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Dynamic Time Warping is a standard algorithm used for matching time series irrespective of local
tempo variations. Its application in the context of Query-by-Humming interface to multimedia databases
requires providing the transposition independence, which involves some additional, sometimes computa-
tionally expensive processing and may not guarantee the success, e.g., in the presence of a pitch trend or
accidental key changes.
The method of tune following, proposed in this paper, enables solving the pitch alignment problem

in an adaptive way inspired by the human ability of ignoring typical errors occurring in sung melodies.
The experimental validation performed on the database containing 4431 queries and over 5000 templates
confirmed the enhancement introduced by the proposed algorithm in terms of the global recognition rate.
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1. Introduction

The impressive diversity of methods and goals for-
mulated in the area of Music Information Retrieval
(MIR) reflects the intrinsic complexity of our percep-
tion of music and of music itself. Out of the many
research issues considered in the field, the problem of
query specification for content-based music retrieval
has been attracting significant attention for years.
Among many proposed solutions, such as Query by
Tapping, pitch contour specification with Parsons code
or various forms of simplified musical notation, the
Query by Singing/Humming (QbSH) interface is per-
haps one of the most natural approaches to searching
for a piece of music in multimedia databases.
The main issue in QbSH problem is basically

melody matching where the melody is understood
as a sequence of notes with given pitches and du-
rations. The database entities (templates) are often
given already in this form, although it should be
noted that identification of representative fragments
(Głaczyński, Łukasik, 2013) and melody extraction
(Salamon, Gómez, 2012; Lau et al., 2005) from orig-
inal music files is a far from trivial task itself.
Converting the user’s input – a sung or hummed

melody – into a sequence of pitch values, referred to
as a pitch vector, is a typical preliminary step of pro-

cessing. Many pitch detection algorithms (PDA) are
available for this purpose (Dziubiński, Kostek, 2005;
Gerhard, 2003; Boersma, 1993), so a reliable repre-
sentation may be usually obtained even in a relatively
noisy environment. The potential problems involved
here include the frequency resolution and precision of
the PDA (usually of minor significance in the QbSH
task), octave errors (may occasionally become an is-
sue), and the imprecision of the sung query itself, which
is one of the main sources of confusion in practice.
The precise onset time and duration of a note are

more difficult to be unambiguously determined. This
is a point at which the approaches used for solving the
QbSH problem may be roughly divided into two main
groups.

Note-based approaches. These methods aim at ob-
taining a reliable note segmentation with respect to the
pitch and temporal parameters. Their greatest advan-
tage is a compact representation allowing for efficient
melody searching with string matching algorithms
(Ghias et al., 1995). The methods proposed here in-
clude edit distance computation based on note inser-
tion/deletion/replacement cost (McNab et al., 1996),
transportation distances such as the Earth Mover Dis-
tance (EMD) (Typke et al., 2007; Huang et al.,
2008) and n-grams matching (Uitdenbogerd, Zo-
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bel, 1999;Wolkowicz et al., 2008). The note-based
methods rely on the quality of the note segmentation
stage which generally makes them potentially impre-
cise and dependent on the underlying onset detection
algorithms. This is in fact a separate MIR research
area where several additional factors, e.g., related to
timbre, type of accents or musical expression, must be
taken into account (McNab et al., 1996; Eyben et al.,
2010; Bisesi, Parncutt, 2013).

