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The problem of estimation of the long-term environmental noise hazard indicators and their uncer-
tainty is presented in the present paper. The type A standard uncertainty is defined by the standard
deviation of the mean. The rules given in the ISO/IEC Guide 98 are used in the calculations. It is usually
determined by means of the classic variance estimators, under the following assumptions: the normality
of measurements results, adequate sample size, lack of correlation between elements of the sample and
observation equivalence. However, such assumptions in relation to the acoustic measurements are rather
questionable. This is the reason why the authors indicated the necessity of implementation of non-classical
statistical solutions. An estimation idea of seeking density function of long-term noise indicators distri-
bution by the kernel density estimation, bootstrap method and Bayesian inference have been formulated.
These methods do not generate limitations for form and properties of analyzed statistics. The theoretical
basis of the proposed methods is presented in this paper as well as an example of calculation process of
expected value and variance of long-term noise indicators LDEN and LN . The illustration of indicated
solutions and their usefulness analysis were constant due to monitoring results of traffic noise recorded
in Cracow, Poland.
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1. Introduction

Directive 2002/49/EC of the European Parliament
requires carrying out a long-term policy of the environ-
ment protection against noise in the European Union
countries. Its realisation is based on the estimation of
long-term noise indicators LDEN and LN in the areas
under protection.
The average A-weighted long-term sound levels

LDEN and LN in dB are determined on the basis of
noise annoyance indicators LDEN,i for i = 1, 2, . . . ,M
(where: M = 365 or M = 366 for the leap year) of
all days of the calendar year in the day-evening-night
periods:

LDEN,i = 10 log

[
1

24

(
12×100.1LD,i + 4×100.1(LE,i+5)

+8×100.1(LN,i+10)
)]

, (1)

where LD,i is the A-weighted sound level, determined
from the day-time noise exposure, i.e. from 6:00 a.m.
to 6:00 p.m., dB, LE,i is the A-weighted sound level,
determined from the noise exposures from 6:00 p.m. to

10:00 p.m., dB, LN,i is the A-weighted sound level, de-
termined for the night periods, i.e. from 10:00 p.m. to
6:00 a.m., dB and night periods LN,i for i = 1, 2, . . .,M
determined by relation:

LN,i = 10 log

(
1

K

K∑

i=1

100.1(LAeq,T )
i

)
, (2)

where K is the sample size, (LAeq,T )i is the equivalent
sound level for the i-th sample, dB.
The estimation of the long-term indicators of the

acoustic hazard for the environment LDEN and LN is
the average value calculated from all calendar days:

LDEN = 10 log

(
1

M

M∑

i=1

100.1LDEN,i

)
, (3)

LN = 10 log

(
1

M

M∑

i=1

100.1LN,i

)
, (4)

forming a set of two indicators LAeq.LT = {LDEN, LN},
requires an access to the results of the whole year sound
level monitoring.
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The necessity of validation of the obtained results,
which requires the analysis of uncertainty budget of
estimation, is connected with the process of calculating
the average long-term noise indicators determined by
values LDEN and LN .
An essential component of such budget is the stan-

dard type A uncertainty defined as the standard de-
viation of the mean from the inspections results. The
rules given in the ISO/IEC Guide 98-3:2008 are used in
the calculations. They are based on the classic variance
estimators on the condition of assigning the normal dis-
tribution and lack of correlation between elements of
the sample as well as adequate sample size and obser-
vation equivalence to random results of the sampling
inspections.
Many authors of publications assume that the

above assumptions are fulfilled (Romeu et al., 2006;
Makarewicz, Żółtowski, 2008; Makarewicz,
Gałuszka, 2011) and use ISO/IEC Guide 98 for un-
certainty calculation. However, the acoustics measure-
ment results do not meet these assumptions. Refer-
ring to Don and Rees’s (1985), Tang and Au’s
(1999), Batko and Stępień’s (2007), Gimenez and
Gonzalez’s (2009),Gałuszka’s (2010) publications,
the assumption of the normal distributions of mea-
surement results is wrong. Additionally, Wszołek
and Kłaczyński (2006) proved that the road traffic
noise probability distributions are not related to any
statistical distribution known in the literature. How-
ever, the probability density function of the average
long-term sound levels indicates asymmetry (Batko,
Przysucha, 2011). In practice, there is a necessity
of estimating the average long-term noise indicators
LAeq.LT on the basis of environment sampling inspec-
tions (Schomer, DeVor, 1981; Gaja et al., 2003;
Romeu et al., 2006). Moreover, samples from inspec-
tions are small and correlated. Extra-statistical infor-
mation in relation to the occurrence of certain noise ex-
positions in environment, especially in the night hours
(more than one maximum), also discredit this assump-
tion.
Therefore, the use of current methods for assess-

