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The same speech sounds (phones) produced by different speakers can sometimes exhibit significant
differences. Therefore, it is essential to use algorithms compensating these differences in ASR systems.
Speaker clustering is an attractive solution to the compensation problem, as it does not require long
utterances or high computational effort at the recognition stage. The report proposes a clustering method
based solely on adaptation of UBM model weights. This solution has turned out to be effective even when
using a very short utterance. The obtained improvement of frame recognition quality measured by means
of frame error rate is over 5%.
It is noteworthy that this improvement concerns all vowels, even though the clustering discussed in

this report was based only on the phoneme a. This indicates a strong correlation between the articulation
of different vowels, which is probably related to the size of the vocal tract.
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universal background model; GMM weighting factor adaptation.

1. Introduction

While building an automatic system of speech
recognition (ASR), one of the first steps is to work
out an acoustic model of the analysed language. De-
vising such a model usually requires: (i) partial or com-
plete segmentation and labelling of training set record-
ings, (ii) selection of a parameterisation method and its
implementation (iii) approximation of probability dis-
tribution estimators of parameter (observation vector)
values for particular phonemes by the sum of Gaussian
distributions – a GMM model.
The same speech sounds produced by different

speakers are sometimes very different. What ensues
is the flattening of GMM model probability distribu-
tion and, consequently, deterioration of its classifica-
tion abilities. These differences are referred to as in-
terindividual differences and they are caused by dif-
ferences in the speakers’ anatomy (e.g. the size of the
vocal tract) as well as their different personalities. Al-
though other factors such as contextual differences, en-
vironmental conditions, or intraindividual differences
also have an impact on parameter values, interindivid-

ual differences are among the crucial ones. There are
various differences in the time-frequency structure of
speech sounds (phones), including divergences in the
frequency and width of particular formants, which are
reflected in the values of the observation vector. In
terms of statistics, these differences are very clear be-
tween members of opposite sexes and children. For in-
stance, formant frequencies for female voices are on
average about 17% higher than those for male voices
(Jassem, 1973).
Losses in the classification abilities of the acoustic

model caused by the mentioned factors can be reduced
by using additional algorithms referred to as compen-
sation algorithms. These algorithms are used at differ-
ent stages of recognition in a variety of ways: (i) robust
parameterisation algorithms are used at parameteri-
sation stage, (ii) after parameterisation, modification
(usually standardisation) of the observation vector is
employed, (iii) speaker clustering is applied at ASR
system training stage, and (iv) adaptive modification
of a statistical GMM model is used at the stage of de-
termination of phonetic unit sequences (Makowski,
2011). For various reasons, not all of these algorithms
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can be used in all conditions. In all compensation algo-
rithms, the key role is played by the length of the utter-
ance which can be used. If the utterance is intended to
be short, employing complicated compensation meth-
ods, which usually involve estimation of many param-
eters, is out of the question. A general rule is applied,
saying that the greater number of parameters needs
to be estimated, the longer the utterance used for this
purpose has to be.
The presented compensation model is one of

the key problems related to designing ASR systems
and the literature on the subject is very rich (e.g.
Kuhn et al., 2000; Hazen, 2000; Naito et al., 2002;
Mak et al., 2004; de la Torre et al., 2005;Mrówka,
Makowski, 2007). Studies and analyses point to
a possibility of at least partial compensation of the
unfavourable influence that the mentioned factors have
on the recognition quality.
The present report will focus on speaker clustering,

which consists of building separate statistical acoustic
models for speaker groups or conditions characterised
by similar features. The criterion of such a division
can be based on: the frequency of pitch correlated with
the speaker’s sex, the level of interference, observation
vectors, etc. As the application of clustering at the
recognition stage does not require long utterances or
long and complicated computations, it is an attractive
solution. While embarking on speaker clustering, one
has to compromise two contradictory aspects: (i) the
larger number of groups, the better adjustment of the
model to the specific features of a particular group, so
the model will be more adequate for that group, (ii)
the larger number of groups, the lower the accuracy
of the model, since fewer speakers will be available for
each model.
Naito et al. (2002) proposed a clustering method

based on vocal tract parameters extracted from the
signal. Kosaka and Sagayama (1994) proposed the
hierarchical clustering (HC) based on probability dis-
tances obtained from hidden Markov networks. On
the very top of this structure, there is a model en-
compassing all the speakers, while individual models
can be found at the very bottom. In the recent years,
speaker clustering has often targeted a similar prob-
lem of identifying signal segments coming from a given
speaker and designating them jointly with a clear-cut
term (speaker diarisation problem) (e.g., Tranter,
Reynolds, 2006). Such a problem, alongside prelimi-
nary segmentation of speech signal, is the key element
of creating a speakers’ dictionary. Owing to the lack of
knowledge regarding the real number of speakers, the
discussed problem can be interpreted as an unsuper-
vised learning problem. Classic solutions to the prob-
lem formulated in this way are based on the concept
of hierarchical clustering, where different numbers of
groups are checked and various distance measures are
used: Mahalanobis distance (Iyer et al., 2006), Bhat-