Direct matching. In these approaches the note seg-
mentation problem is deliberately ignored and the
pitch vectors are directly compared on a per-frame ba-
sis. High matching precision may be usually obtained
in this way but at the cost of increased computational
complexity (Jang, Lee, 2001; Zhu, Shasha, 2003).
Not only is the melody representation much longer
than the sequence-of-notes form, but also variations of
tempo in the sung query make the standard Euclidean
distance between vectors inaccurate and a more sophis-
ticated matching algorithm must be applied.
The method of choice for aligning the query with

a template via a non-linear scaling of the time domain
is known as Dynamic Time Warping (DTW). Proposed
initially for isolated words recognition (Itakura, 1975;
Sakoe, Chiba, 1978) it has been widely adopted in
many other fields of artificial intelligence and signal
processing.
One of the fundamental issues in a practical appli-

cation of the DTW algorithm for melody matching is
to obtain a key-invariant representation. The melody
is defined by a sequence of relative pitches, so their
absolute values are basically irrelevant. The user can
sing a melody in any key, so all the notes may be
shifted with respect to the template by the same in-
terval, which may result in a large value of the DTW
distance, even for a perfectly sung query. In this pa-
per a novel solution is proposed, in which the query is
“tuned in” to the template via gradual decrease of the
pitch difference between the two.
In the next section the principles of the DTW algo-

rithm will be briefly presented along with a summary
of previous works which influenced the development of
the method in the context of QbSH and melody match-
ing problems. Next, the proposed modification of the
algorithm and the results of experiments demonstrat-
ing the obtained enhancement in recognition rate will
be presented.

2. Basic concepts

2.1. Previous work

The problem of minimizing the distance between
two time series which may vary in time or speed occurs
naturally in numerous application areas. Early works
of Itakura (1975) and of Sakoe and Chiba (1978)

introduced the DTW as an effective solution in the
speech processing task. The fundamental concepts laid
out there have been later used with slight modifications
in many fields of artificial intelligence and data min-
ing, including audio and video stream monitoring, bio-
medical signal inspection, financial data analysis, hu-
man motion and gesture recognition (Sakurai et al.,
2007; Keogh, 2002). The variants of the method in-
clude full sequence matching (Sakoe, Chiba, 1978)
and subsequence matching (Sakurai et al., 2007; Li-
jffijt et al., 2010). Efficient indexing techniques al-
lowing to significantly reduce the searching time in
large databases were introduced by Keogh (2002) and
applied in the Musical Information Retrieval context
by Zhu and Shasha (2003) and Lau et al. (2005). Sev-
eral solutions regarding the speed vs accuracy trade-
off have been proposed, including iterative deepen-
ing (Adams et al., 2005), Windowed Time Warping
(Macrae, Dixon, 2010), and FastDTW (Salvador,
Chan, 2004). The application of several variants of the
DTW algorithm for the QbSH problem has been ad-
dressed in numerous works, including Jang and Lee
(2001), Lijffijt et al. (2010), Yu et al. (2008), Jeon
and Ma (2011) and Wang et al. (2008).

2.2. The fundamentals of Dynamic Time Warping

Let qj denote the pitch value in the j-th frame of
the query pitch vector q, where j = 1, 2, ..., J . Sim-
ilarly, ti represents the i-th frame of the template t,
where i = 1, 2, ..., I. The Euclidean distance between
the two:

dEuclid(q, t) =

√

∑

i

|qi − ti|2, (1)

may be computed only if the size of the two vectors
is the same, which is typically not the case. More-
over, reinterpolating the sequences linearly to the same
length may not be sufficient in the presence of local
tempo variations (Fig. 1).

Fig. 1. Sequence matching with the Euclidean distance.

The solution is to scale the time domain of
the sequences with a proper warping function so
that the corresponding frames are properly matched
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(Fig. 2). The warping function may be represented
on the i-j plane by a path, i.e., a sequence of points
c(1), c(2), ..., c(K), where c(k) = (i(k), j(k)) (Fig. 3).
Every path is assigned a cost:

E =

K
∑

k=1

d(c(k)), (2)

where the cost of matching an individual point c(k)
may be defined as:

d(c(k)) = d(i, j) = |qj(k) − ti(k)|. (3)

Fig. 2. Sequence matching after non-linear rescaling.

Fig. 3. Warping function.