ment of standard uncertainties of controlled noise in-
dicators demands special care. Otherwise, one is prone
to essential errors in determining the coverage factor
for expanded uncertainty.
Therefore, searching for non-standard procedures

of estimation of the average long-term noise indicators
LDEN and LN and their variances, seems to be nec-
essary. This problem was already signalled in the pre-
vious papers of the authors (Batko, Stępień, 2009;
2010; 2011; Batko, Przysucha, 2010; 2011; Batko,
Pawlik, 2012).
The authors proposed three new algorithms for

solving these problems. They are based on non-
parametric statistical methods allowing to determine
the distribution of a random variable without any

information of its belonging to the defined class of
distributions and a limited sample size. The authors
used kernel density estimation, bootstrap method, and
Bayesian inference. Discussion of the algorithms, to-
gether with the example illustrating their functioning,
will be contained in the paper. The reference base con-
stitutes the results of the constant noise monitoring
recorded on one of the main arteries of Cracow, Poland.

2. Classical algorithm

Estimation of long-term noise hazards indicators,
described Eqs. (3) and (4), requires an access to the
results of the whole year sound level monitoring.
In practice, it is not possible to meet such a require-

ment. Therefore, estimations of indicators are usually
done on the basis of highly limited random samples.
They are obtained as results of environmental sam-
pling inspections. Sample size n is very small and the
range is from few to several elements (Schomer, De-
Vor, 1981; Gaja et al., 2003; Romeu et al., 2006).
In the classical approach, assumed are: the normal-

ity of measurements results, adequate sample size, lack
of correlation between elements of the sample and ob-
servation equivalence. In this case, the rules given in
the ISO/IEC Guide 98-3:2008 are used to determine
the type A standard uncertainty of the long-term noise
indicators.
Equations (3) and (4) determined expected values

of the long-term noise indicators estimated on the basis
of the limited random sample.

LAeq.LT = 10 log

(
1

n

n∑

i=1

100.1LAeq.LT,i

)
, (5)

where n is the sample size, LAeq.LT,i is the index level
for the i-th sample, dB.
The type A standard uncertainty of the long-term

noise hazard indicators were determined by Eq. (6):

s
(
LAeq.LT

)
=

√√√√ 1

n(n−1)

n∑

i=1

(
LAeq.LT,i−LAeq.LT

)2
. (6)

3. Non-classical algorithms

In Sec. 2 the algorithm compatible with ISO/IEC
Guide 98 called the classical approach was presented.
The non-classical statistical methods were used to es-
timate the expected value of the environmental noise
hazard indicators and their type A standard uncer-
tainty. Section 3 will present detailed algorithms of
point estimation of characteristics of the long-term
noise indicators.
The estimation of the expected value and type A

standard uncertainty of the long-term noise indicators
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LAeq.LT was done on the basis of simple random sam-
ples n – elements, which were sampled from the inves-
tigated population. In the present paper, the investi-
gated populations are the results of daily noise annoy-
ance indicators during the day-evening-night periods
LDEN,i and night periods LN,i which were determined
by Eqs. (1) and (2). The values were determined on the
basis of the results recorded during the whole calendar
year by the constant noise monitoring system. Simple
random samples of size n = 5, 10, 15 (simulating the
number of controlled days on the basis of which the
levels: LDEN and LN will be estimated) were sampled
from the above mentioned population.

