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Comb transducers are applied in ultrasonic testing for generation of Rayleigh or
Lamb waves by scattering of the incident bulk waves onto surface waves at the pe-
riodic comb-substrate interface. Hence the transduction efficiency, although rarely
discussed in literature, is an important factor for applications determining the qual-
ity of the measured ultrasonic signals. This paper presents the full-wave theory of
comb transducers concluded by evaluation of their efficiency for a couple of examples
of standard and certain novel configurations.
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1. Introduction

Comb transducers (Victorov, 1967) are applied in ultrasonic testing primar-
ily for generation of strong Rayleigh (Hurley, 1999) or Lamb (Quarry, Rose,
2002) waves by transformation of the incident bulk waves onto surface waves that
takes place at the periodic comb-substrate contact. Hence the transduction effi-
ciency, although rarely discussed in literature (Danicki, 2000), is an important
factor for application, determining the quality of the measured ultrasonic signals.
A typical comb transducer is an acoustic buffer with periodic teeth carved

on its surface and applied to the flat surface of a tested substrate. The sliding
comb-substrate contact does not mean that the mechanical coupling between
them is weak. The considered system is a quite complex, mechanical waveguide
for interface waves (Danicki, 2010) which propagate under the transducer until
they are converted to surface waves on the free substrate surface outside the
comb.
A novel comb-like transducer is proposed here, with periodic sliding spacers

between acoustic buffer and the substrate instead of teeth etched in the buffer.
This idea is investigated for spacers made of different materials, particularly
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plastic spacers which can better fit to the rough substrate surface in certain
applications.
The considered wave phenomena includes the Bragg scattering of interface

waves which evolves in periodic system of teeth or spacers. Assuming normal
incidence of bulk waves propagating in the buffer onto its contact plane with
the substrate, the generated interface wave-field comprises the 0th and ±1 Bloch
components, the latter two carrying acoustic power along the buffer-substrate
interface (to be eventually converted into SAWs outside the transducer); the
former component is responsible for specular reflection and transmission of the
incident wave at the interface. The interface wave under consideration is a com-
plex leaky wave losing its power to the semi-infinite media, the buffer and the
substrate, caused by 0th Bloch order component of interface stress.
The detailed analysis of the considered boundary-value problem for the dis-

cussed interface waves is presented in earlier papers (Danicki, 2008; Besserer,
Malishevsky, 2004), including impedance of teeth treated as a piece of elastic
plate with its stress-free side surfaces (Fig. 1), and impedance of semi-infinite
elastic substrate or buffer (without teeth). The next section presents these re-
sults briefly. The following sections present interface waves in several transducer
configurations and finally, the transducer generation and detection efficiencies of
surface waves in the substrate.

Fig. 1. Comb transducer with periodic teeth or sliding spacers inserted between the buffer and
the substrate. Normal incident longitudinal wave-beam of aperture width A excites interface
waves in the system, which transform into Rayleigh waves (SAW) at the comb edges in the

scattering/reflection phenomenon, depicted on the right-hand side drawing.

2. The boundary-value problem

2.1. Surface mechanical fields

The harmonic wave-fields exp(iωt− ipx) are considered at the substrate sur-
face and the buffer above the teeth level (Fig. 1), of height h; ω and p are
temporal and spatial frequencies. The displacement vector u and stress tensor t
(without y-components) will be marked by superscripts b or s, correspondingly
for the buffer and the substrate surface. The corresponding fields on the up-
per and bottom ends of teeth are U and T, with superscripts u and b, respec-
tively.
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In the substrate spanning from z = 0 down to −∞, the normal surface
traction t33 (denoted shortly by ts (the other traction component t31 = 0 due
to the assumed sliding contact with comb transducer) applied to the substrate
surface, causes the normal surface displacement us = u3 according to (Danicki,
2010):

us =
i

µ
gst

s, gs(p) =
qtk

2
t

(2p2 − k2t )
2 + 4p2qlqt

, (1)

where ql,t =
√

k2l,t − p2 = −i
√

p2 − k2l,t, and kl,t are wave-numbers of longitudinal

and transversal waves in an elastic body; µ is its Lamé constant.
A free Rayleigh wave (with wave-number kR) in the substrate transports

acoustic power Π = |a|2/2 along the surface, where a is the wave amplitude
depending on the surface displacement us = u3:

|a|2 = |ġs/2|µsω|us|2, ġ = dg−1
s /dr |r=kR . (2)

