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The non linearities in the motor of an electrodynamic loudspeaker are still a dis-
cussed topic. This paper studies the influence of the force factor variation with the
coil displacement on the harmonic and inter-modulation distortions. The real varia-
tion is described at least by a linear and a quadratic term. The effect of each term is
studied separately, as they don’t influence the same kind of frequencies, harmonics
or inter-modulation. Both terms considered together result in enhanced effects. The
dissymmetry of the Bl variation with regard to the coil centered position has also
peculiar effects. This paper presents the method developed to calculate the power of
each harmonic and inter-modulation frequency. This allows to compare the obtained
values and thus the induced nonlinearities.
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1. Introduction

When describing the functionning of an electrodynamic loudspeaker, the ref-
erence model has been established by Thiele (1978) and Small (1972). This
model describes the loudspeaker as a linear system. However, various measure-
ments and studies have proven the loudspeaker to be a non linear system (Small,
1984; Klippel, 2006; Vanderkooy, 1989). Indeed, the parameters of the model
are in fact time varying variables (Ravaud et al., 2009). The aim of this paper is
to describe the non linear behavior of the electrodynamic loudspeakers. Among
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the various methods available to do this, the chosen approach is the two-tone
stimulus one (Klippel, 2001; Czerwinski et al., 2001). Indeed, this method is
fairly representative of the perceived acoustical quality.
Furthermore, one of the effects of a non linear behavior is the generation of

new spectral components. They can be harmonic when they are integer multiples
of the applied fundamentals. But they can be non harmonic when they result of
the inter-modulation of two frequencies. Then, they are the sums and differences
of the fundamentals and their harmonics. The most audible defects are related
to the inter-modulation distortion (Voishvillo et al., 2004).
Moreover, the most important requirement for loudspeakers is a high trans-

duction fidelity, which corresponds to a transduction as linear as possible. There-
fore, harmonic and inter-modulation frequencies must be reduced. Consequently,
the first step is to analyze carefully the distortion causes (Dobrucki, 1994; Gan-
der, 1986; Merit et al., 2009; Ravaud et al., 2010).

2. Modelling and method

2.1. Linear model of the electrodynamic loudspeaker

The electrodynamic loudspeaker can be represented by a lumped parameter
model using electromechanical parameters that define the low frequency perfor-
mances. This means that the model describes the behavior at frequencies below
the first deformation mode of the membrane.
According to this model, two coupled differential equations describe the elec-

trodynamic loudspeaker. One of them is the electrical differential equation given
by:

u(t) = Rei(t) + Le
di
dt

+Bl
dx
dt

. (1)

The other one is the mechanical differential equation given by:

Bli(t) = Mms
d2x
dt2

+Rms
dx
dt

+Kmsx(t). (2)

The parameters used in Eqs. (1) and (2) are the following:
i(t) – coil current [A],
u(t) – input supply voltage [V],
x(t) – coil position [m],
Bl – force factor [T·m],

Rms – mechanical damping parameter and drag force [N·s·m−1],
Kms – stiffness [N·m−1],
Mms – coil equivalent mass [kg],
Re – coil electrical resistance [Ω],
Le – coil inductance [H].
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The differential equation of the moving coil displacement is deducted from
the previous equations (Eqs. (1) and (2)) and is expressed as follows:

u(t) =
MmsLe

Bl

d3x
dt3

+
MmsRe +Rms

Bl

d2x
dt2

+
RmsRe +KmsLe +Bl2

Bl

dx
dt

+
KmsRe

Bl
x(t). (3)

This equation allows the calculation of the coil displacement and then the
acceleration is deducted. Moreover, the acoustic pressure is proportionnal to the
acceleration,

a =
d2x
dt2

.

For the numerical values of the parameters of the considered loudspeaker, the
impedance and the acceleration are evaluated versus the frequency (Figs. 1
and 2).

Fig. 1. Impedance of the loudspeaker versus the frequency.