3.1. Kernel density estimation

The first developed non-classic estimation algo-
rithm of the expected value and type A standard un-
certainty was the algorithm which makes use of non-
parametric kernel density estimation (Rosenblatt,
1956; Parzen, 1962).
The estimation of probability density function of

noise annoyance indicators calculated on the basis of
a simple random sample x of size n takes the form of
the following equation (Kulczycki, 2005):

f̂(LAeq.LT) =
1

n · h

n∑

i=1

K

(
x− LAeq.LT,i

h

)
, (7)

whereK is the normal kernel function, h is the smooth-
ing parameter called the bandwidth, calculated “auto-
matically” on the basis of the algorithm (Bowman,
Azzalini, 1997) which was implemented in Matlab
package, LAeq.LT,i are elements of the simple random
sample x.
On the basis of the kernel density estimator (7) the

expected values of the long-term noise indicators from
dependency were determined (Kulczycki, 2005):

L
K

Aeq.LT =

+∞∫

−∞

x f̂(LAeq.LT)dx, (8)

their type A standard uncertainty takes the form (Kul-
czycki, 2005):

sK

(
L
K

Aeq.LT

)
=

√√√√√1

n

+∞∫

−∞

(
x−L

K

Aeq.LT

)2
f̂(LAeq.LT )dx, (9)

where L
K

Aeq.LT is the estimate of the expected value

of the long-term noise indicators, dB, f̂(LAeq.LT) is
the kernel density estimator of noise annoyance indi-
cators (7).

3.2. Bootstrap method

Another non-classical statistical method which was
used to estimate the point characteristics of the long-
term noise indicators is the bootstrap method.

In the present paper the values of the esti-
mated noise indicators were determined on the ba-
sis of B = 10.000 bootstrap replications. The
greater number of bootstrap replications does not give
more accurate results of estimation. The sequence:
L∗
Aeq.LT,1, . . . , L

∗
Aeq.LT,i, . . . , L

∗
Aeq.LT,B was obtained

as a result of the values: LAeq.LT,1, . . . , LAeq.LT,i,
LAeq.LT,n generated B-times, i.e. sampling indepen-
dently from samples of size n and calculating each
time the statistics value L∗

Aeq.LT,b from Eq. (5). This
sequence was used for determining histograms which
illustrate the bootstrap distribution of LDEN and LN .
The bootstrap estimates of the long-term noise in-

dicators are (Efron, Tibshirani, 1993):

L
∗

Aeq.LT =
1

B

B∑

b=1

L∗
Aeq.LT,b , (10)

where L∗
Aeq.LT,b is the level of the b-th bootstrap esti-

mate of index LAeq.LT, dB, B is the number of boot-
strap replications.
The bootstrap estimate of the type A uncertainty

can be determined as follows (Efron, Tibshirani,
1993):

sB

(
L
∗

Aeq.LT

)
=

√√√√ 1

B−1

B∑

b=1

(
L∗
Aeq.LT,b−L

∗

Aeq.LT

)2
. (11)

3.3. Bayesian estimation

The third non-classical statistical method which
was used to estimate the expected value and type A
standard uncertainty of the long-term noise hazard in-
dicators in environment is the Bayesian inference al-
gorithm based on Bayes formula (Osiewalski, 2001;
Gamerman, Lopes, 2006; Candy, 2009):

p (θ|x) = f(x)

p(x)
=

p (x|θ) p(θ)∫

Ω

p (x|θ)p(θ)dθ
, (12)

where p(θ) is called the prior density (before mea-
surement), p(x|θ) is called the sampling density or
likelihood (more likely to be true), p(x) is called the
marginal data density or evidence (normalizes the pos-
terior to assure its integral is unity), Ω is called the
parameters space.
This approach requires knowledge of two distribu-

tions. The first is the sampling density p (x|θ). It was
determined on the basis of a simple random sample x of
size n that was selected from the investigated popula-
tion. The second is the prior density p(θ), determined
on the basis of all available results of constant noise
monitoring in the measuring point, excluding the re-
sults of the year of the simple random sample x. Both
determined prior and sampling density make use of the
kernel density estimation presented in Subsec. 3.1.
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The Bayesian inference requires the use of nu-
merical methods. In the present paper, the ran-
dom walk Metropolis-Hastings (random walk M-H)
(Metropolis, Ulam, 1949; Metropolis et al.,
1953; Hastings, 1970) was used to generate sam-
ples xBAY from the posterior distribution. The ran-
dom sample was obtained as a result of values(
LBAYAeq.LT,1, . . . , L

BAY
Aeq.LT,i, . . . , L

BAY
Aeq.LT,N

)
generated N -

times from the posterior density. On the basis of the
above mentioned sample the Bayesian estimate of the
long-term noise indicators, defined as (Gamerman,
Lopes, 2006; Candy, 2009), were determined:

