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The paper formulates some objections to the methods of evaluation of uncertainty in noise measurement
which are presented in two standards: ISO 9612 (2009) and DIN 45641 (1990). In particular, it focuses
on approximation of an equivalent sound level by a function which depends on the arithmetic average of
sound levels. Depending on the nature of a random sample the exact value of the equivalent sound level
may be significantly different from an approximate one, which might lead to erroneous estimation of the
uncertainty of noise indicators. The article presents an analysis of this problem and the adequacy of the
solution depending on the type of a random sample.
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1. Introduction

There exist standards for determining uncertainty
in noise measurement, among others: ISO 9612 (2009)
and DIN 45641 (1990). They are based on the rules
of uncertainty estimation developed by seven interna-
tional metrology organizations and described in the
“Guide to the Expression of Uncertainty Measure-
ment” (International Organization for Standardiza-
tion, 1995). However, application of the methods de-
scribed in the above standards may lead to some non-
verisimilar results due to adopted therein assumptions.
The most serious objections relate to the assumption
that the random variable LA,i, i = 1, 2, . . . , n which
describes the sample of the measured sound level, has
a normal probability distribution. In practice, this may
be not achieved especially for samples obtained from
road or train noise measurements, which rarely have
a normal distribution (Wszołek, Kłaczyński, 2006;
Batko, Przysucha, 2013;Gałuszka, 2010; Batko,
Bal, 2014). Moreover, the nature of the sample’s prob-
ability distribution often remains unverified.

Therefore, the following questions arise: how high
is the probability of a mistake by applying this method
for any type of noise and can such an error may be neg-
ligible in the uncertainty determination? If it cannot,
calculation of the noise indicators and their uncertain-
ties using the methods specified in the discussed stan-
dards may be incorrect. As a consequence, some wrong
environmental decisions might be taken.

2. Uncertainty in noise measurement

by ISO 9612 (2009) and DIN 45641 (1990)

The standards ISO 9612 (2009) and DIN 45641
(1990) describe the procedure for determining the un-
certainty in noise measurement. It is based on an ap-
proximation of noise perception described by logarith-
mic average sound levels (Thiery, Ognedal, 2008):

LAeq = 10 log

(
1

n

n∑

i=1

100.1LA,i

)
(1)
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by the arithmetic average of random samples from
noise measurements:

L =
1

n

n∑

i=1

LA,i. (2)

This relation is given by the equation:

LAeq = 10 log

(
1

n

n∑

i=1

100.1LA,i

)
≈ L+ 0.115s2, (3)

where

s =

√√√√ 1

n− 1

n∑

i=1

(LA,i − L)2. (4)

Basing on Eqs. (3) and (4), the expanded uncertainty
of the results obtained from noise measurement is es-
timated:

U = ±
√
s2

n
+

0.026s4

n− 1
tα;n−1, (5)

specified by the coverage factor tα;n−1 which is the t-
Student quintile for the assumed required confidence
level equal to 1 − α, where α is the significance level
(usually α = 0.05). Finally, the uncertainty of mea-
surement results can be described by the defined above
interval of uncertainty:

L̂Aeq ∓ U. (6)

The authors decided to verify the reliability of the
described method by applying it to assess the uncer-
tainty of some sound level measurements. The study
was based on the results of sound level measurements
collected at a station of continuous noise monitoring in
Cracow. For random sample obtained from the mea-
surements (n = 199), the exact value of the equivalent
sound level LAeq , and the approximate value L̂Aeq were
determined with the uncertainty calculated from for-
mula (5). All the results are presented in Table 1.

Table 1. Exact and approximate values of the
equivalent sound level obtained from the exem-
plary measurements with a calculated interval of
uncertainty (ISO 9612 (2009), DIN 45641 (1990)).