Fig. 2. Acceleration of the loudspeaker moving part versus the frequency
for a 10 V Rms input signal.
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2.2. Nonlinearities of the electrodynamic loudspeaker

The effects which are generated by a nonlinear system are the following:� Generation of new spectral components in the output signal which are
identified as harmonic or inter-modulation components.� Nonlinear relationship between the input and output amplitudes of funda-
mental and distortion components (nonlinear amplitude compression).� Generation of a non zero mean value of the coil displacement.

The sources of these non linear effects in an electrodynamic loudspeaker are
searched for both experimentally and mathematically. Measurement results show
that the motor nonlinearities (and among them the force factor variation with
the coil position) are responsible for the largest effects. Therefore, the remainder
of this paper deals with the study and influence of the force factor.

2.3. Method Description

As said, the force factor, Bl, varies with the coil displacement.
So, the equation of the coil displacement (Eq. (3)) is considered as a nonlinear

third order differential equation when the expressions of the force factor variation
with the displacement are introduced in the equation. Then, getting analytical
solutions for a nonlinear third order differential equation is rather complicated.
Therefore, a numerical method is applied to obtain the solution.
A two-tone stimulus,

u(t) = V1

√
2 sin(2πf1t) + V2

√
2 sin(2πf2t),

excites the nonlinear system: the input signal is constituted of two fundamental
frequencies f1 and f2.
Then, the solution of the nonlinear differential equation is evaluated numer-

ically and the result is sampled. Furthermore, a fitting is carried out: the fitting
function is written as a sum of harmonics and inter-modulation components of
both fundamental frequencies. The amplitude of each frequency component is
adjusted by using a mean square method to find the best correspondence be-
tween the numerical solution of the differential equation and the evaluation with
the fitting function.
When the force factor varies with the coil displacement, harmonic and inter-

modulation frequencies are observed in the output. The presented method allows
the calculation of the acceleration level of each fundamental and distortion spec-
tral components.
If the loudspeaker is supposed linear, the values of the electromechanical

parameters of the actual loudspeaker are the following:

Bl = 10 [T·m], Rms = 1 [N·s·m−1],

Kms = 10000 [N·m−1], Mms = 0.01 [kg],

Re = 8 [Ω], Le = 0.001 [H].
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The input u(t) = 10
√
2 sin(2π300t)+10

√
2 sin(2π2000t) is applied: this corre-

sponds to 10 V Rms at 300 Hz superposed to 10 V Rms at 2 kHz. For the linear
functionning, which means that the force factor is a constant, the coil displace-
ment is respectively 0.385 mm Rms at 300 Hz and 0.0043 mm Rms at 2 kHz. Such
an input signal produces two pure sound components, a(300 Hz) = 1350 m/s2

and a(2 kHz) = 700 m/s2 (Fig. 2), and no harmonic nor inter-modulation com-
ponent. The spectrum of the corresponding simulation is shown in Fig. 3.

Fig. 3. Output spectrum of the linear loudspeaker excited by a two-tone stimulus u(t) =
10

√
2 sin(2π300t) + 10

√
2s ∈ (2π2000t). The zero dB level corresponds to 1350 m/s2. Light

gray: First Fundamental, Gray: Second Fundamental.

The characterization of the nonlinear behavior consists in comparing the
simulation results of various cases of the force factor variation with the ones
obtained in the linear case.

3. The force factor

Indeed, the force factor Bl(x) describes the coupling between the mechan-
ical and electrical sides of the lumped-parameter model of an electrodynamic
transducer.

Bl(x) is theoretically a constant value, but in reality it changes with the
displacement x. In fact, its variation can be described by a second order equation
(Eq. (4)) with the coefficients α for the first order term and β for the second
order one.