L
BAY

Aeq.LT =
1

N − S

N∑

i=S+1

LBAYAeq.LT,i, (13)

where LBAYAeq.LT,i is the level of the i-th Bayesian esti-
mate of index LAeq.LT from sample xBAY, dB, N is
the total number of samples, and S is the number of
samples burned.
Due to this we received a correlated sample xBAY as

a result of the sampling. The autocorrelation function
had to be designated and the elements that are not
correlated had to be selected. We obtained a simple
random sample x∗

BAY of size k.
The Bayesian estimate type A standard uncer-

tainty was calculated on the basis of the simple ran-
dom sample x∗

BAY from posterior distribution as fol-
lows (Gamerman, Lopes, 2006; Candy, 2009):

sBAY

(
L
BAY

Aeq.LT

)
=

√√√√1

k

k∑

i=1

(
LBAY

∗

Aeq.LT,i−L
BAY∗

Aeq.LT

)2
, (14)

where LBAY
∗

Aeq.LT,i is the level of the i-th Bayesian esti-

mate of index LAeq.LT from sample x∗
BAY, dB, L

BAY∗

Aeq.LT

is the mean of simple random sample x∗
BAY, dB, k is

the sample size of x∗
BAY.

The Markov chain length and number of cycles
burned were established separately for each indicator
depending on the algorithm convergence to the pos-
terior density. The number of cycles burned ranged
from 10.000 to 40.000. The acceptance probability of
random walk M-H algorithm ranged from 39% to 48%,
which provided a fast convergence of algorithmMCMC
to posterior distribution.

4. Numerical experiments

For the scientific research an application in the
Matlab software package was developed. In this ap-
plication, the classical algorithm approach as well as
algorithms with non-classical statistical methods: ker-
nel estimation of probability density function, boot-
strap resampling method, and Bayesian inference were
implemented.
The study of the usefulness and effectiveness of the

presented algorithms in practical situations was carried

out on the basis of estimation of the expected value and
type A standard uncertainty of long-term environmen-
tal noise hazard indicators. For this purpose constant
monitoring results of traffic noise recorded on one of
the main arteries of Cracow, Poland were used.

4.1. Research material

The study of the usefulness and effectiveness of
the presented algorithms were carried out on the real
measurement data. They were recorded in 2004, 2005,
2008, and 2009 by a constant noise monitoring system.
To estimate the expected value and type A standard
uncertainty only those days in the year were used in
which 24-hour period of A-weighted sound level was
recorded. The number of days differed each year of
the study, i.e. 331, 317, 314, 334 respectively. In other
days there is a break in the recorded data, or their
total absence.
Based on the data obtained from Voivodship In-

spectorate for Environmental Protection in Cracow
noise annoyance indicators during the day-evening-
night periods and night periods, presented in Fig. 1,
were determined.

4.2. Results of the experiments

The results of estimation of expected values of long-
term environmental noise hazard indicators LAeq.LT =
{LDEN, LN} together with designated absolute errors
(in parentheses) are presented in Table 1. The type A
standard uncertainty obtained using the methods dis-
cussed above are presented in Table 2. The obtained re-
sults are also presented graphically in Figs. 4–7 mark-
ing the estimate of the expected value (marker) and
interval LAeq.LT ± s(LAeq.LT) (thin vertical line) for
all of the presented methods. These graphs provide a
comparative visual analysis of the obtained estimates.
The measured value was determined basing on the

results of constant noise monitoring (Fig. 1) for each
year. Due to a large number of data, only a few exam-
ples of distributions are presented in this paper (Figs. 2
and 3).
In Table 1 the estimation results of the expected

value of the long-term environmental noise hazard
indicators with a greater absolute error than the error
of a classical estimate are marked in bold, while in
Table 2 the estimation results of the type A standard
uncertainty greater than the classical estimate are
marked in bold.
The analysis of estimation results presented in the

graphical and tabular way shows that there are some
discrepancies between the measured values and the val-
ues estimated based on the presented methods ranging
from 0.0 dB to 1.3 dB. The kernel and bootstrap es-
timators of the expected value are characterized by
more accurate results than the classical estimator.
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Fig. 1. Time history of noise annoyance indicators during the (a) 2004, (b) 2005, (c) 2008 and (d) 2009.

