pre-processing, pre-emphasis, framing, window-
ing, FFT, Triangular mel band pass filter, and DCT.
In pre-processing the silence part of a signal has been
removed using ZCR and energy features with a proper
threshold value. Pre-emphasis has been done to boost
the high frequency components of a signal using the
first order high pass filter. Framing has been done with
20 ms duration with 10 ms overlap. After framing a
signal, it is windowed using a Hamming window. Fur-
ther, the signal is transformed into spectral domain
and passed through 24 mel frequency triangular band
pass filters. Log values of these spectral components
have been obtained. Discrete Cosine Transform (DCT)
of these log values have been taken to decorrelate the
features. Thirteen most significant MFCC coefficients
have been obtained for each frame. Mean value of these
coefficients have been computed and used as a feature
vector.

2.1.2. Higher Order Spectral Analysis (HOSA)

First and second order statistics such as mean, vari-
ance, autocorrelation, power spectral density are fre-
quently used signal processing tools. They are useful
for linear and Gaussian processes, but when data are
deviated from Gaussianity and linearity these tools
were found to cause shortcomings for analysis. HOS
is mainly used to extract information due to deviation
from Gaussianity, to recover phase information, and to
detect nonlinearities. As music sound signals are gen-
erated using non linear dynamic process, HOS-based

Fig. 3. Bispectrum plot for Trumpet C6 note.

features help to provide additional information about
musical instruments. These non linear dynamic fea-
tures have been extracted using bispectrum and bi-
coherence. The following sections briefly describe the
bispectrum and bicoherence based features.

Bispectrum:
Power spectrum is the frequency domain represen-

tation of the second order moment but it does not pro-
vide information about the higher order moment. The
bispectrum is the frequency domain representation of
the third order cumulants. It is Fourier transform of
the third order cummulant and is depicted in Eq. (1).

B(f1, f2) = E[X(f1)X(f2)X
∗(f1 + f2)], (1)

where X(f1) is Fourier transform of a signal x(t). Bis-
pectrum is a complex quantity having both magnitude
and phase. It is plotted against two independent fre-
quency variables f1 and f2 in three-dimensional plots.
Each point in the plot represents bispectral content
of a signal at the bifrequency (f1, f2). In this pa-
per, bispectrum has been computed using direct FFT
method. Features such as normalised bispectral en-
tropy, mean bispectrum magnitude, bispectrum phase
entropy have been estimated based on the bispectrum.
Figure 3 shows bispectrum plot of Trumpet C6 notes
and Fig. 4 shows bispectrum plot for Tuba C3 note.
Figures 3 and 4 show that the bispectrum plots are
different for different instruments. The features ex-
tracted from the bispectrum help to distinguish the
instruments.
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Fig. 4. Bispectrum plot Tuba C3 note.

The following features have been extracted to mea-
sure the similarity of the bispectrum.

Normalised Bispectral entropy (Ent1):
Normalised bispectral entropy is computed using

Eq. (2).

Ent1 = −
∑
n

pn log pn,

where pn =
|B (f1, f2)|∑
Ω |B (f1, f2)|

,

(2)

where B(f1, f2) is the bispectrum of a signal.

Normalised bispectral squared entropy (Ent2):
Normalised bispectral squared entropy is computed

using Eq. (3).

Ent2 = −
∑
n

qn log qn,

where qn =
|B (f1, f2)|2∑
Ω |B (f1, f2)|2

.

(3)

Normalised bispectral cubed entropy (Ent3):
Normalised bispectral cube entropy is computed

using Eq. (4).

Ent3 = −
∑
n

rn log rn

where rn =
|B (f1, f2)|3∑
Ω |B (f1, f2)|3

.

(4)

Bispectrum phase entropy (EntPh):
Normalised bispectral phase entropy is computed

using Eq. (5).

EntPh =
∑
n

p(Ψn) log p(Ψn), (5)

where p(Ψn) =
1
L

∑
Ω 1(Φ(B(f1, f2) ∈ Ψn)),

−π+2πn/N ≤ Φ < −π + 2π(n+1)/N ,
n = 0, 1, · · ·N−1, Φ – bispectrum phase angle, L –
number of points within the samples, 1(.) – indicator
function.

Mean bispectrum magnitude (mAmp):
The mean value of bispectrum magnitude is use-

ful in discriminating between processes with similar
power spectra but different third order statistics. Nor-
malisation has been done to improve the scalability of
features. Mean bispectrum magnitude has been com-
puted using Eq. (6).

mAmp =
1

L

∑
Ω|B(f1, f2)|, (6)

where B(f1, f2) is the bispectrum of a signal.
If the processes were harmonic, periodic then phase

entropy would be zero and if they become more ran-
dom, the entropy increases. Unlike Fourier phase, the
bispectral phase does not change with a time shift.