Bl(x) = Bl0(1 + αx(t)− βx2(t)), (4)

where Bl0 is the force factor value of the ideal linear loudspeaker.
Then, different non linear behaviors are described by giving various values to

these coefficients. The influence of each coefficient will be studied separately in
the following sections in order to clearly determine their role. But it has to be kept
in mind that the real behavior is the combination of both influences. Moreover, it
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must be noted here that the force factor itself shouldn’t be described as “linear”
or “non linear”. Indeed, a constant force factor induces a linear functionning
of the loudspeaker (leaving other nonlinearity sources aside) whereas a varying
force factor induces a nonlinear functionning.
As said previously, the effects of the non linearity are characterized by study-

ing the loudspeaker output when excited by a two-tone signal. Choosing the first
frequency f1 = 300 Hz and the second tone f2 = 2 kHz, all of the distortion
components are nicely spaced and are easily interpreted.
Indeed, the two fundamental tones are easily identified by their maximal am-

plitude. The first tone f1 represents the low frequency producing the substantial
voice coil displacement and the second tone f2 represents a voice or any other
musical instrument. However, the difference inter-modulation tones at f2 − if1
and the summed inter-modulation tones f2 + if1 with i = 1, 2, 3, 4, 5 are found
equally spaced around the second tone f2. It is interesting to observe the second,
third, fourth and fifth order components.

3.1. Effects of the first order coefficient α

Then the force factor is described by:

Blα(x) = Bl0(1 + αx(t)). (5)

The force factor has a 10% variation with the coil displacement, for a dis-
placement in the interval [−0.5 mm, 0.5 mm].
For α = 200, the force factor variation is shown in Fig. 4. In a classical elec-

trodynamic loudspeaker the force factor increases when the coil moves towards
the motor inside (x > 0).

Fig. 4. Variation of the force factor Bl versus the coil displacement x, described by the first
order coefficient in Blα(x) = Bl0(1 + αx(t)) = 10(1 + 200x).

The calculation of the acceleration, a(t), contains three terms: the first term is
the acceleration at the fundamental frequencies, afond(t), the second is the accel-
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eration at the harmonic frequencies, aharm(t), and the last one is the acceleration
at the inter-modulation frequencies, aint(t).
For α = 200, f1 = 300 Hz, f2 = 2 kHz and V1 = V2 = 10 V Rms, the

acceleration frequency spectrum is shown in Fig. 5.

Fig. 5. Spectrum of the acceleration resulting from a two-tone stimulus, with Blα(x) =
Bl0(1 +αx(t)) = 10(1 + 200x). Light gray: First fundamental and its harmonics. Gray: Second

fundamental and its harmonics. Black: Intermodulation components.

3.1.1. Mean value variation

If the force factor variation is asymmetrical around the rest position then
a position offset appears, Xdc. As the force factor is higher when the moving
part goes into the motor (x > 0), the offset position corresponds to the moving
part being pushed out of the motor (Fig. 6) (Dobrucki, 1988).

Fig. 6. Displacement for a two-tone stimulus of 10 V Rms each. The offset of the voice-coil
displacement is highlighted by the line at Xdc = −0.04 mm.
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This offset doesn’t correspond to an acoustical emission but it generates a pre-
constraint on the suspension which won’t work in a symmetrical way. As a con-
sequence, this asymmetrical functionning will create distortions.
The value of Xdc for a nonlinearity due to α = 200 is around 0.04 mm. In

this case, the force factor, Bl, varies from 9 to 11 for a displacement, x, from
−0.5 mm to 0.5 mm (Fig. 4).

3.1.2. Amplitude of the fundamentals

When the multi-tone input u(t) = V
√
2 sin(2πf1t) + V

√
2 sin(2πf2t) is ap-

plied to the system, with both inputs of same level 10 V Rms then the output
fundamental amplitudes are the same as in the linear case.

3.1.3. Harmonics

As shown in Fig. 5, the harmonic levels of first and second fundamentals
decrease with the increasing harmonic rank. However, the amplitudes of the
harmonics of the first fundamental are greater than these of the second one.

3.1.4. Inter-modulation

Figure 5 shows that the inter-modulation components are quite significant.
Indeed, they have the same level as the harmonics of the lower fundamental
frequency, which is only 30 dB below the fundamental frequency level. Moreover,
they contribute dramatically to the sound quality deterioration.
The two highest inter-modulation components are

aint(f2 − f1) and aint(f2 + f1).