LAeq L̂Aeq U(95%)

72.2 dB 74.1 dB 0.8 dB

The real value of the logarithmic average is equal
to 72.2 dB and it does not fall within the 95% confi-
dence interval. Moreover, the difference between these
values (equal to 1.9 dB) is almost three times bigger
than half of the U interval‘s length. Therefore, it is
possible to conclude that using the relationship be-
tween the arithmetic and logarithmic means described
by Eq. (3) the uncertainty in noise measurement might

be improperly determined. The interval described by
Eq. (6) may not cover the equivalent sound level cal-
culated from the empirical data. Furthermore, the dif-
ference between the approximate and exact values can
be even several times higher than the value of the ex-
panded uncertainty U .
The authors suggest that such a discrepancy in de-

termining the uncertainty in noise measurement may
result from the nature of probability distribution of
the random variable which describes the sample of
the measured sound level. The used algorithm assumes
that this random variable has a normal probability dis-
tribution, while this rarely happens in the case of road
noise measurements (it could also concern other types
of noise). Therefore, a detailed analysis of the accu-
racy of the approximate formula (3) was carried out.
The authors tried to define how the probability distri-
bution of the test’s results influences this estimation.
The study was based on numerical experiments, thus,
it was possible to model various probability distribu-
tions.

3. Analysis of errors in an equivalent

sound level approximation

The first step of the study was to analyse the error
in an equivalent sound level approximation given by
the formula (3). Assuming a normal random variable
of sound levels, the derivation of this equation was pre-
sented by Thiery and Ognedal (2008). However, in
the general case, it might be derived on the basis of
the Delta method (Magiera, 2005) as shown below.
Let Y = g(X) be a function having a derivative of

all orders (that meets the Taylor’s theorem), and let
X be a random variable having moments of all orders.
The essence of the Delta method is to expand the func-
tion g(X) around the point µ = E(X), where E(X)
is the expected value of the random variable X . As a
result, the following equation is obtained:

Y = g(X) = g(µ) + (X − µ)g′(µ)

+ (X − µ)2
g′′(µ)

2!
+ . . . . (7)

Taking the expected value of both sides of the expan-
sion and using the equation:

E(X − µ)g′(µ) = 0 (8)

we obtain:

E(Y ) = g(µ) +
g′′(µ)

2!
σ2 + ε, (9)

where
σ2 = E(X − µ)

2 (10)

and

ε =

+∞∑

j=2

g(j)(µ)

j!
E(X − µ)j . (11)
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Omitting the expression (11) in the formula (9) we get
the following approximation to the expected value of
a random variable function:

E(Y ) ≈ g(µ) +
g′′(µ)

2!
σ2. (12)

In the case of Eq. (3), which describes the approxi-
mation of the sound level’s logarithmic mean by the
arithmetic mean, the Delta method was used for the
following function:

Y = 100.1X . (13)

Expanding the function (13) in a Taylor series to the
second order expression around the point µ = E(X),
we obtain:

Y ≈ 100.1µ + (X − µ)100.1µ
ln 10

10

+ (X − µ)2
100.1µ

2

(
ln 10

10

)2

. (14)

Then for both sides of the equation we calculate the
expected value:

E(Y ) ≈ 100.1µ + σ2 10
0.1µ

2

(
ln 10

10

)2

= 100.1µ
(
1 +

σ2ln210

2 · 102
)
. (15)

Next, we count the decimal logarithm and multiply it
by 10:

10 logE(Y ) ≈ µ+ 10 log

(
1 +

σ2ln210

2 · 102
)
. (16)

The next step is this estimation is to approximate the
logarithmic function by a linear function:

ln(1 + x) ≈ x. (17)

Using the formulas (15), (16), and (17), we finally ob-
tain:

10 logE(Y ) ≈ µ+
σ2 ln 10

20
= µ+ 0.115σ2. (18)

In the case of the assumption that the random vari-
ables X and Y have normal distributions, or in the
case of an appropriately large measurement sample,
from the Law of large numbers (Magiera, 2005), we
can assume that:

E(Y ) = Y =
1

n

n∑

i=1

100.1LA,i (19)

and

E(X) = L =

n∑

i=1

LA,i. (20)

Inserting Eqs. (19) and (20) into Eq. (18) we finally get
the approximation of the equivalent sound level L̂Aeq

given by the formula (3).
The analysis shows that this approximation should

not generate large errors only if the values of the fac-
tor ε and variance σ2 are small and for sufficiently
large samples having the probability distribution close
to a normal distribution. Therefore, all approximation
errors have the following sources:

a) omission of words of higher orders in the Taylor
series;

b) inaccurate approximation of the logarithm by
a linear function;

c) in the case of small samples: lack of conformity of
the expected value to the arithmetic mean.