Bicoherence:
Bicoherence is a normalised bispectrum of a signal

which is the third order correlation of three harmon-
ically related Fourier frequencies. It is insensitive to
signal Gaussianity. The squared bicoherence is com-
puted using Eq. (7).

bich2(f1,f2) =
|E[B(f1, f2)]|2

P (f1)P (f2)P (f1, f2)
, (7)

where ‘bich’ is bicoherence function and P (f) are
power spectra of the signal.

Linearity test:
Bicoherence has been used to test the linearity of a

signal, Chaudhari et al. (2002). The following section
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briefly describes the linearity test using the bicoher-
ence value.
Let y(k) be a discrete stationary process. The linear

system can be represented by Eq. (8):

y(k) =
∑

n
h(n)x(k − n), (8)

where x(k) is a sequence of independent identically
distributed random variables with

E[x(k)] = 0, σ2
x = E[x2(k)], and µ3 = E[x3(k)].

The power spectrum for this linear system is repre-
sented by Eq. (9),

P (f) =
σ2
x

2π
|H(f)|2 (9)

and the bispectrum is given by

B(f1, f2) =
µ3

(2π2)
H(f1)H(f2)H

∗(f1 + f2), (10)

where H(f) is Fourier transform of h(n). Bicoherence
is normalised bispectrum of a signal and the squared
bichorence is given by Eq. (7) which is

bich2(f1,f2) =
|E[B(f1, f2)]|2

P (f1)P (f2)P (f1, f2)
.

Fig. 5. 3D bicoherence plot for Piano C2 note.

Fig. 6. Bicoherence plot for Cello C4 note.

Putting the values of Eq. (9) and Eq. (10) into Eq. (7)
the bich2(f1, f2) can be written as

bich2(f1,f2) =
µ3

2πσ6
x

. (11)

From Eq. (11), it can be concluded that the squared
bicoherence is constant for a linear process and in-
dependent of frequency. Also, if it is not a non-zero
constant in the principal domain of the bispectrum,
the system is non linear. Further, if µ3 is zero the
squared bicoherence is zero and the signal is Gaus-
sian.
So, non-linearity and non-Gaussianity can be esti-

mated using the bicoherence value. If sharp peaks are
present in the bicoherence plot and mean value of bico-
herence is not zero then the system is non linear. The
extent of non-linearity can be estimated from the value
of bicoherence. More non-linearity is present if the bi-
coherence value is maximum and vice versa. Figure 5
shows the 3D bicoherence plot for Piano C2 note and
Fig. 6 shows the 3D bicoherence plot for Cello C4 note.
These figures show that the extent of non-linearity is
different for different instruments. It can be easily es-
timated using the mean bicoherence value.
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2.2. Counter Propagation Neural Network (CPNN)

Neural Networks (NN) have been used to solve clas-
sification and forecasting problems for the last two
decades. Kohonen’s Self Organizing Map (SOM) is one
of the most widely used NN to solve the classification
problem in an unsupervised manner. It has been used
as a powerful data analysis and visualisation tool in
many applications. It has the ability to organise input
vectors in an unsupervised learning fashion. It basically
focuses on self organising and clustering applications.
The extension of SOM is Counter Propagation Neural
Network (CPNN). It is one of the frequently used NN
to solve many classification problems in a supervised
manner,Kuzmanovski and Novič (2008). CPNN has
an excellent clustering ability (unsupervised) and re-
duces errors existing in the desired output (supervised
learning). The purpose of using CPNN is to take the
benefits of both the supervised and unsupervised learn-
ing. It consists of three layers: input, Kohonen’s, and
output one. Input data (extracted features) are intro-
duced to the input layer. Kohonen’s layer clusters the
input vector using Euclidean distance and the winner
takes all rule, and weights of cluster nodes are com-
puted. Weights of cluster nodes are introduced to the
output layer to get the desired target vector. The learn-
ing speed of CPNN is faster as compared to other
NNs. The training model has been developed using
CPNN.
The steps for CPNN training are given below:
Step 1: Apply x dimensional input vector and y
dimensional output vector to the network.

Step 2: Compute the distance between the input
and weight vector of Kohonen layer.

Step 3: Compute the winning neuron.
Step 4: Adjust the weights of all neurons.
Step 5: Apply the new pair of input and output
vectors.