Only 16.7% (4 values) of the kernel estimates were
more distant from the measured value than the classi-
cal estimate. One may also note that the distribution
of the values burdened with a greater absolute error
is random and does not depend on the size of the an-
alyzed sample under which they were calculated. The
first three estimators: classical, kernel, and bootstrap
are dependent on the representativeness of the sam-
ple. Such a conclusion can be drawn from the esti-
mates of the expected value of long-term noise indica-
tors for 2005.
The measured value in 2005 is underestimated due

to a decrease registered for noise annoyance indicators
(Fig. 1b). In this case the Bayesian estimates are
more accurate because the prior distribution p(θ) was
taken into account. The influence of this distribution
is visible in all Bayesian estimates of the expected
values, therefore, 87.5% of the estimation values are
burdened with an absolute error greater than the
classic estimator.
Out of the four presented methods for estimat-

ing the expected value of long-term noise indica-

tors estimates obtained using the kernel estimator
were closest to the measured values (11 estimates).
At the opposite pole there is the Bayesian estimator
which is characterized by the largest number (21 val-
ues) of estimates furthest from the measured val-
ues.
While analyzing the table with the results of

estimation type A standard uncertainty of long-term
environmental noise hazard indicators, it can be seen
that the Bayesian estimates have the greatest values.
This is because of the fact that inference based on
Bayes’ theorem (12) introduces additional information
about the parameter possessed before observing the
data in the form of the prior density. The smallest
value of the uncertainty is characterized by a boot-
strap estimator. This fact proves that the method
is the most accurate for determining the values of
long-term noise indicators. The estimates determined
by the kernel estimator are characterized by larger
values than calculated in the classical way on the basis
of the analyzed sample. The estimate values of type
A standard uncertainty range from 0.2 dB to 1.0 dB.
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Table 1. Estimates and absolute errors of the expected values of long-term noise indicators.

Indicator
Measured
value
[dB]

Sample
size
n

Classical
estimate (error)

[dB]

Kernel
estimate (error)

[dB]

Bootstrap
estimate (error)

[dB]

Bayesian
estimate (error)

[dB]
year 2004

LDEN 77.2
5 77.4

(0.2)
77.4
(0.2)

77.4
(0.2)

77.6

(0.4)

10 77.3
(0.1)

77.2
(0.0)

77.3
(0.1)

77.7

(0.5)

15 77.3
(0.1)

77.3
(0.1)

77.3
(0.1)

77.6

(0.4)

LN 69.5
5 69.7

(0.2)
69.6
(0.1)

69.7
(0.2)

69.9

(0.4)

10 69.3
(−0.2)

69.3
(−0.2)

69.3
(−0.2)

69.6
(0.1)

15 69.6
(0.1)

69.4
(−0.1)

69.5
(0.0)

69.8

(0.3)

year 2005

LDEN 76.5
5 76.9

(0.4)
76.5
(0.0)

76.8
(0.3)

77.7

(1.2)

10 76.7
(0.2)

76.7
(0.2)

76.7
(0.2)

77.3

(0.8)

15 77.0
(0.5)

76.6
(0.1)

77.0
(0.5)

77.8

(1.3)

LN 68.9
5 68.7

(−0.2)
68.4

(−0.5)

68.7
(−0.2)

69.8

(0.9)

10 69.2
(0.3)

69.1
(0.2)

69.2
(0.3)

69.7

(0.8)

15 69.4
(0.5)

68.8
(−0.1)

69.3
(0.4)

69.9

(1.0)

year 2008

LDEN 78.1
5 77.8

(−0.3)
77.8
(−0.3)

77.8
(−0.3)

77.6

(−0.5)

10 78.3
(0.2)

78.2
(0.1)

78.3
(0.2)

77.9
(−0.2)

15 78.2
(0.1)

78.1
(0.0)

78.2
(0.1)

77.9

(−0.2)

LN 70.4
5 70.2

(−0.2)
70.2
(−0.2)

70.2
(−0.2)

70.0

(−0.4)

10 70.6
(0.2)

70.5
(0.1)

70.6
(0.2)

70.2
(−0.2)

15 70.6
(0.2)

70.4
(−0.0)

70.6
(0.2)

70.0

(−0.4)

year 2009

LDEN 78.5
5 78.6

(0.1)
78.5
(0.0)