The DTW algorithm, finding the optimal path in
the sense of minimization of Eq. (2), is based on the
dynamic programming (DP) principle. The i-j plane
is represented as a two-dimensional array g. Every el-
ement g[i, j] is assigned a minimal cost of reaching the
point (i, j) from the beginning point c(1) = (1, 1):

∀
i=1,2,...,I

j=1,2,...,J

g[i, j] = d(i, j) + min







g[i, j−1]
g[i−1, j−1]
g[i−1, j]

(4)

with the boundary conditions:

g[0, 0] = 0,

g[0, j] = ∞, for j = 1, 2, ..., J, (5)

g[i, 0] = ∞, for i = 1, 2, ..., I.

After computing all the values of the array g, the total
cost of the optimal path is found in g[I, J ]. This value is
typically multiplied by (I +J)−1 to allow comparisons
between queries of different lengths.
The DP-equation (4) is a simple variant most of-

ten found in literature (Sakurai et al., 2007; Keogh,
2002). Several more sophisticated variants incorporat-
ing local slope constraints and weighting coefficients
were initially proposed by Sakoe and Chiba (1978).
Global constraints in the form of the Sakoe and Chiba
band (Sakoe, Chiba, 1978) or Itakura parallelogram
(Itakura, 1975) are also often applied (Fig. 4). The
general role of the constraints is to limit the area of
the i-j plane under consideration in order to speed up
computations and to reduce the risk of “pathological
warping” of the sequences. Global constraints also play
a fundamental role in efficient indexing techniques in-
troduced by Keogh (2002).

a) b)

Fig. 4. DTW global constraints: a) Sakoe and Chiba band,
b) Itakura parallelogram.

The boundary conditions may be modified to allow
for a situation when only a fragment of one sequence
is to be matched against the second one. This is gen-
erally a subsequence matching problem in which the
compared sequences may not start at the same posi-
tion and/or end at the same position (Sakurai et al.,
2007).

2.3. Melody matching

In a typical approach, the query sung by a user is
matched against a database consisting of a collection
of MIDI files. The templates from the database are
converted, similarly to the query, to the form of pitch
vectors, expressed in MIDI note numbers rather than
as frequency values in Hz. The conversion is straight-
forward in the case of the MIDI files and always yields
unambiguous results. On the other hand, query pitch
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vectors often need some clean-up to decrease the in-
fluence of noise, octave errors, etc., and they gener-
ally represent the intended melody only approximately.
Many users sing out of tune and they cannot sing with
sufficient precision, especially in case of bigger intervals
(Yang et al., 2010).
The general problem which is addressed in this

work is how to match a melody sung in a different key
than in the template. There exist several approaches
to deal with this issue. Many researchers use a simple
method of subtracting the mean pitch from the whole
sequence (Jeon, Ma, 2011). The problem occurs when
the melody represented in a query is only a part of the
template, or vice versa, in which case subtracting the
mean is of no use.
In a different approach the melody may be rep-

resented in the form of relative changes of consecutive
pitches (differential/delta representation) (Jang et al.,
2011). This eliminates the problem but representing
raw pitch vectors in this form often yields poor results.
In this case the MIDI-based templates consist mostly
of zeroes with non-zero values only at the points of
note transitions. On the other hand, the note transi-
tions in a query may be spread over several frames,
which makes the true comparison impossible.
An effective alternative may be to repeat the

matching procedure several times with different trans-
positions of the query pitch vector. The query may be
transposed by, e.g., all possible numbers of semitones
within the octave (Yu et al., 2008) or from −5 to +5
semitones in half-of-the-semitone steps (Jang et al.,
2011). Various numbers of repetitions may be consid-
ered but in any way this is clearly a brute-force ap-
proach which increases the computational complexity
significantly. Another problem which is still not solved
is that the transposition may appear within the query
when the user fails to sing an interval (usually a greater
one) precisely and continues in a different key.
A solution proposed in this work is to try to follow

the melody of the template by gradually decreasing the
difference between the query and the template. This is
intended to resemble the way in which humans follow
the known melody irrespective of pitch inaccuracies
and key changes.