This dependence can be evaluated using the analysis presented in (Danicki,
2006).
In the acoustic buffer, spanning from the teeth basis to infinity, the normal

incident wave is characterized by particle displacement uI3 and traction t
I
33 = tI3,

satisfying Eq. (1) for corresponding µb, kbl,t of the buffer. The total displacement
and traction at the buffer surface: ub on tb, satisfy equations (Danicki, 2010):

[
ub1

ub3

]
= −iµ−1

[
g1 g2

−g2 g3

][
tb1

tb3

]
+ 2

[
uI1

uI3

]
,

[
g1 g2

−g2 g3

]
=

[
qlk

2
t −p(q2t − p2 − 2qlqt)

p(q2t − p2 − 2qlqt) qtk
2
t

]

(2p2 − k2t )
2 + 4p2qlqt

,

(3)

where uI1 can be neglected for close to normal incidence assumed here; ql,t are
evaluated analogously to these in Eq. (1), using corresponding µb, kbl,t.

2.2. Wave-fields at the teeth ends

A tooth of width w and height h (Fig. 1) has its side surfaces stress-free.
Its end surfaces at z = ±h/2 respond with displacements Ui(x)|z=±h/2 to the
loading stress T3j(x)|z=±h/2 = Tj (i, j = 1, 3; capital letters are used for wave-
fields in the teeth). These surface wave-fields are expanded in natural Fourier
series over the domain (−w/2, w/2), that is (the column matrix F is truncated
to proper dimension determining numerical accuracy):

F (x) = diag{exp(−inWx)}F, W = 2π/w, n ∈ [−N,N ]. (4)
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The dependence of Ui on Tj expanded correspondingly in the harmonic series
results from the intrinsic dynamics of the strip. The modal expansion analysis
of the wave-field in teeth yields the following dependence of interest:




Uu
1

Uu
3

Ub
3


 =

−i

µ



A B a b

C D c d

c −d C −D







Tu
1

Tu
3

Tb
3


 , (5)

including its symmetry properties (for isotropic teeth), where the matrix compo-
nents are evaluated numerically using the method presented in (Danicki, 2010).
Note that we neglected T b

1 (x) = 0 at the sliding comb-substrate contact, hence
U b
1(x) is not included in the above equation. The included matrix vectors Ui, T1

are the components of natural Fourier series (with expansion domain over the
strip width w) of the corresponding wave-field.
The above matrix components present the dependence of particular compo-

nents of displacements on particular components of traction. For example, A is
involved in relation of harmonic components of displacement u1 at the upper
side of the strip on the traction T31 applied to the same strip side, while the
matrix c yields the displacement u3 on the other side of strip resulting from
this traction. Analogously other components, with capital letters (A, B, C, D)
concerning displacements and stresses on the same strip ends, while the normal
letters (a, b, c, d) – on the other strip sides. Generally, these particular matrices,
when multiplied by ω/µ, can be called the particular harmonic trans-impedances
of elastic strips.