78.6
(0.1)

77.9

(−0.6)

10 78.5
(0.0)

78.4

(−0.1)

78.5
(0.0)

77.9

(−0.6)

15 78.4
(−0.1)

78.3

(−0.2)

78.4
(−0.1)

78.0

(−0.5)

LN 70.8
5 71.1

(0.3)
71.0
(0.2)

71.0
(0.2)

70.1

(−0.7)

10 71.0
(0.2)

71.0
(0.2)

71.0
(0.2)

70.4

(−0.4)

15 70.7
(−0.1)

70.6

(−0.2)

70.7
(−0.1)

70.1

(−0.7)
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Table 2. Estimates of the type A standard uncertainty of the long-term noise indicators.

Indicator Sample size
n

Classical estimate
[dB]

Kernel estimate
[dB]

Bootstrap estimate
[dB]

Bayesian estimate
[dB]

year 2004

LDEN

5 0.4 0.4 0.4 0.6

10 0.3 0.4 0.3 0.7

15 0.2 0.2 0.2 0.6

LN

5 0.5 0.5 0.5 0.8

10 0.2 0.2 0.2 0.6

15 0.3 0.3 0.3 0.7

year 2005

LDEN

5 1.0 1.0 0.7 0.7

10 0.3 0.3 0.3 0.7

15 0.6 0.6 0.5 0.8

LN

5 1.0 1.0 0.7 0.8

10 0.4 0.4 0.4 1.0

15 0.6 0.6 0.6 0.8

year 2008

LDEN

5 0.4 0.4 0.3 0.7

10 0.3 0.3 0.3 0.7

15 0.2 0.2 0.2 0.6

LN

5 0.3 0.3 0.3 0.6

10 0.3 0.3 0.2 0.8

15 0.3 0.4 0.4 0.9

year 2009

LDEN

5 0.4 0.5 0.4 0.7

10 0.3 0.3 0.3 0.6

15 0.2 0.2 0.2 0.6

LN

5 0.5 0.6 0.4 0.9

10 0.3 0.3 0.3 0.6

15 0.2 0.3 0.2 0.8

Table 3. Range of expected values and the type A standard uncertainty.

Indicator

Range
of classical estimate

[dB]

Range
of kernel estimate

[dB]

Range
of bootstrap estimate

[dB]

Range
of Bayesian estimate

[dB]

expected
values

the type A
standard
uncertainty

expected
values

the type A
standard
uncertainty

expected
values

the type A
standard
uncertainty

expected
values

the type A
standard
uncertainty

year 2004

LDEN 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1

LN 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.2

year 2005

LDEN 0.3 0.7 0.2 0.7 0.3 0.4 0.5 0.1

LN 0.7 0.6 0.7 0.6 0.6 0.3 0.2 0.2

year 2008

LDEN 0.5 0.2 0.4 0.2 0.5 0.1 0.3 0.1

LN 0.4 0.0 0.3 0.1 0.4 0.2 0.2 0.3

year 2009

LDEN 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.1

LN 0.4 0.3 0.4 0.3 0.3 0.2 0.3 0.3
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Fig. 2. Probability distributions of LDEN in 2005 obtained from the analyzed sample of size n = 5: a) analyzed sample,
b) kernel density estimator, c) bootstrap distribution, d) a posteriori distribution.

Fig. 3. Probability distributions of LN in 2009 obtained from the analyzed sample of size n = 15: a) analyzed sample,
b) kernel density estimator, c) bootstrap distribution, d) a posteriori distribution.
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Fig. 4. Estimates of expected values and type A standard uncertainty of long-term noise indicators in 2004.

Fig. 5. Estimates of the expected value and type A standard uncertainty of long-term noise indicators in 2005.

Fig. 6. Estimates of expected value and type A standard uncertainty of long-term noise indicators in 2008.
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Fig. 7. Estimates of expected values and type A standard uncertainty of long-term noise indicators in 2009.

Moreover, a range of expected values and standard
uncertainty for each methods (Table 3) was analyzed.
Expected values are in the range of 0.1 dB to 0.7 dB.
The smallest values of the range are characterized by
the Bayesian inference method, while the largest are
characterized by the classical estimator.
The values of the index of dispersion (range) of type

A standard uncertainty range from 0.0 dB to 0.7 dB.
The most stable results of the estimations are char-
acterized by the Bayesian inference as well as the ex-
pected value. The largest values of the range of uncer-
tainty of measurement results are determined for the
kernel estimation.