Step 6: Go to step 2 till all input has been applied.
After training the CPNNmodel has been developed

for each feature set. In the testing phase, after the win-
ning neuron is found (Kohonen layer) the root-mean-
square-error of prediction (RMSEP) is computed using
weights in the output layer and prediction is done. The
following parameters of CPNN have been used dur-
ing training and prediction: Network topology: Square,
Network size: 10X10, No. of Epochs: 200, learning rate:
0.1, Training: Batch.
CPNN has been selected as a classifier because

it leads to faster training, better prediction, higher
ability to adaptation to complex nonlinear data,
lower risk of local minima, and better stable con-
vergence as compared to other artificial neural net-
works (ANNs) (Goppert, Rosenstiel, 1993; Kuz-
manovski, Novič, 2008). In addition, the state-of-
the-art classifier such as support vector machine has
serious drawbacks such as choice of the kernel function,

slow speed, and high memory requirement (Byun,
Lee, 2002).

3. Results and discussion

MFCC and HOS-based features have been ex-
tracted for 19 musical instruments and presented to
CPNN to build a training model. Batch training with
10-cross fold validation technique have been used to
train the CPNN. 70% notes have been used for train-
ing and 30% notes have been used for testing. It has
been observed that musical instrument classification
has shown significant improvement in classification ac-
curacy when MFCC features have been incorporated
together with HOS-based features. The result reveals
that HOS-based features provide supplementary infor-
mation like non-linearity, non-Gaussianity, and phase
related information about acoustics of musical instru-
ments. Figure 7 shows non-linearity of the instruments
using the mean bicoherence value. The maximum value
of non-linearity has been observed for the brass fam-
ily and the minimum value was found for the string
family instruments. Figure 8 shows classification ac-
curacy for MFCC features combined with HOS-based
features. This shows that the classification accuracy
for individual instruments and instrument family has
been improved significantly due to additional informa-
tion provided by HOS-based features. Classification ac-
curacy has been improved from 75% (for MFCC) to
81.39% (for the proposed features) for individual in-
struments and from 78.98% (for MFCC) to 87.50% (for
the proposed features) for the family classification.

Fig. 7. Classification accuracy for different feature scheme.

Fig. 8. Classification accuracy for different feature scheme.
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Table 3 provides classification accuracy for individ-
ual instruments using MFCC features in terms of con-
fusion matrix. The overall average classification accu-
racy for individual instruments reported using MFCC
feature scheme is 75%. The lowest classification accu-
racy of 40% has been reported for the piano. Classi-
fication error in piano samples mainly occurred with
guitar, lute, tympani, and drum. 20% percent samples
of piano were misclassified to guitar, 15% to lute, 5%
to drum, and 20% to tympani. Maximum classification
accuracy of 95% has been reported for trombone. 5%
of trombone samples have been misclassified to French
horn. Most of the misclassification has taken place for
instruments of the same family. The classification ac-
curacy using MFCC is not significant since it provides
only auditory perception information.
Table 4 provides classification accuracy for instru-

ment families using MFCC features in terms of a confu-
sion matrix. The overall average classification accuracy
for instrument families reported using an MFCC fea-
ture scheme is 78.98 %. The lowest classification accu-
racy of 60% has been reported for the percussion fam-

Table 3. Confusion matrix for individual instruments classification using MFCC features (all numbers are in %).

Instruments A B C D E F G H I J K L M N O P Q R S

A = Saxophone 75 0 10 0 5 0 0 0 0 0 0 0 10 0 0 0 0 0 0

B = Bass 5 65 5 0 5 0 0 0 0 0 0 5 0 0 0 0 0 15 0

C = Cello 5 10 65 0 0 0 0 0 0 0 0 0 0 0 1 0 5 5 5

D = Cornet 5 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

E = Eng Horn 5 0 0 0 65 0 0 0 0 15 5 0 0 0 5 0 0 5 0

F = F Horn 0 0 0 0 0 90 0 0 0 0 5 0 0 5 0 0 0 0 0

G = Guitar 0 0 0 0 0 0 70 0 10 0 0 0 15 0 0 0 5 0 0

H = Harpsichord 0 0 0 0 0 0 5 75 5 0 0 0 5 0 0 0 0 5 5

I = Lute 0 0 0 0 0 0 5 0 60 0 0 0 0 0 0 0 30 0 0

J = Oboe classical 0 0 0 0 15 0 0 0 0 65 10 0 0 0 0 0 0 5 0

K = Oboe D 0 0 0 0 15 0 0 0 0 5 70 0 0 0 0 0 0 5 0

L = Piano 0 0 0 0 0 0 20 0 15 0 0 40 5 0 0 0 20 0 0

M = Drum 0 0 0 0 0 0 10 0 10 0 0 0 80 0 0 0 0 0 0

N = Trombone 0 0 0 0 0 5 0 0 0 0 0 0 95 0 0 0 0 0

O = Trumpet 10 0 5 0 0 0 0 0 0 0 0 0 0 5 80 0 0 0 0

P = Tuba 0 5 0 0 0 5 0 0 0 0 0 0 0 0 0 90 0 0 0

Q = Tympani 0 0 0 0 0 0 0 0 15 0 0 5 0 0 0 0 80 0 0

R = Viola 0 5 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 85 0

S = Violin 0 0 5 10 0 0 0 0 0 0 0 0 0 0 0 5 0 0 80

Table 4. Confusion matrix for instrument family classification using MFCC features
(all numbers are in %).