Referring to point a) there was made an expansion
of the function (13) in a Taylor series to the fourth
word, where the skewness ρ and kurtosisK of the prob-
ability distribution appear:

10 logE(Y ) ≈ µ

+10 log

(
1+

σ2 ln2 10

2! · 102 −ρσ
3 ln3 10

3! · 103 +K
σ4 ln4 10

4! · 104
)

= µ+ 10 log(1 + 0.0266σ2 − ρ · 0.002 · σ3

+K · 0.0001σ4). (21)

In the case of a normal distribution the skewness and
kurtosis take the values of 0 and 3, respectively. There-
fore, they do not have a significant impact on the accu-
racy of the approximation (3). Nevertheless, for some
distributions characterized by a different nature, the
omission of the third and fourth word in the Taylor
expansion can generate approximation errors.
As mentioned in point b), inaccurate approxima-

tion of a logarithm by a linear function may have
a significant impact on the approximation errors. The
corresponding graph illustrating this statement is pre-
sented in Fig. 1.

Fig. 1. Graph of a logarithmic function and its approxima-
tion given by the formula (17).
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4. Analysis of the equivalent sound level

approximation using numerical simulations

The next step of the research was to analyse the
equivalent sound level approximation using some nu-
merical simulations. The aim of the study was to de-
termine how the nature of the probability distribution
of the random variable (i.e., equivalent sound level)
affects the value of the approximation error.
In order to make a simulation, 1000-element sam-

ples characterized by probability distributions being
combinations of some normal distributions were gen-
erated. Such a choice makes it possible to account for
any probability distribution, including right-skewed or
left-skewed distributions and distributions with large
or small kurtosis. These distributions may characterize
any noise with different probabilistic structure derived
from several interacting sources of noise. A combina-
tion of normal distributions was constructed as follows.
Let us assume that there are two random variables:

X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2σ2) (22)

of density functions, respectively:

f1(x) =
1√
2πσ1

exp

(
− (x− µ1)

2

2σ2
1

)

and f2(x) =
1√
2πσ2

exp

(
− (x− µ2)

2

2σ2
2

)
.

(23)

Then X is a random variable with the distribution
described by a function f which is a combination of
normal distributions f1 and f2:

f(x) = pf1(x) + (1− p)f2(x), (24)

where p ∈ [0, 1] defines the share of the variable X1 in
the combination.
The results of the simulations were divided into

three groups. The first one consists of the samples char-
acterized by the distributions that are a combination
of two distributions with equal variances and various
modes:
1a) X1 ∼ N(70, σ), X2 ∼ N(80, σ),
where σ ∈ {0.5, 1, . . . , 20} for p ∈ {0.1, 0.2, . . . , 1};

Fig. 2. Values of the difference r of the approximation (3) for the 1a), 1b), and 1c) data sets according to the value of the
standard deviation s.

1b) X1 ∼ N(70, σ), X2 ∼ N(75, σ),
where σ ∈ {0.5, 1, . . . , 20} for p ∈ {0.1, 0.2, . . . , 1};

1c) X1 ∼ N(72, σ), X2 ∼ N(75, σ),
where σ ∈ {0.5, 1, . . . , 20} for p ∈ {0.1, 0.2, . . . , 1}.
Applying different probability weights p one may

determine the contribution of each distribution to
the combination. For example, for p greater than 0.5
a larger share of the distribution of a higher mode is
received while for p lower than 0.5 a distribution of
a lower mode is prevalent Moreover, the change in the
value of the parameter σ has also a significant im-
pact on the characteristics of the probability distri-
bution Hence, for the data 1a) with a decreasing σ
the obtained distributions are characterized by a more
pronounced bimodality. In the case of the combina-
tion 1b) the bimodality of the distribution disappears,
whereas for the data 1c) the distribution becomes dis-
tinctly unimodal. On the other hand, the value of the
parameter p determines the height of the probability
distribution’s bell for the different modes.
In Fig. 2 the values of the difference r between the

exact equivalent sound level and an approximation (3)
for the 1a), 1b), and 1c) data sets according to the
value of the standard deviation s are presented.
The differences r which are shown in the graphs

depend on the probability distribution of the random
sample which is the basis for the calculation of LAeq

and L̂Aeq. Analysing Fig. 2(1c) it can be seen that
the change of percentage of each distribution in the
combination does not affect the value of the differ-
ence r. This is mainly due to the symmetry of the
obtained distributions and their unimodality. A simi-
lar dependence is also shown in the graph 2(1b), as
the distributions have similar properties. On the other
hand, a significant impact of the distribution’s nature
on the difference r can be observed in Fig. 2(1a).
For combinations with a smaller percentage of the
distribution X1 higher values of the difference r are
obtained. The opposite situation occurs when the
component X1 dominates. This can be also observed
for the exemplary data shown in Table 2. For p = 0.3
the inverted distribution relative to the distribution
with p = 0.7 (the same kurtosis, the opposite skewness
coefficient) is obtained. Nevertheless, the value of the
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Table 2. Selected characteristics for the data 1a) which determine the probability distribution of the tested samples
depending on the value of the parameter p.