5. Conclusions

This paper is dedicated to the problem of esti-
mation of the environmental noise hazard indicators
and their uncertainty. The rules given in the ISO/IEC
Guide 98 are currently used. These rules are based
on the classic variance estimators, under the following
assumptions: the normality of measurements results,
adequate sample size, lack of correlation between ele-
ments of the sample and observation equivalence. How-
ever, such assumptions in relation to the acoustic mea-
surements are rather questionable. That is the reason
why the authors indicated the necessity of implemen-
tation of non-classic statistic solutions. The estimation
idea of seeking density function of long-term noise in-
dicators distribution by the kernel density estimation,
bootstrap method, and Bayesian inference was formu-
lated. These methods do not generate limitations for
form and properties of the analyzed statistics. This
paper presents three non-classical algorithms of esti-
mation of expected values and variance of long-term
noise indicators LDEN and LN . An example of the cal-

culation process which makes it possible to determine
estimators was presented.
The results of the numerical experiments presented

in Subsec. 4.2 allow to formulate the following conclu-
sions:

• The Bayesian estimates of expected values are
more reliable in the case of lack of sample rep-
resentativeness from which inference is made.

• The most stable results of estimation of the ex-
pected value of long-term indicators, i.e. the low-
est range value, are characterized by the Bayesian
inference method as opposed to the kernel estima-
tion method.

• The long-term environmental noise hazard indi-
cators and acoustic measurements results do not
come from a normal distribution.

• In the case type A standard uncertainty the low-
est range values are characterized by the Bayesian
inference method as opposed to the kernel estima-
tion method.

• The classical and kernel methods are strongly de-
pendent on the structure of the analyzed sample.

• The Bayesian inference is the most resistant to
the lack of sample representativeness through in-
sertion of the prior distribution p(θ) to inference.

• The non-classical approach, mainly the Bayesian
and bootstrap inference can be regarded as conve-
nient and effective inference tools for investigated
time series with unknown parameters.

• Application of non-classical statistical methods
can bring many important methodological and
empirical insights to the probabilistic analysis of
environmental noise.
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• The interpretation assumptions accompanying
Bayesian and bootstrap methods are more effi-
cient than the kernel method and classical esti-
mation analysis applied up to the present.

• The presented methods can be used not only to
determine characteristics of long-term noise indi-
cators but also all the parameters associated with
acoustic measurements.
Making non-classical inference (bootstrap and

Bayesian) we do not follow the classical rules of in-
ference. We must remember that the parameter is a
random variable and all the information we have is
distribution. However, the mean and standard devia-
tion of the mean are only some characteristics of the
distribution.
In Table 2 classical and kernel estimates are

standard deviation of the mean, on the other hand
Bayesian and bootstrap estimates are standard devi-
ation of distributions. If the classical and kernel esti-
mates are multiplied by

√
5,

√
10,

√
15 it turns out

the Bayesian and bootstrap estimates show the lowest
values of type A standard uncertainty. Using the non-
classical statistical methods we obtain a reduce of the
standard deviation estimator in relation to the classical
estimator:
• for the bootstrap method from 0.5 to 1.8 dB for
LDEN and from 0.4 to 1.7 dB for LN ,

• for the Bayesian inference from 0.2 to 1.5 dB for
LDEN and from 0.0 to 1.5 dB for LN .
For the kernel estimator we obtain an increase of

the standard deviation estimator in relation to the
classical estimator from 0.0 to 0.3 dB for LDEN and
from 0.0 to 0.4 dB for LN . It is the least efficient non-
classical estimator presented in the present paper.
Taking into account the above statement the au-

thors propose to consider the standard deviation of
bootstrap or posterior distribution as the type A stan-
dard uncertainty.
The present paper does not cover all aspects re-

lated to the widely discussed topics. It presented an
alternative to the current methods of determining the
expected value and type A standard uncertainty of
long-term noise indicators. The numerical experiment
results presented in this paper refer only to one mea-
suring cross-section located in a dense urban area. Fur-
ther research should focus on testing the algorithms in
other measurement conditions (other road profiles and
building types). The presented algorithms should be
tested also on other sources of noise.
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