tacharyya distance (Basseville, 1989), Hellinger dis-
tance (Lu et al., 2003), and Generalized Likelihood Ra-
tio (GLR) (Anderson, 2003). Further development of
the discussed HC methods has given rise to the clus-
tering algorithm applying Leader Following Concept
(LFC) to k-means algorithm (Duda et al., 2001). It
was followed by a hybrid algorithm based on GLR
and Global Dispersion Criterion devised by Liu and
Kubala (2004). Other alternative solutions of the
speaker clustering problem use the concept of Uni-
versal Background Model (UBM) of low level acoustic
feature vectors (Reynolds, Rose, 1995; Tang et al.,
2012) based on the Gaussian Mixture Model (GMM)
and they require a training stage with a large number
of recordings. The problem of access to such a large
number of data can be partially solved by employ-
ing training techniques based on the Maximum a Pos-
teriori (MAP) method. In the recent years, one can
also observe an increased interest in applying the con-
cept of supervectors, incorporating mean vectors of all
the GMM mixture components, to speaker clustering
and in effective methods of reducing the dimension-
ality of these supervectors by means of PCA (Princi-
pal Component Analysis) (Bishop, 2006), LPP (Lo-
cally Preserving Projection) (He, Niyogi, 2003), or
LDA (Linear Discriminant Analysis) algorithms (Chu
et al., 2009; Mehrabani, Hansen, 2013). Another
rapidly developing group of speaker clustering solu-
tions uses the BIC (Bayesian Information Criterion)
(Stafylakis et al., 2006; Tsai et al., 2007), which is
a measure of distance between two statistical models.

2. Problem formulation

The aim of the presented research is an optimal di-
vision of speakers into groups in the meaning defined
in Sec. 3. Let us assume that the number of groups
G is known and it is not a very large number. We as-
sume that clustering and then assigning a speaker to
a particular group (cluster) are both based on a very
short utterance, which is a fragment comprising the
vowel a from a single utterance of the word tak (yes).
This is the basic variant designated as 1. For compar-
ison purposes, the division is also performed in two
other variants: variant 2, based on pieces of various
words containing the phoneme a and variant 3, based
on pieces of various words containing any vowel. The
first approach is justified in command recognition sys-
tems, where it is easy to enforce the answer tak (yes)
at the beginning of a recognition session, and then,
by using automatic segmentation (e.g., Makowski,
Hossa, 2014), extract the vowel a. After appropriate
modification, such an approach could be also used in
continuous speech recognition systems to decide which
acoustic model should be used in the case of a speaker
change. An advantage of such an approach would be
the absence of the requirement of possessing a long
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piece of utterance at the stage of assigning the speaker
to a cluster. Variant 2 aims at assessing the representa-
tiveness of approach 1 for clustering based on a larger
number of observations with different phonetic con-
texts. Finally, variant 3 assesses to what extent a-based
clustering is representative of all vowels, since reliable
recognition of all vowels is of prominent importance for
the effectiveness of all the ASR systems.
In order to assess the effectiveness of the various

clustering methods, having a set of segmented and la-
belled recordings, one should: (i) cluster the speakers
of the training set based on the set of observation vec-
tors, (ii) generate an acoustic model for each speaker
cluster based on all the training set recordings, and
(iii) assess the improvement of recognition quality for a
particular clustering method used for the training and
the checking set, with the use of a predefined measure.

3. Speaker clustering methods

3.1. Proposal of UBM-based method – method 1

3.1.1. Universal background model

Let us assume that we have access to recordings of
P speakers, P ≫ G, producing short utterances. The
first and basic method of speaker clustering is based
on the UBM technique (Reynolds et al., 2000; Chu
et al., 2009a; 2009b; Mehrabani, Hansen, 2013).
A flowchart illustrating the proposed method is shown
in Fig. 1. It is valid for all the three variants of clus-
tering, but different words from the database are used
in particular variants (the words tak for variant, etc.).
From the speakers’ utterances, observation vectors

(low level acoustic feature vectors) are extracted, e.g.
MFCC, for which a GMM statistical model, being
a mixture of Gaussian distributions, is built. Thus, in
the large observation set comprising all the speakers,
an acoustic model is determined for the phoneme a
(in experiments 1 and 2) or for F selected phonemes
(e.g., for all the vowels of the Polish language) in vari-
ant 3 by using an EM (Expectation Maximisation) al-
gorithm. In this way, we create universal background

Fig. 1. Flowchart showing UBM-based speaker clustering.

models UBM, whose parameters form a baseline model
for adaptive MAP estimation methods. Every UBM
model is a mixture composed of G normal distributions
described by: mean value vectors {m1,m2, ...mG}, full
covariance matrices {R1,R2, ...,RG}, and weighting
factors {w1, w2, ..., wG}, i.e.

pU (o) =

G∑

i=1

wiN (o,mi,Ri), (1)

where

G∑

i=1

wi = 1, (2)

N (o,mi,Ri) =
1

(2π det(Ri))
M/2

· exp
(
−1

2
(o−mi)

T
R

−1
i (o−mi)

)
(3)

and o is the observation vector, M is its length.