µ1 [dB] σ1 [dB] µ2 [dB] σ2 [dB] p K−3 ρ s [dB] E(X) [dB] LAeq [dB] L̂Aeq [dB] r [dB]

70 10 80 10 0.3 0.13 −0.09 11.37 76.59 90.09 91.45 −1.36

70 5 80 5 0.3 −0.15 −0.26 6.93 76.80 81.56 82.33 −0.77

70 0.5 80 0.5 0.3 −1.20 −0.86 4.61 76.99 78.65 79.43 −0.78

70 10 80 10 0.5 0.27 −0.07 11.39 74.59 88.93 89.51 −0.58

70 5 80 5 0.5 −0.21 −0.05 7.09 74.80 80.22 80.59 −0.37

70 0.5 80 0.5 0.5 −1.96 0.00 5.01 74.99 77.41 77.87 −0.47

70 10 80 10 0.7 0.16 −0.12 11.14 72.59 85.88 86.87 −0.99

70 5 80 5 0.7 −0.16 0.08 6.75 72.80 78.03 78.04 −0.02

70 0.5 80 0.5 0.7 −1.22 0.85 4.59 72.99 75.67 75.41 0.26

difference r is larger as to the absolute value in the case
of the distribution with p = 0.3 Moreover, it is worth
paying attention to the distribution’s symmetry and
the sign of the difference r. For distributions charac-
terized by small values of σ and p < 0.5 the difference
r is negative while for distributions with p > 0.5 this
difference is positive.
The next group consists of samples characterized

by the distributions that are a combination of normal
distributions with different variances and a larger vari-
ance for the distribution of a higher mode:

2a) X1 ∼ N(70, σ), X2 ∼ N(80, σ + 5),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1};

2b) X1 ∼ N(70, σ), X2 ∼ N(75, σ + 5),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1};

Fig. 3. Values of the difference r of approximation (3) for the 2a), 2b), 2c) data sets according to the value of the standard
deviation s.

Table 3. Selected characteristics for the data 2a) which determine the probability distribution of the tested samples
depending on the value of the parameter p.

µ1 [dB] σ1 [dB] µ2 [dB] σ2 [dB] p K−3 ρ s [dB] E(X) [dB] LAeq [dB] L̂Aeq [dB] r [dB]

70 10 75 15 0.3 0.42 0.09 14.47 72.94 96.78 97.03 −0.25

70 5 75 10 0.3 0.57 0.24 9.47 73.15 84.98 83.47 1.51

70 0.5 75 5.5 0.3 0.45 0.57 5.31 73.34 77.27 76.59 0.68

70 10 75 15 0.5 0.68 0.17 13.36 71.90 95.80 92.43 3.36

70 5 75 10 0.5 1.25 0.46 8.46 72.11 83.71 80.34 3.37

70 0.5 75 5.5 0.5 1.91 1.17 4.64 72.30 76.01 74.77 1.24

70 10 75 15 0.7 0.55 0.07 12.03 70.90 90.45 87.54 2.91

70 5 75 10 0.7 1.55 0.42 7.13 71.11 80.05 76.95 3.10

70 0.5 75 5.5 0.7 5.18 1.89 3.54 71.30 73.90 72.74 1.16

2c) X1 ∼ N(72, σ), X2 ∼ N(73, σ + 5),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1}.
Figure 3 shows the values of the difference r be-

tween the exact equivalent sound level and an approx-
imation (3) for the 2a), 2b), and 2c) data sets according
to the value of the standard deviation s.
If two distributions of distant modes are composed

it is observed that the characteristics of the difference r
are varied, even in the case of samples with small stan-
dard deviations. Moreover, large positive values of the
differences are obtained in the case of a composition
in which a larger part has the distribution of a higher
mode and higher standard deviation (the distribution
has a slight disorder on the left “tail”). This is con-
firmed by the data in Table 3.
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Fig. 4. Values of the difference r of approximation (3) for the 3a), 3b), 3c) data sets according to the value of the standard
deviation s.