2.3. The scattering problem

Due to the periodicity of the system of teeth, the wave-fields at their contact
planes with acoustic buffer or the substrate is searched in the form of Bloch
expansion:

f(x) =
M∑

k=−M

f (k)e−i(r+kK)x = diag{e−i(r+kK)x}f , (6)

where Λ is the period of teeth, K = 2π/Λ, and r ∈ (−K/2,K/2) is the reduced
wave-number belonging to the first Brillouin zone; it is the x-projection of the
incident wave on the contact plane: exp(−ipx), p = r ≈ 0. The data vector
describing the incident wave by its Bloch expansion uI(p) has only one nonzero
component uI in M+1 row of the corresponding matrix.
Similar form of Bloch expansion is applied for fields at the substrate surface

us3, t
s
3, and the buffer surface u

b
i , t

b
j, i, j = 1, 3. Note that their Bloch components,

having the wave-number p = r + nK, are governed by Eqs. (1) and (3):

ub
k = gb(r + kK)tbk + 2uI , usk = −gs(r + kK)tsk. (7)
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In the discussed problem, the particle displacements continuity is required at
the contact domains of teeth with the substrate or buffer, x ∈ (−w/2, w/2) + lΛ
(l – arbitrary integer). The surface traction on the teeth ends must be equal
to that on the substrate and buffer. Note however that the traction between
teeth vanish. Hence, using the field expansion of Eqs. (4) and (6), the boundary
conditions are:

diag{e−inWx}UTu,b = diag{e−i(r+kK)x}uTu,b, for x ∈ (−w/2, w/2) + lΛ,

diag{e−i(r+kK)x}tTu,b = diag{e−inWx}TTu,b, for
{

x ∈ (−w/2, w/2) + lΛ,
otherwise zero.

(8)

Applying Fourier integration over x ∈ (−w/2, w/2), yields (Danicki, 2008):

U
u,b
i = Vu

b,s
i , t

b,s
j = βVTTu,b

j ,

V =

[
sin{(r + kK)w/2 − nπ}

(r + kK)w/2 − nπ

]
, β = K/W, βVTV ≈ I,

(9)

where I is a unitary matrix of corresponding dimension. The above, Eqs. (7)
and (3), constitute the scattering problem under consideration (gs=βVgsV

T):

ATu
1 +BTu

3 + bTb
3 = ob(g1T

u
1 + g2T

u
3 + 2VuI

1),

CTu
1 +DTu

3 + dTb
3 = ob(−g2T

u
1 + g3T

u
3 + 2VuI

3),

cTu
1 − dTu

3 −DTb
3 = os(−gsT

b
3), gi = βVgiV

T,

(10)

where ob = µt/µb, os = µt/µs; µt, µb and µs are the Lamé constants of teeth,
buffer and substrate, respectively, and gi characterize the buffer, Eqs. (3).

3. Interface wave-modes

3.1. Propagation

The nontrivial solution to Eqs. (10) for uI = 0 at certain r = ±ro is the
interface wave propagating freely at the comb-substrate interface. We are inter-
ested most in the solution for us which can be obtained from Tb

3 by subsequent
applications of Eqs. (9) and (1). The most important components of the Bloch
expansion us are these associated with wave-numbers ro ± K which are close
to ±kR, hence they transport the acoustic power along the substrate surface as
presented in Eq. (2). The 0th Bloch component with wave-number ro = rR+ irI
is responsible for the interface wave leakage into bulk waves in the substrate and
buffer (what causes ro to be complex-valued; we apply rI > 0 by definition).
Other Bloch components represent localized vibrations at the teeth edges which
are not discussed here.
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It is convenient to introduce the coefficients:

γ±1 = u(±1)/u(0), γ = u(+1)/u(−1), (11)

where u(±1,0) = [us](±1,0) are Bloch components corresponding to the wave-
numbers ro±K, ro; they are called the forward and backward waves, respectively.
The coefficient γ = γ1/γ−1 is called the standing wave coefficient for the wave
propagating to the left and decaying at x → −∞ when rI = Im{ro} > 0, what is
the case of the following discussion (there is also a solution at −ro for the wave
propagating to the right).
It is evident from Eq. (2) that the −1st Bloch component transports acoustic

power to the left (because ro − K < 0) and the +1st component transports
the power to the right. Only certain imbalance of these powers caused by the
difference between ro ± K and by |γ| < 1 makes the net power transportation
to the left by this complex wave in the periodic system of teeth. The forward
component of interface wave carries the power in the same direction by definition.
Accordingly, for the right propagating interface waves with wave-number −ro,
|u(−1)/u(+1)| > 1.
In some cases however, particularly for asymmetric systems including combs,

the net power in the substrate (analyzed in this paper) and the net power in
the buffer can be transported in different directions. When the net power in the
buffer is larger than that in the substrate, it may result in |γ| > 1 in spite of
Im{ro} > 0. Deeper discussion of this wave phenomena (Luisell, 1960) is far
beyond the scope of this paper.
In periodic systems, ro takes complex value in stopband domain of wave-

number K (say between K1 and K2, which are called the stopband edges) due to
the Bragg reflections. This phenomenon is also observed for the discussed leaky
interface waves where the wave-number behaves like:

r2o ≈ (K −K1)(K −K2) + imaginary part caused by leakage; (12)

|γ| = 1 in the stopband results from the energy conservation law in ideal case
without leakage, because the ideal standing wave does not transport power along
the substrate surface. In this paper we consider combs with teeth period close
to the surface wavelength: K ≈ kR resides in or close to the domain (K1,K2),
hence ro ≈ 0.

3.2. Generation

The above discussion helps us to evaluate the power transformation of the
incident bulk wave in the buffer into the interface wave propagating along the
substrate toward the comb edges, where it is converted to the Rayleigh waves
on the free substrate surface. The solution to Eqs. (10) for u(0) exhibits a pole
at ro, hence it is a function of r like:

u(0)(r) = uIR/(r2 − r2o), uI = uI3, (13)
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where 1/R can be evaluated by numerical differentiation of uI/u(0) with respect
to r2 at ro. It depends on the incident wave amplitude uI which, being the spatial
spectrum of a finite incident wave-beam, is also a function of r.
The spatial solution, having the form of an outgoing wave u0 exp(−irx), is

the corresponding inverse Fourier transform:

u(0)(x < 0) =
1

2π

K/2∫

−K/2

u(0)(r)e−irx dr ≈ u0e
∓irox, u0 =

iR

2ro
uI , (14)

integration of which can be extended to infinity if allowed by the Cauchy condi-
tion. In our case, this only requires x to reside outside the domain of the incident
wave-beam (outside the comb area). Indeed, for comb comprising many teeth,
the spatial spectrum of incident wave-beam is well confined within the domain
(−K/2,K/2), hence extending of the integration limits is acceptable.
The corresponding forward and backward waves propagating in the substrate

have wave-numbers ro±K and amplitudes u(±1) = γ±1u0. On the left-hand side
of the incident wave-beam, they are:

u0[γ−1e
iKx + 1 + γ+1e

−iKx]e−irox, x < −A/2, (15)

where A is the incident wave-beam aperture width. They carry acoustic power
to the left and to the right along the substrate surface, and according to Eq. (2),
their amplitudes are as = (|ġs/2|µsω)

1/2u(−1) and γas, respectively, because in
the stopband where rR = 0, ġs evaluated at rR ± K ≈ K ≈ kR, are equal; we
apply this approximation in order to avoid further complication of the analysis.
The interface wave-field extends also into the buffer, with displacements

us(±1) and the forward wave amplitude ab. The full power carried by the in-
terface forward wave is thus |a|2/2 = (|as|2 + |ab|2)/2 = |as|2(1 + |τ |2)/2 where
τ = ab/as. The backward wave carries power |γa|2/2. Below, we apply τ = 1 in
order to simplify the analysis, hence a ≈ as

√
2.