3. The proposed algorithm

The input query pitch vector qraw is obtained from
audio data sampled at 8kHz, with the non-overlapped
frame size of 256 samples. It is first preprocessed in
order to obtain a smooth melody line without large
jumps and unvoiced fragments. The preprocessing in-
cludes the following steps:

1. The leading and trailing unvoiced fragments, de-
noted by the pitch detection algorithm as “0”, are
removed.

2. The median of the remaining data is computed and
all the pitch values distant from the median by more
than a given threshold T1 are marked as unvoiced,
i.e., set to zero. This may help in the case of poor
quality of the input data resulting from noise or
from errors introduced by the pitch detection al-
gorithm. The quality of the database used in the
experiments made this correction necessary in 1%
of the queries for T1 = 24 semitones.

3. For the same reason the maximum jump between
two consecutive frames can not exceed the thresh-
old T2. Setting T2 = 14 semitones resulted in 3.8%
corrected files.

4. Every unvoiced frame is set to the pitch value of
the last voiced frame. In this way one continuous
melody is obtained, without any breaks resulting
from breathing or articulation. It should be noted
that this operation also leads to rejecting some po-
tentially useful information about the rhythm and
beat.

5. Median filter of the order of 9 frames is applied to
smooth the pitch contour. Preliminary experiments
showed that it enhances the recognition results sig-
nificantly.

The smoothed query pitch vector q is then com-
pared with all the templates from the database. For
every template t the pitch difference dbeg between the
beginnings of the query and the template is computed
and then subtracted from all the elements of the query
pitch vector:

∀
j=1,2,...,J

qj := qj − dbeg, (6)

where J is the length of q after preprocessing.
This makes both sequences start in the same key.

In practice, the value of dbeg is computed as:

dbeg =
q2 + q3

2
− t2 + t3

2
. (7)

The first pitch value may be unreliable, so it is rejected
and the mean of the next two is taken into account.
As the database used for the experiments contained

only queries sung from the beginning, this procedure
enabled to obtain good matching results with the stan-
dard DTW algorithm described in Subsec. 2.2. On the
other hand, the queries from the database often ended
in arbitrary positions with respect to the template se-
quences, so using the arithmetic mean computed for
all the values of q and t instead of dbeg in (6) yielded
poor results.
In a separate set of preliminary experiments the

influence of DTW constraints on the recognition re-
sults has been tested. It has been found that setting
the slope constraint condition P = 1/2, as defined by
Sakoe and Chiba (1978), yielded the best results.
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Having the beginning of the query shifted properly
along the frequency axis, one has to deal with trans-
positions possibly occurring later in the course of the
query (Fig. 5). For this purpose the standard DTW
procedure is applied first to find the warping function
aligning the query and the current template. Going
along the path on the i-j plane defined by the warping
function, the procedure defined by the block diagram
in Fig. 6 is applied. The resulting signal q̂ is a version
of q modified to follow the pitch values defined by the
template t. This process is controlled by the parameter
α ∈ (0, 1]. The greater the value of α, the faster will the
pitch of the query be aligned with the template. The
final value of α = 0.05 was used in the experiments.

Fig. 5. Example of a transposition (Old McDonald had
a farm). The first 17 samples of the template (light) and
the median-filtered query (dark) are in tune. Most of the
remaining part of the query is one-two semitones below the

template.

Fig. 6. Block diagram of the tune follower.