3.1.2. Model adaptation

Based on the utterance or utterances relevant to
a particular variant, the UBM model is subject to
MAP adaptation for every speaker separately. In the
proposed solution, only the weighting factors of UBM
model are changed. Their interpretation of a priori
probabilities is that a given observation set ot belongs
to the i-th acoustic class described by distribution (3).
In this way, we expect to adapt the acoustic model to
a particular speaker based solely on the vowel a. With
the assumption that the prior distribution of weight-
ing factors is a multidimensional Dirichlet distribution
with linear concentration parameters, the MAP for-
mula of weight re-estimation assumes the form:

w
(′)
pi =

ηpi
Tp

(4)

or alternatively (Reynolds et al., 2000; Chu et al.,
2009a; 2009b)
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w
(′)
pi =

[
αi
ηpi
Tp

+ (1− αi)wpi

]
δ, (5)

where p is the speaker number, w(′)
pi is the new weight

value, Tp is the number of speech signal frames which
form the basis for adaptation, αi is the adaptation con-
stant, and δ is a scaling factor securing the satisfying
of relation (2). Then, ηpi is the sum of probabilities
produced by the following relation:

ηpi =

Tp∑

t=1

p(i|ot), (6)

where p(i|ot) is the probability of belonging of obser-
vation ot to group i, according to Bayes’ rule, by the
relation:

p(i|ot) =
wpiN (ot|mi,Ri)

G∑
i=1

wpiN (ot|mi,Ri)

. (7)

The adaptation described by (4)–(7) is repeated
until the relative change in the value of factor wpi

exceeds the assumed threshold λ. Experiments have
shown that adaptations (4) and (5) lead to very simi-
lar results and differences are due to a slightly differ-
ent method of reaching the assumed threshold λ. At
this point, it is worth emphasising that the advantage
of adaptation rule (4) is reaching the threshold many
times faster and requiring much fewer computations as
compared to rule (5).

Fig. 2. Defining acoustic model groups and recognition quality measures (FER).

3.1.3. Arrangement of the experiments

After the completion of the adaptation process,
the speakers from the training set are assigned to one
of G groups according to the weight values obtained
through adaptation {wpi : p = 1, ..., P ; i = 1, ..., G}.
In the same way, the speakers from the checking set
are assigned to groups. Having access to the speakers
divided into groups, we can determine G sets of acous-
tic models (separately for each speaker group) com-
prising all the phonemes and a set of common mod-
els for all the speakers. Depending on the experiment
variant, these models differ from each other. As a re-
sult, having such acoustic models at disposal, we can
assess the effectiveness of the employed methodology
of speaker clustering. A flowchart presenting the pro-
posed methods of analysing this effectiveness is shown
in Fig. 2.

3.2. Minimisation of distance L2 between group
members and group means – method 2

The traditional k-means method was used as a ref-
erence method here. In this method, division of speak-
ers into groups is performed on the principle of min-
imising the mean distances of particular speakers’ ob-
servation vectors from the mean observation vectors for
the group. The starting point for clustering is an ar-
bitrary preliminary division of speakers into G groups
and the division algorithm assumes the form:

1. Determining mean values mp of observation
vector coefficients for particular speakers and sub-
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sequent coefficients, in accordance with the rela-
tion:

mp =
1

Tp

Tp∑

t=1

otp, (8)

where p is the speaker number and Tp is the
number of frames of included observations.

2. Determining the mean vector mg each group:

mg =
1

Ng

Ng∑

i=1

mi; g = 1, 2, ..., G, (9)

where Ng is the number of speakers in a group.

3. Calculation of distance d
(2)
pg of each speaker’s

mean vector mp from the mean vector mg of
particular groups:

d(2)pg =

√√√√
M∑

m=1

(mp(m)−mg(m))2, (10)

where m is the index of observation vector
coefficient.

4. If for any speaker from any group g the distance
d
(2)
pg from their own group is longer than the dis-
tance from another group, then the speaker is
transferred to the group lying within the shortest
distance d(2)pg , which is followed by a jump to point
2 of this algorithm. Otherwise, the algorithm ends.

As experience shows, division into groups is
strongly dependent on the initial grouping condi-
tions. Therefore, the speaker assignment procedures
described below were performed repeatedly for differ-
ent preliminary divisions into groups. In this way, we
obtained many divisions into groups which satisfied the
criterion of minimising intragroup distances. These so-
lutions were assessed based on deflection coefficients
and the best solution was chosen. The criterion of the
best solution choice was the maximisation of the coef-
ficient defined by the following relation:

U =
∑

i,j

Uij ; i, j = 1, ..., G; i > j, (11)

where Uij is the deflection coefficient produced by the
relation:

Uij =

M∑

m=1

[mi(m)−mj(m)]2

σi(m)σj(m)
. (12)

Relation (12) implies that the longer the distance
between the means mi(m) and mj(m) and the smaller
the variances σ2

i (m) and σ2
j (m), the higher the value of

Uij . The coefficient Uij expresses numerically the law
on classification abilities of probability distributions,
known from detection theory.