Due to the symmetry of the considered system and normal wave incidence,
the same interface wave amplitudes and powers appear for x > A/2, with power
|as|2/2 transported to the right by the corresponding forward wave, and |γas|2/2
– to the left by the backward wave. Summarizing, the generated wave-fields at
x = ±A/2 in the substrate are correspondingly:

ase
i(ro−K)A/2 and γase

i(ro+K)A/2.

4. The transducer efficiency

Inside the comb area |x| < A/2, free propagating interface waves with wave-
numbers ±ro exist in the substrate: a∓ exp(±i(ro−K)x), γa∓ exp(±i(ro+K)x).
Outside the comb area, |x| > A/2, the Rayleigh waves propagate to the left or
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to the right in the substrate: a∓L exp(±ikRx), x < −A/2, and a±R exp(∓ikRx),
x > A/2. Here we assume that the forward, backward and Rayleigh waves have
all similar modal profiles according to the earlier assumption that ro ≈ 0 and
K ≈ kR. This enables us to neglect the scattering into bulk waves and to apply
the following conservative boundary conditions at x = −A/2 (Field et al., 1975):

ase
i(ro−K)A/2 + a−ei(ro−K)A/2 + γa+ei(ro+K)A/2 = a−Le

−ikRA/2,

γase
i(ro+K)A/2 + γa−ei(ro+K)A/2 + a+ei(ro−K)A/2 = a+Le

ikRA/2/
√
2;

(16)

the conditions at x = A/2 are similar; one needs only to replace superscripts
+,− by −.+ and subscripts L,R by R,L.
The right-hand sides of the above equations require further explanations. For

an incident surface wave in the substrate, carrying power |a+L |2/2 toward the
transducer area, we must first decompose it into waves in both the substrate and
the buffer, in order to obtain the wave-mode shape matching the shape of the
interface wave. In our case, this matched wave amplitude is a′ in the substrate
and ±τa′ in the buffer, carrying together the power of the incident wave, hence
a+L/

√
1 + τ2 ≈ a+L/

√
2 is the incident wave amplitude applied in the second row

of Eqs. (16). Note that only one of the above discussed pairs of modes is matched
to the interface wave, the other one (below referred to as RM) is entirely reflected
from the comb edge.
Evaluation of the free interface waves a± bouncing between the comb edges,

yields the generated Rayleigh wave amplitude at the left-hand side of the comb:

a−L =
R

2

γ−1

ro
uI(ro)kt

√
µω|ġs|/2

1 + γ

1 + γeiroA
eiroA/2 (17)

(for K ≈ kR), where uI(r) is the spatial spectrum of uniform normal incident
wave-beam of aperture width A and displacement amplitude uI :

uI(r) = 2uI sin(rA/2)/r, (18)

and ġs is evaluated from Eq. (2) at |ro −K| ≈ kR.
The incident power is P I = AZb

l |ωuI |2/2, where Zb
l = ρbω/kbl is the acous-

tic impedance of the buffer for longitudinal waves. For small ro residing in the
stopband where rR ≈ 0, the comb transducer generation efficiency is:

ηg =

√
|a−L |2
2P I

=

∣∣∣∣
Rγ−1

4ro

∣∣∣∣
kst
kbt

∣∣∣∣
(1− eiroA)(1 + γ)

roA(1 + γeiroA)

∣∣∣∣
√

kblA|ġs|/os. (19)

The generated Rayleigh wave to the right of the comb has similar amplitude if
ro ≈ 0, but it can be different for off-normal incident wave. This case will not be
discussed here.
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The Eqs. (16) also yields the solution to the classic scattering problem for
evaluation of the outgoing Rayleigh waves a−L , a

+
R, dependent on the incident

surface wave a+L , for instance (for τ = 1):

a−L =
a+L√
2

γ(1− ei2roA)

1− γ2ei2roA
, a+R =

a+L√
2

(1− γ2)eiroA

1− γ2ei2roA
. (20)