The third group consists of samples with distribu-
tions that are a combination of normal distributions
with different variances and a lower variance for the
distribution of a higher mode:

3a) X1 ∼ N(70, σ + 5), X2 ∼ N(80, σ),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1};

3b) X1 ∼ N(70, σ + 5), X2 ∼ N(75, σ),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1};

3c) X1 ∼ N(72, σ + 5), X2 ∼ N(73, σ),
where σ ∈ {0.5, 1, . . . , 15} for p ∈ {0, 0.1, . . . , 1}.
In Fig. 4 the values of the difference r between the

exact equivalent sound level and an approximation (3)
for the 3a), 3b), and 3c) data sets according to the
value of the standard deviation s are presented. In
the case of the probability distributions with a smaller
standard deviation for larger values of the mode (dis-
tributions with a disorder on the right “tail”) the dif-
ference r fairly quickly converges to zero, with the ex-
ception of the data 3a), where there are significant dif-
ferences.
Analysing all carried out simulations it can be

stated that some sets of samples behave similarly. In
the case of the probability distributions with a disor-
der on the left “tail” there is a noticeable dispersion
of the values of the difference r (e.g. Fig. 3). The dif-
ference r between the exact equivalent sound level and
an approximation (3) becomes smaller if the probabil-
ity distributions with a disorder on the right “tail” are
considered (e.g., Fig. 4: 3b) and 3c)). Finally, in the
case of the symmetrical probability distributions the
discussed differences quickly converge to zero and be-
have stably regardless of changes in the value of p (e.g.
Fig. 2: 1b) and 1c)).

5. Summary and conclusions

The article formulates some objections to the meth-
ods of evaluation of uncertainty in noise measurement
which are presented in two standards: ISO 9612 (2009)
and DIN 45641 (1990). The proposed solutions refer to
the rules of uncertainty estimation developed by seven
international metrology organizations and described

in the “Guide to the Expression of Uncertainty Mea-
surement” (International Organization for Standard-
ization, 1995). The adaptation of these rules for the
estimation of uncertainty in noise measurement may
lead to some non-verisimilar results due to the assump-
tions made in this method.
In particular, the article analyses the behaviour of

the average logarithmic approximation of the arith-
metic mean, which is used in determining the un-
certainty in noise measurement. The analyses indi-
cate the possible use of the approximation (3) only
in the case of samples with symmetric unimodal dis-
tributions with the kurtosis and skewness coefficient
close to zero and a small standard deviation. For sam-
ples with distributions characterized by disturbances
and slight bimodality the approximation might pro-
duce large errors, even for small standard deviations.
It happens especially in the case of the probabil-
ity distribution of traffic noise measurement’s sam-
ples: they are left-skewed and with disturbances in the
left “tail” (Gałuszka, 2010;Wszołek, Kłaczyński,
2006;Przysucha, 2013). In this situation, the value of
the combination’s component which causes a disorder
does not significantly affect the increase in the stan-
dard deviation and the value of the logarithmic mean.
Nevertheless, it influences the shift of the mean value.
Then, it may be impossible to calculate the uncertainty
of LAeq from the approximation (3), since the obtained
uncertainty range will not match the true value with
a certain probability.
The presented verification of some commonly used

methods to determine the uncertainty in the noise
measurements (ISO 9612 (2009) and DIN 45641
(1990)) induces to search for and apply other solu-
tions based for example on some measuring verified
methods, i.e. the bootstrap method (Batko, Stępień,
2010; 2014), reduction interval arithmetic (Batko,
Pawlik, 2012a; 2012b), time series analysis (Batko,
Bal, 2010), or the propagation of probability distri-
butions (Batko, Przysucha, 2010; 2014). Finally, it
should be added that not only sound noise measure-
ments assume a normal probability distribution of re-
sults. This assumption, often incorrect, is commonly
used in other acoustic measurements, e.g., of acous-
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tic structures’ parameters (Kamisiński et al., 2012;
Szeląg et al., 2013). Therefore, it is important to
choose carefully the method for determining the acous-
tic measurements uncertainty due to the specific prob-
ability distribution of the results.
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