3.2. Variation due to second order coefficient β

The force factor is modelled by Blβ(x) = Bl0(1 − βx2(t)) and is shown in
Fig. 7 for β = 4 · 105.

Fig. 7. Variation of the force factor Blβ(x) = Bl0(1− βx2) = 10(1 − 4 · 105x2).
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The force factor variation is symmetrical about the rest position.
The force factor has a 10% variation with the coil displacement, for a dis-

placement between −0.5 mm and 0.5 mm.
For f1 = 300 Hz, f2 = 2 kHz and V1 = V2 = 10 V Rms, the frequency

spectrum is shown in Fig. 8.

Fig. 8. Spectrum of the acceleration resulting from a two-tone stimulus, with Blβ(x) = Bl0(1−
βx2(t)) = 10(1 − 4 · 105x2). Light gray: First fundamental and its harmonics. Gray: Second

fundamental and its harmonics. Black: Intermodulation components.

3.2.1. No mean value

The force factor variation due to β has a symmetrical shape. Therefore, the
movement remains centred about the rest position.

3.2.2. Amplitude of the fundamentals

In this case, the output fundamental amplitudes decrease slightly (1%).

3.2.3. Harmonics

The harmonic components are the odd multiples of the lower fundamental:
3f1, 5f1 (Fig. 8).

3.2.4. Inter-modulation

The components aint(f2−2f1) and aint(f2+2f1) are the most significant and
have the same level as the third harmonic of the lower frequency, which is 40 dB
below the fundamental level.
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3.3. Variation due to first and second order coefficients

The actual force factor is modelled by Blα,β(x) = Bl0(1 + αx(t) − βx2(t))
with α = 200 and β = 4 · 105.
The force factor has a 20% variation with the coil displacement for a dis-

placement between −0.5 mm and 0.5 mm (Fig. 9).

Fig. 9. Variation of the force factor Blα,β(x) = Bl0(1+αx(t)−βx2(t)) = 10(1+200x−4·105x2)).

For f1 = 300 Hz, f2 = 2 kHz and V1 = V2 = 10 V Rms, the spectrum is
shown in Fig. 10.
This variation range of Bl is characteristic of a loudspeaker of average quality.

Fig. 10. Spectrum of the acceleration resulting from a two-tone stimulus, with Blα,β(x) =
Bl0(1 + αx(t) − βx2(t)) = 10(1 + 200x − 4 · 105x2). Light gray: First fundamental and its
harmonics. Gray: Second fundamental and its harmonics. Black: Intermodulation components.
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Figure 10 shows the spectrum of the output signal: both effects peviously
described are enhanced. An offset is observed for the moving part position: its
value is the same as the one observed in the case with α alone.

4. Distorsion analysis

This section presents the values of the total harmonic distortion coefficient,
THD (Eq. (6)), as it is usually done to characterize the non linearity effects.
The values are calculated for the three cases of non linearities of the force factor
studied is this paper.

THD =

√∑5
i=2 a

2
harm(if1)

afond(f1)
, (6)

IMD =

√∑5
i=1(a

2
int(f2 − if1) + a2int(f2 + if1))

afond(f1)
. (7)

As a result, the distortion caused by the linear variation, α, of the force factor
is twice as high as the distortion caused by the quadratic variation, β. More-
over, when both variations are simultaneously taken into account, the resulting
distortion is far higher than the sum of each distortion considered separately
(Table 1). This statement is valid when the harmonic distortion alone is taken
into account (THD) but also when the inter-modulation distortion is taken into
account (IMD).

Table 1. Most sigificant spectral components and distortion coefficients
for different non linearity models of the force factor.