The example with the same query and template
sequences as in Fig. 5 is shown in Fig. 7. The enhan-

Fig. 7. Result of application of the tune follower (α = 0.1).

cement introduced by the tune-following procedure is
clearly visible. In most places the distance between
the sequences decreased and two fragments in the sec-
ond half of the query got tuned to the template ex-
actly. It should be noted that both Fig. 5, and Fig. 7
present the aligned, i.e., time-warped version of the
sequences.
The final matching cost is then computed for the

sequence q̂ with formula (2). One important thing that
should be noted here is that although this cost is lower
in comparison with the standard DTW algorithm for
the matching template, it can also be lower for the non-
matching ones. The fundamental question is whether
the proposed tune-following procedure is able to make
the matching template win easier in the competition
with the others despite the fact that all of them may
benefit from its application. In the following section
the test results supporting a positive answer to this
question will be presented.
It should also be noted that the computational

complexity of the presented approach is not signifi-
cantly increased with respect to the standard DTW
algorithm. This results from the fact that adjusting
the pitch of the query and computing the updated
matching cost is performed as a post-processing step
on the already found optimal path. The time com-
plexity of this step is therefore linear, in contrast
to the standard DTW which has the complexity of
O(I ·J). In fact, any method yielding the proper time-
warping of the query may be used prior to the tune-
following procedure. Hence, many approaches targeted
at speeding up the matching process (cf. Subsec. 2.1)
may be used instead of the plain DTW algorithm in
the context of the system proposed hereby. For ex-
ample, data dimensionality reduction and application
of a lower bounding distance measure (Keogh, 2002;
Lau et al., 2005) would allow for efficient database
indexing and preselection of a relatively small set
of best candidates for further processing. Only those
candidates would need the DTW-based matching fol-
lowed by the tune-following algorithm, thus reducing
the computation time, possibly by orders of magni-
tude.

4. Experimental results

4.1. Database

The publicly available datasets, used in the MIREX
2013 Query by Singing/Humming evaluation task
(MIREX, 2013), have been chosen to verify the
proposed solution. Roger Jang’s MIR-QBSH corpus
(Jang, 2009) consists of a collection of 48 popular
songs (ground-truth MIDI files) to be matched against
4431 queries sung by about 200 subjects. The 48
ground-truth files are mixed with 5274 “noise” files
from Essen collection (ESAC-DATA, 2009).
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4.2. Testing procedure and results

Each of the 4431 queries was compared with all
of the 48 + 5274 template files, one of which was the
correct one. For every query q, all the templates were
ordered by their DTW distance from q. According to
the rules used in the MIREX evaluation, a search was
treated as successful when the correct template was
among the top 10 results. The obtained results are pre-
sented in Table 1.

Table 1. Total number of recognized queries.

Top Ten
Score

Best Hit
Score

δ

DTW 3077
(69.44%)

2109
(47.60%)

0.39532

DTW
+ Tune Follower

3332
(75.20%)

2455
(55.41%)

0.42975

Additionally, the number of cases when the correct
template was the first one on the list of DTW dis-
tances was also recorded (the Best Hit Score column).
The last column displays the mean relative difference
between the first and the second file on the list:

δ =
1

N

N
∑

n=1

E
(n)
2 − E

(n)
1

E
(n)
1

, (8)

where the sum is computed only over those N queries
for which the best hit was the correct one (N = 2109 or

2455, respectively). The value E
(n)
p denotes the DTW

matching cost for the n-th query and the template lo-

cated at p-th position on the list, i.e., the value E
(n)
1

represents the score of the template best matching the

n-th query (naturally, E
(n)
1 < E

(n)
2 ).

The character of changes introduced by the pro-
posed algorithm may be better assessed on an example
of a single query shown in Table 2. The correct tem-

Table 2. Results for a single query. Year: 2003, Person:
00011, File: 00020.pv (Happy Birthday).