3.3. Clustering quality measures

Clustering quality can be assessed in many ways.
The most reliable one would be assessing the recogni-
tion quality of all the ASR systems. However, such an
approach requires employing many recognition levels
and multilevel training. Therefore, simpler measures
such as word error rate (WER) or frame error rate
(FER) are preferable. The recognition quality mea-
sure used in this report is the FER defined by the
relation:

FER =
Terr
Tc

· 100%, (13)

where Terr is the number of misrecognised frames and
Tc is the number of all the analysed frames.

4. Clustering effectiveness results

4.1. Recording database and acoustic models

The set of recordings, being the experiment
database, comprises recordings of 36 adult male voices
registered in various Polish cities. 150 Polish words
were recorded for each speaker. The recording database
was divided into the training set – 24 speakers and the
test set – 12 speakers. This division is represented in
column 2 of Table 1. The signal sampling frequency
was 12 kHz. The presented results refer to noisy sig-
nals with the signal/noise ratio of 30 dB. The pho-
netic description of speech was based on the set of 37
phonemes proposed by Jassem (1973), supplemented
with 1 speech sound connected chiefly with transitional
stages, especially near pauses in utterances. All these
recordings were subjected to hand segmentation and
labelling.
The MFCC method was used as the parameter-

isation method. The frame length was 20 ms and the
frame step was 10 ms. The set of 14 cepstral coefficients
was supplemented with an energy index and their first
and second derivatives. Consequently, the length of the
observation vector was 45. The acoustic models used
at the frame recognition stage (cf. Fig. 2) are a mix-
ture of K = 5 multidimensional normal probability
distributions with a diagonal covariance matrix, i.e.

pf (o) =

K∑

i=1

wfiN (o,mfi,Σfi), (14)

where

Σfi =




σ2
fi1 0 · · · 0

0 σ2
fi2 · · · 0

...
...
. . .

...

0 0 · · · σ2
fiM




(15)
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Table 1. Values of GMM weights adapted with the use of observations of the phoneme a from the word tak
(columns 3–5), a from many different words (columns 6–8) and the averaged weights for vowels (columns 9–11).