Model of nonlinearity
a(f2 − f1) a(f2 − 2f1) THD IMD

[dB] [dB] [%] [%]

Blβ(x) negligible −40 1.4 1.2

Blα(x) −35 −74 3.1 2.2

Blα,β(x) −27 −40 7.1 5.3

It is emphazised that from the acoustic quality point of view, the most im-
portant effect is the appearing of inter-modulation components in the frequency
spectrum. Indeed, when the linear variation, α, is considered, the most signif-
icant component corresponds to the difference of the fundamental frequencies,
f2 − f1. For a 10% variation of the force factor the corresponding acceleration,
and thus the acoustical level, is only 35 dB lower than the level of the fundamen-
tal frequency. Moreover, when the force factor varies quadratically, β, the most
significant component corresponds to the frequency f2 − 2f1 and is 40 dB lower
than the fundamental frequency level.
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Furthermore, when both variations are considered, the higher acoustical level
corresponds to the frequency f2 − f1 and is 27 dB lower than the fundamental
frequency level.

5. Conclusion

This paper studies the influence of the force factor variations with the coil
displacement. These variations are modelled by a second order polynomial. A
method is presented to evaluate the frequency spectrum of the output signal.
The study is carried out for each variation separately, linear and quadratic, and
for both of them simultaneously. As a result, a position offset of the moving
part position is pointed out in the case of a first order variation of the force
factor. Moreover, harmonic frequencies of all orders appear as well as sum and
difference inter-modulation frequencies of all orders. The second order varia-
tion alone produces only odd-order harmonic frequencies and sum and difference
inter-modulation frequencies of f2 and even multiples of f1. Both types of vari-
ation simultaneously, which corresponds to the real case, enhance the described
effects.
Eventually, the most damaging effect on the acoustical quality is caused by

the first order variation, far above the quadratic variation.

References

1. Czerwinski E., Voishvillo A., Alexandrov S., Terekhov A. (2001),Multitone testing
of sound system components-some results and conclusion, J. Audio Eng. Soc., 49, 11, 1011–
1048.

2. Dobrucki A. (1988), Constant component of the loudspeaker diaphragm displacement
caused by nonlinearities, [in:] 84th Convention, Paris, France, number 2577, Audio Eng.
Soc.

3. Dobrucki A. (1994), Nontypical effects in an electrodynamic loudspeaker with a nonho-
mogeneous magnetic field in the air gap and nonlinear suspension, J. Audio Eng. Soc., 42,
565–576.

4. Gander M.R. (1986), Dynamic linearity and power compression in moving-coil loud-
speaker, J. Audio Eng. Soc., 627–646.

5. Klippel W. (2001), Speaker auralisation subjective evaluation of nonlinear distortion, [in:]
110th AES Convention, Amesterdam, The Netherlands.

6. Klippel W. (2006), Loudspeaker nonlinearities – cause, parameters, symptoms, J. Audio
Eng. Soc., 54, 907–939.

7. Merit B., Lemarquand V., Lemarquand G., Dobrucki A. (2009), Motor nonlinear-
ities in electrodynamic loudspeakers: modelling and measurement, Archives of Acoustics,
34, 4, 407–418.



Distortion in Electrodynamic Loudspeakers Caused by Force Factor Variations 885

8. Ravaud R., Lemarquand G., Lemarquand V., Roussel T. (2010), Ranking of the
nonlinearities of electrodynamic loudspeaker, Archives of Acoustics, 35, 1, 49–66.

9. Ravaud R., Lemarquand G., Roussel T. (2009), Time-varying non linear modeling of
electrodynamic loudspeakers, Applied Acoustics, 70, 3, 450–458.

10. Small R.H. (1972), Direct radiator loudspeaker system analysis, J. Audio Eng. Soc., 20,
383–395.

11. Small R.H. (1984), Loudspeaker large-signal limitations, Number 2102, AES Australian
Regional Convention.

12. Thiele A.N. (1978), Loudspeakers in vented boxes: Part 1 and 2, [in:] Loudspeakers, vol. 1,
Audio Eng. Soc., New York.

13. Vanderkooy J. (1989), A model of loudspeaker driver impedance incorporating eddy cur-
rents in the pole structure, J. Audio Eng. Soc., 37, 119–128.

14. Voishvillo A., Terekhov A., Czerwinski E., Alexandrov S. (2004), Graphing, in-
terpretation, and comparison of results of loudspeaker nonlinear distortion measurements,
J. Audio Eng. Soc., 52, 4, 332–357.