DTW DTW + Tune Follower
No

Template DTW
Distance

Template DTW
Distance

1 00020.pv 544.56 00020.pv 382.80

2 V0003F.pv 675.03 V0003F.pv 659.72

3 E0820.pv 731.27 E0820.pv 672.47

4 A0302.pv 752.51 Q0075P.pv 678.65

5 Q0114N.pv 814.22 Q0095.pv 697.24

6 Q0082.pv 825.53 A0302.pv 712.63

7 Q1102J.pv 830.32 Q0114K.pv 712.67

8 Q0080B.pv 840.34 Q0137F.pv 734.59

9 Q0080A.pv 849.02 Q2079J.pv 738.94

10 E0110B.pv 876.25 Q0048C.pv 745.74

plate was found to be the closest to the query, both
with and without the tune follower (all of the remain-
ing files come from the Essen collection). It may how-
ever be observed that the DTW distance of the first
template decreased significantly, from 544.56 to 382.80,
while the second template remained almost equally dis-
tant from the query (659.72 vs. 675.03). Application
of the tune follower reordered the list and introduced
some changes in the top-ten matching templates (e.g.,
file Q0095.pv appeared and Q0082.pv was removed).

4.3. Discussion

The presented results consistently show that the
proposed tune-following procedure may have a positive
influence on the DTW-based melody search. Although
it is true that it generally makes the matching cost
smaller for most of the templates, one can expect that
this decrease will be more significant in the case of the
correct template than for all the non-matching ones
(Table 2).
This may result from the effect of accumulation

of the corrections for consecutive notes. For example,
when the pitch of a note sung by a user is too low with
respect to the correct template then it is gradually in-
creased by our procedure until it approaches the right
tune, provided that the note is long enough (cf. Fig. 7,
frames 24–39). If it is relatively short, it is at least
partially corrected (Fig. 7, frames 105–110). In either
case, if the note was sung too low, then it is probable
that the pitch of the next note will also be too low in
which case it will get corrected immediately or – at
least – faster. This effect may be observed, e.g., when
comparing Fig. 5 and Fig. 7. The pitch discrepancy
in frames 105–110 is made significantly smaller due to
correction which occurred in the previous frames.
This type of correspondence between the signs

of the pitch differences in consecutive notes cannot
be generally expected when comparing a query with
a non-matching template. Correcting one note may
result in increasing the initial difference between the
next note and the template. This may even result in
increasing the total matching cost, although for long
notes and infrequent pitch changes the tune follower
will make the query closer to most of the templates.
Further investigation revealed that the exact num-

ber of cases when the standard DTW failed to put the
correct template on the first place and at the same time
the proposed solution managed to do so, was equal
to 493. Yet in 147 cases the opposite was true, i.e., the
correct template disappeared from the first position
when the tune follower was turned on. The analysis of
those cases leads to some interesting conclusions which
may be used to further improve the results, as demon-
strated in the next section.
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5. Tuning the tune follower

Melody is a special kind of time series, interpreted
according to a rich set of subtle, sometimes very so-
phisticated semantic rules. As a result, the similarity
of melodies can be only approximately assessed on the
basis of their general contour. For example, changing
the key from major to minor of the – otherwise iden-
tical – melody1, may seem much more important for
a human listener than for a DTW-based matching al-
gorithm.
The rhythm and the metric structure of a melody

may also be more perceptually important and discrim-
inative than the DTW results would suggest. The lack
of correlation of the precise note onset/offset times be-
tween the query and a non-matching template may not
adequately increase the DTW distance, provided that
the general time-warped melody contours are similar.
As the proposed tune-following procedure enhances
this similarity even further, we may resort to check-
ing whether the note changes in the template coincide
with appropriate changes in the query pitch vector (af-
ter time alignment). In this way we may increase the
influence of the temporal factor on the matching re-
sult.
Figure 8 presents a misaligned query with ini-

tial DTW distance equal to 746.9 which decreased to
388.29 when the tune follower was turned on. For the
true correct template the corresponding values were
485.48 and 454.6, respectively. This is therefore one
of those 147 “spoiled” examples in which the pro-
posed method significantly decreased the discrepancy
between the query and a non-matching template. It
may be observed, however, that the note changes do
not correlate in several places (e.g., frames 9–10 or 49–
50). This gives rise to the idea of using some kind
of a penalty factor to adaptively modify the tune-
following procedure in such cases.