speaker set
variant 1 variant 2 variant 3

wp1 wp2 wp3 wp1 wp2 wp3 wp1 wp2 wp3

mbi02 training 0.80 0.20 0.00 0.47 0.33 0.20 0.50 0.30 0.20

mbi04 training 0.00 0.00 1.00 0.72 0.14 0.14 0.47 0.19 0.34

mbi05 training 0.00 1.00 0.00 0.00 0.79 0.21 0.07 0.66 0.27

mka02 test set 0.89 0.11 0.00 0.66 0.33 0.01 0.34 0.57 0.09

mka03 training 1.00 0.00 0.00 0.83 0.16 0.01 0.83 0.15 0.02

mka04 training 0.33 0.00 0.67 0.22 0.16 0.62 0.46 0.17 0.37

mle01 training 0.95 0.05 0.00 0.89 0.11 0.00 0.67 0.24 0.09

mle06 training 0.00 1.00 0.00 0.06 0.85 0.09 0.25 0.35 0.40

mle09 training 0.00 1.00 0.00 0.30 0.70 0.00 0.48 0.31 0.21

mlu01 test set 0.06 0.19 0.75 0.01 0.09 0.90 0.08 0.25 0.67

mlu04 test set 0.45 0.55 0.00 0.29 0.70 0.01 0.27 0.50 0.23

mlu08 training 0.87 0.03 0.10 0.90 0.09 0.01 0.67 0.22 0.11

mnt01 test set 0.00 0.31 0.69 0.12 0.12 0.76 0.05 0.34 0.62

mnt05 test set 1.00 0.00 0.00 0.62 0.35 0.03 0.23 0.43 0.34

mnt09 training 0.90 0.10 0.00 0.82 0.18 0.00 0.45 0.53 0.02

mol03 training 0.00 1.00 0.00 0.14 0.86 0.00 0.24 0.62 0.14

mol05 test set 0.61 0.39 0.00 0.31 0.39 0.30 0.14 0.71 0.15

mol06 training 0.72 0.28 0.00 0.73 0.27 0.00 0.63 0.33 0.04

mon03 training 0.13 0.00 0.87 0.22 0.14 0.63 0.48 0.28 0.24

mon08 training 0.00 0.00 1.00 0.00 0.05 0.95 0.04 0.12 0.84

mon09 training 0.00 1.00 0.00 0.15 0.82 0.03 0.19 0.66 0.15

mry03 test set 0.86 0.02 0.12 0.36 0.23 0.41 0.20 0.66 0.14

mry05 training 0.00 0.08 0.92 0.00 0.20 0.80 0.00 0.24 0.76

mry09 training 0.00 0.00 1.00 0.00 0.13 0.87 0.25 0.36 0.39

mrz06 test set 0.00 1.00 0.00 0.11 0.86 0.03 0.10 0.56 0.34

mrz07 test set 0.90 0.00 0.10 0.94 0.04 0.02 0.74 0.10 0.16

mrz10 training 0.00 0.00 1.00 0.00 0.07 0.93 0.06 0.12 0.82

mwa02 training 0.78 0.11 0.11 0.75 0.11 0.14 0.58 0.25 0.17

mwa04 training 0.00 0.03 0.97 0.00 0.19 0.81 0.01 0.16 0.83

mwa09 training 0.00 1.00 0.00 0.00 0.84 0.16 0.01 0.24 0.75

mwi03 test set 0.24 0.00 0.76 0.02 0.07 0.91 0.21 0.45 0.34

mwi06 training 0.00 0.00 1.00 0.03 0.13 0.84 0.02 0.37 0.61

mzw04 training 0.00 0.15 0.85 0.52 0.18 0.30 0.16 0.34 0.50

mzw05 test set 0.00 0.86 0.14 0.74 0.26 0.00 0.62 0.33 0.05

mzw10 training 1.00 0.00 0.00 0.95 0.04 0.01 0.76 0.23 0.01

mwr31 test set 1.00 0.00 0.00 0.57 0.43 0.00 0.61 0.28 0.11

and

N (o,mfi,Σfi) =

M∏

m=1

1√
(2π)σfi(m)

· e
− 1

2σ2
fi

(m)
[o(m)−mfi(m)]2

. (16)

It is generally known that the values of the
observation vector for each phoneme are characterised
by a high volatility. Figure 3 presents the mean values
of MFCC features for successive coefficients and for
frames building the phoneme a from the word tak for 3
example speaker groups (top left graph) and the mean
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Fig. 3. Mean values of MFCC coefficients: means for 3 sets resulting from division into groups – top left graph, means for
group speakers, and means for groups 1, 2, and 3 – the remaining graphs respectively.

values for speakers and means for groups 1, 2, and 3
(the remaining graphs respectively).

4.2. Variant 1 – clustering based on the phoneme a
from the word tak

4.2.1. Cases 1 and 2

For cases 1 and 2 of the experiment, the UBM for
phoneme a was determined from many words coming
from segmented recordings of all the 36 speakers. In
this model, the weighting factors for G = 3 take the
values {0.37; 0.31; 0.32}. The values of these weights
are comparable, which means that the number of ob-
servations is similar for each component of sum (1).
Subsequently, adaptation of UBM model weights was
performed for each individual speaker, based on the
observation of the phoneme a from the word tak.
The number of these observations oscillated between 8
and 14. Let us denote these factors as wpg, where p is
the speaker number and g is the group number. The
results of such adaptation are shown in columns 3–5
of Table 1. For most speakers, the observations clearly
belong to one of the classes (the value of one of the
weights is close to one).

In the next step, the speakers from the training set
were divided into 3 groups based on wpg values. As a
result, the number of speakers in set 1 reached 8, in
set 2–6 and in set 3–10. As a consequence of this divi-
sion, 4 acoustic models were built (one for the common
and three for particular groups) for all the 38 states
(phones). Based on all the segmented recordings, sep-
arate FER measures were determined for the training
and the test sets by using one acoustic model, 3 models
(for the training set), or 4 models (for the test set). The
results of frame recognition effectiveness are presented
in columns 3–5 of Table 2. The absence of a result
means that it is the same as the one in the adjacent
column on the left.
Column 3 (case 0) contains the results obtained

without clustering, i.e., one common set of acous-
tic models was used for all the speakers. Column 4
(case 1), for the training set, comprises recognition re-
sults obtained when the sets of GMM models used for
a given speaker had been determined for the group
where the speaker belonged. For the test set, group
model sets were used for those speakers for whom the
highest value of weight wpg exceeded the value 0.9
(4 speakers), and common sets – for the remaining
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Table 2. Values of FER as a recognition quality measure
for the case without speaker clustering and for different
variants of clustering, for the observation of the phoneme

a from the word tak.

phonemes set case 0 case 1 case 2 case 3 case 4

i training 26.1% 20.0% 20.2%
i test set 26.0% 26.3% 27.6% 26.3% 26.4%

ī training 37.3% 29.1% 27.0%
ī test set 42.4% 43.5% 48.4% 45.3% 46.5%

e training 34.7% 30.4% 31.2%
e test set 41.1% 41.7% 43.2% 40.9% 39.7%

a training 20.2% 16.6% 16.5%
a test set 25.2% 23.4% 23.2% 25.5% 25.1%

o training 26.4% 20.7% 20.8%
o test set 32.7% 31.6% 33.0% 34.3% 34.1%

u training 41.6% 32.8% 32.6%
u test set 44.9% 47.3% 47.0% 45.0% 46.3%

vowels training 28.7% 23.5% 23.5%
vowels test set 33.6% 33.3% 34.5% 34.3% 34.0%

all training 33.1% 27.7% 27.8%
all test set 40.2% 40.7% 41.8% 40.9% 41.1%

ones. In these cases, four model sets were used. Such
a procedure is justifiable, since if all the wpg factors
for a given speaker have a low value, it means that
no group is representative enough of them and they
are better represented by the averaged set. Column 5
(case 2) comprises the results equivalent to those in
column 4, and the threshold of group assignment is
lowered to 0.85. Consequently, the number of speakers
assigned to a group was 7.