String Woodwind Brass Percussion

String 83.33 2.56 1.92 12.18

Woodwind 8.75 78.75 10 2.5

Brass 7 4 88 1

Percussion 0 40 0 60

ily. Classification error in the percussion family sam-
ples mainly occurred with the woodwind family. 40%
percent samples of percussion were misclassified to the
woodwind family. Maximum classification accuracy of
88% has been reported for the brass family.
Table 5 provides classification accuracy for individ-

ual instruments using the proposed MFCC and HOS-
based features in terms of a confusion matrix. The
overall average classification accuracy for individual in-
struments reported using the proposed feature scheme
is 81.39%. The lowest classification accuracy of 70%
has been reported for lute. Classification errors in lute
instrument samples mainly occurred with tympani.
Maximum classification accuracy of 100% has been re-
ported for trombone. An improvement of 6.39% has
been seen because of additional information provided
by HOS-based features. Table 6 provides classification
accuracy for instrument families using the proposed
features in terms of a confusion matrix. The overall
average classification accuracy for instrument families
reported using the proposed feature scheme is 87.50%.
The lowest classification accuracy of 73.42% has been
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Table 5. Confusion matrix for individual instruments classification using MFCC and HOS features (all numbers are in %).

Instruments A B C D E F G H I J K L M N O P Q R S

A = Saxophone 80 0 10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

B = Bass 5 70 5 0 0 0 0 0 0 0 0 5 0 0 0 0 0 15 0

C = Cello 5 5 70 0 0 0 0 0 0 0 0 0 0 0 5 0 5 5 5

D = Cornet 5 0 0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E = Eng Horn 5 0 0 0 70 0 0 0 0 10 5 0 0 0 5 0 0 5 0

F = F Horn 0 0 0 0 0 95 0 0 0 0 0 0 0 5 0 0 0 0 0

G = Guitar 0 0 0 0 0 0 75 0 5 0 0 0 15 0 0 0 5 0 0

H = Harpsichord 0 0 0 0 0 0 10 80 5 0 0 0 0 0 0 0 0 0 5

I = Lute 0 0 0 0 0 0 5 0 65 0 0 0 0 0 0 0 30 0 0

J = Oboe classical 0 0 0 0 15 0 0 0 0 70 10 5 0 0 0 0 0 0 0

K = Oboe D 0 0 0 0 15 0 0 0 0 5 75 0 0 0 0 0 0 5 0

L = Piano 0 0 0 0 0 0 15 0 15 0 0 70 0 0 0 0 0 0 0

M = Drum 0 0 0 0 0 0 5 0 10 0 0 0 85 0 0 0 0 0 0

N = Trombone 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

O = Trumpet 5 0 5 0 0 0 0 0 0 0 0 0 0 5 85 0 0 0 0

P = Tuba 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 95 0 0 0

Q = Tympani 0 0 0 0 0 0 0 0 10 0 0 5 0 0 0 0 85 0 0

R = Viola 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 90 0

S = Violin 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 5 0 0 85

Table 6. Confusion matrix using the proposed features for instrument family
classification using (all numbers are in %).

String Woodwind Brass Percussion

String 88.54 0 2.55 8.92

Woodwind 11.39 73.42 15.19 0

Brass 6 2 91 1

Percussion 0 8.4 0 91.6

reported for the woodwind family. The highest classi-
fication accuracy of 91.6% has been reported for the
percussion family. An improvement of 8.52% has been
seen in family classification because of additional in-
formation provided by HOS-based features.

4. Conclusions

In this paper, a new feature extraction technique
has been proposed using hybridisation of Mel Fre-
quency Cepstral Coefficients (MFCC) and HOS-based
features for musical instrument classification. MFCC
represents psychoacoustic properties of the human au-
ditory system but does not provide instrument specific
information. Higher Order Spectra (HOS)-based fea-
tures have been used to provide instrument specific
information such as non-linearity and non-Gaussianity
of the instruments. These features have been derived
from bispectrum and bicoherence values. Through ex-
perimentation it has been observed that when MFCC
and HOS-based features are hybridised the classifica-
tion accuracy of the instruments is improved signifi-

cantly. An improvement of 6.39% for individual instru-
ments and 8.52% for instrument families have been ob-
tained because of instrument specific information pro-
vided by HOS-based features and auditory information
provided by MFCC feature subset. Counter propaga-
tion neural network has been used as a classifier as it
provides faster training as compared to other neural
networks.
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