Fig. 8. Query: Old McDonald (dark) and a non-matching
template: Q3095F.pv (light).

1Which typically means that a small fraction of the notes will
be shifted by one semitone.

5.1. Adaptive tune following

Two practical issues must be solved – how to mea-
sure the correspondence in note changes between the
compared melodies and, secondly – how to use this in-
formation. As for the first problem, the note changes
in the template are analyzed and for every frame i in
which the pitch (MIDI note number) changes, the fol-
lowing coefficient is computed:

ηi =

i+k−1
∑

j=i

qj −
i−1
∑

j=i−k

qj , (9)

where the parameter k has been set to 3.
Naturally, the coefficient ηi is expected to be posi-

tive for the lower-upper note sequence in the template
and negative in the other case. The second problem –
what to do if these expectations are not met – is solved
by adaptively modifying the α parameter of the tune
follower. Each time a note transition in the template is
not accompanied by an appropriate one in the query,
i.e., when:

ηi(ti − ti−1) < 0, (10)

the α parameter is decreased by a predefined step
∆down, which will effectively make the distance be-
tween the following parts of the melodies greater. In
the opposite case, when the note transitions corre-
spond to each other, the α parameter is increased by
∆up.
In order to determine the proper values of the ∆up

and ∆down parameters, a series of tests has been per-
formed on the database composed of those 493+147 =
640 queries for which the tune follower had made the
difference in the best-hit score. On the basis of the re-
sults, presented in Fig. 9, the final values: ∆up = 0.001
and ∆down = 0.02 have been taken.

Fig. 9. Influence of the parameters of the adaptive tune
follower on the best hit score.

The disproportion in the order of magnitude of
those values may be explained quite easily. It seems
to result from the fact that the condition (10) holds
true infrequently even in non-matching templates, so
its relative significance should be greater.
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On the other hand, if all note changes match in
the compared melodies, the α parameter is increased
by ∆up with each note transition. For this reason the
initial value of α should be set somewhat lower as com-
pared to the previous experiments (Sec. 4). The tests
indicated the best initial α = 0.03 and this value has
been used to generate the results presented in Fig. 9.

5.2. Subsequence matching

The detailed inspection of the results presented in
Sec. 4 revealed also that some templates from the Es-
sen collection (e.g., the one shown in Fig. 8) appeared
quite often as the best match for different queries.
The apparent reason was their short length, leading
to a situation when only the initial part of the query
was matched. The database construction (Jang, 2009)
allows to assume that the queries are basically shorter
than the templates, so they should be matched as
a whole.
In the previous experiments (Sec. 4) both asymme-

tries, i.e., a whole query vs beginning of the template
(Fig. 10a) and a whole template vs beginning of the
query (Fig. 10b), were allowed. Technically, the lowest
cost value has been searched for along both the top and
right sides2 of the DTW cost matrix g[i, j] (Eq. (4)).
In the following section the final similarity is computed
by analysis of the top row only, which effectively means
that the whole query is always matched.

a) b)

Fig. 10. DTW cost matrices (with optimal paths marked
white): a) whole query vs beginning of the template;

b) whole template vs beginning of the query.

5.3. Results and discussion

After having established the parameter values and
decided on the whole-query approach, we have re-
peated the tests on the same database (Subsec. 4.1)
(Table 3).

Table 3. Total number of recognized queries
for the adaptive tune follower.

Top Ten Score Best Hit Score δ

3507 (79.15%) 2936 (66.26%) 0.50899

2Note that this is a straightforward extension to the case of
equal-length sequences where only the value of g[I, J ] is consid-
ered.