For large A, the reflected SAW amplitude at the left-hand edge of the comb |a−L |
equals |γa+L | (note that exp(iroA) vanishes for the chosen values of rI > 0 and
A → ∞); |a+R| is the transmitted SAW amplitude at the right-hand comb edge.
Hence γ is the reflection coefficient from a semi-infinite system of periodic teeth.
Comparing the incident SAW power |aL|2/4 (neglecting RM) with the re-

flected and transmitted wave powers |a−L |/2 + |a+R|2/2, we notice certain imbal-
ance resulting from the power leakage into the bulk waves (mostly longitudinal)
in the substrate. According to the earlier assumption, the same waves propa-
gate in the buffer and they can be detected by a piezoelectric transducer on the
other end of the buffer. Hence, this power imbalance is a signature of the receiv-
ing comb efficiency of transformation of the incident SAWs into bulk waves to
be detected. Summarizing, the approximation for the square of the transducer
efficiency is (accounting for the lost RM):

1/2− |a−L/a+L |2 − |a+R/a+L |2,

which limit at A → ∞ is η2r → (1− |γ|2)/2.
It must be noted however that the flat receiving piezoelectric transducer

placed on the upper end of the acoustic buffer, averages the wave of variable
phase. The signal produced by transducer of aperture A is proportional to:

A/2∫

−A/2

a−e−iro(x+A/2) dx+

A/2∫

−A/2

a+eiro(x−A/2) dx = (a− + a+)
1− eiroA

ro
,

which, for small ro, is (a−+a+)A. Hence the relative effect of the signal averaging
by the flat receiving transducer can be estimated by [1− exp(iroA)]/(roA). The
corrected transducer efficiency

ηr =

∣∣∣∣
1− exp(iroA)

roA

∣∣∣∣
√

1/2− |a−L/a+L |2 − |a+R/a+L |2, (21)

accounts for the off-normal propagation of the incident bulk waves onto the
receiving piezoelectric transducer placed on top of the acoustic buffer.
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5. Numerical examples

5.1. Aluminium comb applied to steel substrate

In numerical examples presented below, we applied for aluminium: µAl = 25

[109 Nm−2], k
Al
l = 0.1558, k

Al
t = 0.3283 and the Rayleigh wave-number k

Al
R =

0.3509, all in units [mm−1], where k = k/2π. The width of teeth was chosen w =

0.48/k
Al
R , that is about half-wavelength of the Rayleigh wave in aluminium. The

parameters of steel are: µFe = 82, k
Fe
l = 0.1686, k

Fe
t = 0.3098, and k

Fe
R = 0.3346,

in the same units.
In the first example, the comb having teeth of height h = 1.05w carved in

an aluminium buffer is applied to steel substrate with sliding contact; hence
all the above equations, particularly Eq. (10) (with ob = 1), matter for the
considered scattering problem. Figure 2 presents the pseudo-dispersive curve r2o
vs. K (for constant ω) and the standing wave coefficient |γ|. We notice that there
is a narrow domain of K for which Re{r2o} < 0 what, neglecting small Im{r2o},
results in imaginary ro being the signature of stopband.
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Fig. 2. Aluminium comb on steel substrate: characterization of interface waves (r2o, |γ| vs. K),
and the transducer efficiencies ηr, ηg for different number of teeth in the comb, N = 5, 10, 20.