4.2.2. Cases 3 and 4

In cases 3 and 4, speaker clustering was carried out
by using k-means with L2 metric, and the solution was
assessed by using a deflection coefficient, with the pro-
vision that the number of speakers in each group must
be not smaller than 6. Such a limitation results from
a concern for the quality of the acoustic models. As
a consequence, the numbers of speakers in particular
groups in the best solution were 9, 9, and 6. Then four
sets of acoustic models were created like in cases 1
and 2 and the FER was determined. For case 3, the
number of speakers assigned to each group was 4, and
for case 4 it was 7. The choice of speakers assigned to
particular groups was based on the distance from the
mean value. The results of frame recognition effective-
ness are shown in columns 6 (case 3) and 7 (case 4) of
Table 2.

4.2.3. Conclusions

The results shown in Table 2 allow formulating the
following conclusions:
• When using one set of models for frame content
recognition, the difference in recognition quality

(FER) for the training and test sets, for all vowels
and for the phoneme a, is about 5%. Unexpect-
edly, this difference is the biggest for the vowel o.
Although the presented measures are averaged it
is justifiable to apply the commonly known con-
clusion that the participation of a given speaker in
the training set means better recognition quality
for this speaker.

• When using 3 model sets in the training set,
a marked improvement in the quality of frame
recognition is observed. This improvement, for all
the vowels jointly, for the vowel a, but also for all
the phonemes is about 5%. It is significant. Inter-
estingly, it is the strongest not for a, but for u.
It is noteworthy that this improvement concerns
absolutely all vowels, although clustering was per-
formed only based on the phoneme a. This points
to a strong correlation in vowel articulation, prob-
ably related to the size of the vocal tract.

• For the test set, for clustering case 1 using 4 model
sets, recognition is better for the phoneme a, but
also for the phoneme o, which has a similar man-
ner of articulation. At the same time, one can ob-
serve a deterioration in recognition quality for the
remaining vowels, although vowels taken together
are slightly better recognised. All phonemes taken
together are recognised worse though.

• Clustering cases 3–4 result in a slightly lower qual-
ity of frame content recognition. Thus, the pro-
posed UBM-based clustering method displays bet-
ter properties than the employed k-means cases.

4.3. Variant 2 – clustering based on a large a
observation set

Columns 6–8 of Table 1 specify UBM weight adap-
tation results for the vowel a, like in experiment 1 with
the difference that the adaptation was based on all
the observations of a from the training set. In such
a case, the number of observations is more than 800
for every speaker, and observations depend not only
on the speaker but also on the phonetic context. This
study has a comparative character and it aims at find-
ing out if about a dozen observations of the word tak
are representative enough of such a large observation
set. There are significant differences in the values of
weighting factors in columns 3–5 and 6–8, but for most
speakers, the position of the maximum values is iden-
tical. The differences in speaker assignment to groups
concern 2 speakers from the training set and 3 speak-
ers from the test set. These are small differences then,
and the agreement of speaker membership in groups
in a set of 36 speakers is 86%. As a result, after di-
viding speakers into groups, the number of speakers in
group 1 is 10, in group 2 is 6 (and the composition of
this group is identical to cases 1 and 2) and in group 3
is 8. When checking the effectiveness of frame content
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recognition for the test set, the thresholds of group
assignment were left unchanged.
Table 3 presents FER indices of recognition qual-

ity, which are a consequence of such clustering. A com-
parison of the results from Tables 2 and 3, for UBM
method, reveals slightly better recognition results for
the phoneme a in the case of clustering based on a large
observation set, but these are not large differences. The
same remark refers to all the vowels taken together and
all the phonemes jointly. At the same time, deteriora-
tion in the recognition quality for the phonemes u and
o (back position of the tongue) was observed. Like in
experiment 1, one can say that recognition results with
the use of the k-means method are slightly worse than
those for the UBM method.