Although rather moderate improvement (4%) may
be seen in the top ten recognition score, the best
hit score has increased by over 10% (cf. Table 1).
This means that the proposed refinement of the tune-
following procedure successfully helps to resolve ambi-
guities within the list of the closest matches. However,
only in a relatively small fraction of cases it does help
the correct template get to the list, if it had not been
there.
The reason for this may lie in the database con-

struction, which contains many very similar melodies
or even duplicates3 in its “noise templates” part
(ESAC-DATA, 2009). It may therefore happen that the
top ten list for a query is populated by several variants
of the same, wrong template, so that the correct one
stays aside.
It is worth to note that the proposed adaptive im-

provement is partially based on the note-based philos-
ophy. Hence, it may be seen as a quite significant mod-
ification of the initial DTW approach, going towards
hybrid solutions to the QBSH problem.
In general, the proposed tune follower and its adap-

tive variant enable to efficiently refine the results with-
out computationally complex methods such as repeat-
ing the DTW for all possible transpositions (Yu et al.,
2008). It should be noted that they can be used in-
dependently from efficient indexing techniques (Zhu,
Shasha, 2003; Keogh, 2002) or note-based approxi-
mate algorithms (Wang et al., 2008) to increase the
speed and reliability of a QBSH-based search engine.

6. Conclusion and future works

In this work a modification of the Dynamic Time
Warping procedure have been proposed to enhance the
results of melody matching in the Query by Hum-
ming problem. The modification is inspired by the
human ability to match melodies irrespective of the
key and pitch inaccuracies. It may be stated that
the proposed tune-following procedure plays a simi-
lar role for pitch alignment as the DTW does for the
case of time alignment and thus it may be seen as
a frequency-domain complement to DTW. Similarly,
while the DTW decreases the matching cost with re-
spect to the Euclidean distance, the tune-following
procedure decreases it even more, with respect to the
DTW alone. Although the distance is lower both for
the matching and non-matching templates, the pre-
sented experimental results clearly demonstrated the
superiority of the proposed solution in terms of recog-
nition rate and separation between the matching and
non-matching templates.
Additional, significant improvement has been

achieved by adaptive modification of the tuning speed

3It should be noted that in the MIREX competition a cleaned
version of the Essen Database, reduced by over a half of the
original size, is used.
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on the basis of note events in a template. The pro-
posed enhancement opens a possibility to incorporate
the note-based information into the melody matching
process without explicit segmentation and conversion
into a symbolic representation.
The concept of tune-following will be further in-

vestigated in future works. Apart from the issue of
parameter settings and possible modifications of the
presented procedure itself, it should be noted that it
is currently being applied to the already time-aligned
sequences, i.e., after the DTW algorithm. It is how-
ever possible to integrate the two and modify the pitch
adaptively during the dynamic programming optimiza-
tion of the path cost. This would enable to obtain a dif-
ferent warping function in some cases and, possibly,
to match more imprecisely sung queries. However, it
seems unclear if this would lead to the overall recog-
nition rate improvement – further research is hence
necessary here.
The generalization of the proposed method to sub-

sequence matching problem in which a query does
not necessarily start from the beginning of a template
would also be of great practical importance. It would
eventually enable to construct a flexible hybrid system
incorporating several methods, both direct and note-
based, that would benefit from the tune-following al-
gorithm to offer enhanced results in a shorter time.

References

1. Adams N., Marquez D., Wakefield G. (2005), It-
erative deepening for melody alignment and retrieval,
[in:] ISMIR 2005, 6th Int. Conf. on Music Information
Retrieval, pp. 199–206.

2. Bisesi E., Parncutt R. (2013), An accent-based ap-
proach to automatic rendering of piano performance:
Preliminary auditory evaluation, Archives of Acoustics,
36, 2, 283–296.

3. Boersma P. (1993), Accurate short-term analysis of
the fundamental frequency and the harmonics-to-noise
ratio of a sampled sound, Institute of Phonetic Sci-
ences, University of Amsterdam, Proceedings, 17, 97–
110.

4. Dziubiński M., Kostek B. (2005), Octave error im-
mune and instantaneous pitch detection algorithm,
Journal of New Music Research, 34, 3, 273–292.

5. ESAC-DATA (2009), http://www.esac-data.org.
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