It is important that the considered stopband (in the K-domain) resides above
the cut-off wave-numbers of bulk waves of both the buffer and the substrate
(above kbt and kst ), hence the leakage mechanism of the interface waves in the
considered system is provided only by 0th Bloch interfacial wave-field, producing
almost normal outgoing bulk waves in the comb and in the substrate.
Analogous results are presented in Fig. 3 for aluminium comb on aluminium

substrate, for the teeth height equal to h = 3.3w. In this case, the leakage phe-
nomenon is much stronger (higher imaginary values of r2o), and the receiving effi-
ciency ηr in stopband is slightly higher when compared to the previous example,
but the generation efficiency is much smaller, what is a quite unexpected result.
It proves that the comb transducers are rather a difficult device for optimization.
Occasionally, the comb transducers may be applied for generation of strong

surface waves. In this case, more important is the total power Aη2g of the excited
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Fig. 3. Aluminium comb with 5, 10, 20 teeth on aluminium substrate: r2o, |γ| and ηr, ηg.

wave than the transducer efficiency. Figure 4 presents this parameters for the
comb on steel (ref. Fig. 2), for two values of K: in the center of the stopband
and at its right-hand edge K2. As expected, the latter is much higher, resulting
from larger ηg and small wave damping (small imaginary part of ro), allowing
many teeth to contribute to the output power.
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Fig. 4. Al comb on steel substrate: the dependence of the generated SAW power for K chosen
at stopband center (left) and at the stopband edge K2 (right) on teeth number N .

The maximum generated power decreases above the stopband edge K2 due to
the lack of synchronism between the surface wave-field excited by periodic teeth
insonified by the normal incident wave exp(±iKx) and the propagating interface
wave, the phase of which varies according to exp(−i(ro ± K)x). This shows
that the performance of combs with off-normal incident wave properly chosen
to maintain the wave synchronism, may be much better (albeit impractical for
many experimental cases as compared to ordinary wedge transducers).

5.2. Sliding periodic spacers

For the case of sliding teeth, the Eqs. (10) simplify much because Tu
1 vanishes,

yielding:
(D− obg3)T

u
3 + dTb

3 = ob2VuI
3,

dTu
3 + (D− osgs

)Tb
3 = 0.

(22)
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The considered examples below concern symmetric structures: the sliding teeth
are applied between a pair of elastic half-spaces of the same materials, which
are aluminium or steel. The teeth are either from aluminium or nylon (which
material constants are: µt = 1.8, k

t
l = 0.4733, k

t
t = 0.7888, in the same units).

Figures 5 present results for aluminium spacers of height h = 2w between
steel buffer and substrate (which value yields the wide stopband). Again, there
is a maximum efficiency at the stopband edge K2. The last Figs. 6 concern the
nylon spacers between aluminium buffer and substrate; it is an experimentally
promising configuration as the plastic spacers easily fit rough substrate surface.
In this case the dependence of the transducer efficiency on K is relatively smooth
in the stopband, but its value is not high. In all the presented cases the efficiency
of the receiving transducer, as defined by Eq. (21), is higher than the generat-
ing ones. Note however that this analysis does not include the efficiency of the
piezoelectric transducers converting ultrasonic waves into electric signal and vice
versa.
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Fig. 5. The results for aluminium spacers of 2w height between steel buffer and substrate.
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Fig. 6. Promising configuration of nylon spacers between the aluminium buffer and substrate.

6. Conclusions

The evaluated properties of comb transducers are rather unexpected: the
simple perturbation theory assuming weak mechanical interaction between comb
teeth and the substrate would yield the maximum efficiency in the stopband. Our
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results show that this is not, in general, true. Moreover, the results show that
the best efficiency of comb transducers are obtained for small number of teeth,
what also contradicts the expectation based on the perturbation theory (some
researchers mistake the maximum generated surface waves with efficiency defined
earlier in this paper).
Concluding, the comb transducers are difficult for optimization, what may be

the reason of their infrequent applications in ultrasonic measurement systems.
In spite of this, an interesting multi-parameter theoretical problem arises in the
analysis of such mechanical structures, being certain generalization of the system
of cracks analyzed in (Every, 2008; Danicki, 1999), where complex interac-
tion takes place at the periodic interface between elastic media. Such structures
are considered for application in certain electronic systems (Darinskii, Weih-
nacht, 2004). Another application may concern active damping of vibration of
certain structures (Zou, Crocker, 2009).
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