Table 3. Values of FER as a recognition quality measure
for the case without speaker clustering and for different
clustering variants, using observations of the phoneme a

from all the words in the training set.

phonemes set case 0 case 1 case 2 case 3 case 4

i training 26.1% 19.8% 19.1%
i test set 26.0% 25.9% 25.4% 24.6% 25.0%

ī training 37.3% 28.3% 27.7%
ī test set 42.4% 41.6% 42.5% 44.0% 44.1%

e training 34.7% 29.7% 30.0%
e test set 41.1% 39.8% 38.5% 41.8% 42.4%

a training 20.2% 15.8% 16.5%
a test set 25.2% 24.6% 25.2% 27.3% 28.1%

o training 26.4% 21.8% 21.1%
o test set 32.7% 33.0% 34.6% 33.8% 34.4%

u training 41.6% 33.6% 31.4%
u test set 44.9% 45.5% 44.8% 44.8% 43.8%

vowels training 28.7% 23.2% 23.1%
vowels test set 33.6% 33.1% 33.3% 34.7% 35.1%

all training 33.1% 27.6% 27.6%
all test set 40.2% 40.6% 40.9% 41.4% 41.8%

4.4. Variant 3 – clustering based on all vowels

In general, after applying UBM technique for clus-
tering operation with F phonemes we have available
after adaptation process F ·P ·G weighting coefficients
W = {wfpg : f = 1, ..., F ; p = 1, ..., P ; g = 1, ..., G}
where F is a number of phonemes, P is the number of
speakers and G is a group number. From the point of
view of impossibility of direct utilisation of weighting
coefficients clustering algorithm should be extended
with additional elements. In fact, executing adaptation
process for all phonemes independently, it is almost
sure that maximum values of coefficients for different
phonemes of the same speaker will occur for different
groups, e.g., for a speaker p and phoneme 1 maximum
value will have coefficient w1p1 but for phoneme 2 co-
efficient w2p3. Random mixing of basis distributions in
UBM model is introduced with EM algorithm, how-

ever, as is shown in Subsec. 3.1, the maximum value
of coefficients implicate membership of a given group.
Obtainment of effective clustering procedure forces re-
arrangement of column vectors in all matrices of the co-
efficients {Wf : f = 1, ..., F} . The mentioned change
of columns’ sequence should provide a maximum corre-
spondence of coefficients for each speaker in all groups.
The problem is trivial for one spekaer but more compli-
cated in the case of a large number of speakers. For one
ilustrative purpose, in Table 4 exemplary coefficient
values for 3 phonemes and 7 speakers are presented.

Table 4. Coefficient values of GMM models of phonemes e,
a, o after adaptation for 7 speakers.

speaker
W3 – phone e W4 – phone a W5 – phone o

w3p1 w3p2 w3p3 w4p1 w4p2 w4p3 w5p1 w5p2 w5p3

mbi05 0.43 0.21 0.35 0.00 0.79 0.21 0.46 0.50 0.04

mka03 0.20 0.80 0.00 0.83 0.16 0.01 0.40 0.00 0.60

mle01 0.32 0.68 0.00 0.89 0.11 0.00 0.21 0.00 0.79

mle06 0.16 0.18 0.66 0.06 0.85 0.09 0.86 0.00 0.14

mle09 0.34 0.66 0.00 0.30 0.70 0.00 0.56 0.03 0.42

mlu08 0.13 0.87 0.00 0.90 0.09 0.01 0.63 0.00 0.37

mol03 0.56 0.38 0.06 0.14 0.86 0.00 0.57 0.13 0.30

In the procedure of column vectors rearrangement
we have used crosscorrelation coefficients (inner prod-
uct) defined as

ρi,j,k,l = w
T
ikwjl, (17)

where i and k are phoneme and cluster numbers of the
first element vector and j and l of the second element,
respectively. Calculating ρ1,2,2,1 coefficient gives a pos-
sibility to find evaluation solution of phoneme 1 with
vector w12 and phoneme 2 with vector w21.
In view of the problems is complexity, our further

considerations concern constructing a global cost func-
tion for evaluation of different sequences of column vec-
tors and are limited to the case of G = 3 groups. In the
first step we consider a choice in matrices Wf of dif-
ferent variants (variations) of column sequences given
in the following form:

α = (α(1), α(2), ..., α(F )), (18)

where α(f) is a column index chosen in matrix Wf .
The total number of different possible variations is
N1 = GF = 3F and exemplary arrangement for F=6
and G=3 can be written as α = (2, 1, 3, 1, 2, 3). For
each sequence α we calculate the cost function

ρ1(α) =
F∑

i=1

F∑

j=i+1

ρi,j,α(i),α(j). (19)

It requires a computation of sum of
(
F
2

)
inner products

defined by (17). In the second step, from the remaining
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columns of matrices Wf , among N2 = (G − 1)F =
2F possibilities, we consider the next column sequence
β = (β(1), β(2), ..., β(F )) with the cost function

ρ2(α,β) =

F∑

i=1

F∑

j=i+1

ρi,j,β(i),β(j). (20)

More precisely, if vector w12 was included in the
sequence α then it is not taken into consideration
in the next step that is in the sequence β. In the
last step we have only one column sequence γ =
(γ(1), γ(2), ..., γ(F )) with the associated cost function

ρ3(α,β,γ) =

F∑

i=1

F∑

j=i+1

ρi,j,γ(i),γ(j). (21)

Next we introduce a global cost function related to the
joint choice of column sequences (α,β,γ)

ρ(α,β,γ) = ρ1(α) + ρ2(α,β) + ρ3(α,β,γ) (22)

and, among N = 6F different possibilities, we search
for the maximum rearrangement

(αopt,βopt,γopt) = argmax
α,β,γ

ρ(α,β,γ). (23)

The obtained form of the optimal solution
(αopt,βopt,γopt) differs from the initial configuration

Fig. 4. Illustration of the choice of the optimal rearragement of coefficient vectors for phonemes to groups and computation
of the averaged coefficients wpg for G = 3.

with ordered groups for individual phonemes accord-
ing to the considered cost function (23). Finally, for a
given optimal vectors rearrangement wfg, denoted as
w̃fg, the averaging operation with respect to phonemes
is introduced for an individual speaker with index p

wpg =
1

F

F∑

f=1

w̃fpg. (24)

As a result, we obtain an individual decision matrix
[wp1 wp2 wp3], where classification formula of the
maximum type can be executed. Coefficients wpg rep-
resent all the considered phonemes. A generic scheme
representing the choice of the best rearrangement of
column vectors of coefficients for F phonemes and pro-
cedure of computation of the averaged coefficients wpg

for G = 3 is depicted in Fig. 4.
Columns 9–11 of Table 1 present the results of the

averaged weighting factors determined in this way.
Like in experiments 1 and 2, these factors form the
basis for division of the speakers in the training set
into groups and assigning the test set speakers to
groups. As Table 1 suggests, the agreement of speaker
membership in groups in relation to experiment 1 is
about 64%, which, allowing for the use of a slightly
different methodology and 3 groups, indicates a good
agreement. While dividing the speakers in the train-
ing set into groups, it turned out that the size of
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group 2 is too small (< 6). Therefore, two speakers
from group 3 (speakers mle06 and mry09) were trans-
ferred to this group. As a result, the number of speak-
ers in group 1 became 11, in group 2 it was 6, and in
group 3 it was 7.
Table 5 presents the values of FER used as a recog-

nition quality measure resulting from UBM-based clus-
tering. A comparison of the results from Tables 2 and 5
(experiments 1 and 3) indicates that when it comes to
all the vowels taken together and all the phonemes to-
gether, differences in recognition quality are negligible.
At the same time, the results for the vowel a in the test
set are significantly worse, while these obtained for the
remaining vowels are better and they meet the expec-
tations. Generally, the conclusions from experiment 3
are comparable to those from experiment 1.

Table 5. Values of FER as a recognition quality measure
for the case without speaker clustering and for UBM clus-
tering, when using observations of all the vowels from all

the words in the training set.

phonemes set case 0 case 1 case 2

i training 26.1% 20.0%
i test set 26.0% 25.8% 25.4%

ī training 37.3% 29.0%
ī test set 42.4% 44.5% 42.9%

e training 34.7% 29.8%
e test set 41.1% 38.6% 38.0%

a training 20.2% 16.2%
a test set 25.2% 27.5% 28.5%

o training 26.4% 21.3%
o test set 32.7% 31.1% 32.6%

u training 41.6% 33.6%
u test set 44.9% 44.2% 45.3%

vowels training 28.7% 23.4%
vowels test set 33.6% 33.5% 33.8%

all training 33.1% 27.8%
all test set 40.2% 40.8% 41.1%

5. Summary

The report has presented a new speaker cluster-
ing method based on the universal background model,
which is known from the speaker identification prob-
lem. When using this model for clustering, it was pro-
posed that adaptation of UBM model parameters to
a given utterance will be used only for the weight-
ing factors of the acoustic GMM model. The proposed
adaptation method is very fast, which enables it to be
used not only at the ASR systems training stage (clus-
tering) but also at recognition stage with the aim of
assigning a given utterance (speaker) to one of several
acoustic models.
The application of clustering for the cases repre-

sented in the conducted experiments results in the im-

provement of the training set frame content recogni-
tion quality for all vowels jointly and for all phonemes
jointly by over 5%. As for the test set, this improve-
ment is smaller, which results from (one could realise
that when analysing adapted weight values) under-
representation of particular speakers in UBM models.
This, in turn, may be due to a too small speaker set,
which results in the insufficient number of groups and
sets in GMM models. The proposed clustering method
is more effective than the classic k-means method with
different metrics.
A very interesting conclusion from the conducted

research is that clustering based on the phoneme a
results in an improvement in the recognition quality
for all vowels. This proves a similarity in the mode
of articulation of all vowels by a particular speaker,
which is probably related to the size of the vocal tract.
A similar conclusion about recognition effectiveness is
true for all phonemes jointly, but one must be careful
with generalising the ensuing conclusions, as the mode
of articulation of many consonants (e.g., plosives) is
unrelated to the size of the vocal tract.
What is also interesting, is that clustering based

on the phoneme a from one utterance is as effective
as that based on many fragments containing a from
many different words, as well as clustering based on all
vowels. Thus, choosing one of the acoustic model sets
based exclusively on the word tak is a good solution
of improving the effectiveness of all the ASR system.
The choice of a as the phoneme on which assignment
to a group is based is not accidental, as it is the most
recognisable vowel in the Polish language.
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