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In this paper a sample rate conversion algorithm which allows for continuously changing resampling
ratio has been presented. The proposed implementation is based on a variable fractional delay filter which
is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis
of fractional delay filters which are designed using the offset window method. The proposed approach
allows us to freely change the instantaneous resampling ratio during processing. Using such an algorithm
we can simulate recording of audio on magnetic tape with nonuniform velocity as well as remove such
distortions. We have demonstrated capabilities of the proposed approach based on the example of speech
signal processing with a resampling ratio which was computed on the basis of estimated fundamental

frequency of voiced speech segments.
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1. Introduction

A huge number of sample rate standards (AES5-
2008, 2008) available today create a demand for the
development of sample rate conversion (SRC) algo-
rithms (TARCZYNSKI et al., 1994; HERMANOWICZ et
al., 2000; EVANGELISTA, 2003). The digital resam-
pling algorithm replaces digital-analog conversion fol-
lowed by an analog signal sampling which allows for
more flexible implementations. A common example
used to demonstrate the usefulness of such algorithms
is the conversion between compact disc (CD) with
Fy = 44.1 kHz (multimedia standard) and digital tape
(DAT) with Fs = 48 kHz (communications standard)
(RAJAMANI et al., 2000; HERMANOWICZ et al., 2000).
In this paper we present SRC implementation based
on a variable fractional delay (VFD) filter. Using this
algorithm we not only can implement an arbitrary con-
stant resampling ratio but fluctuating changes in re-
sampling ratio can be readily implemented as well.
Based on this tool, we propose a novel application
for a resampling algorithm which is a correction of
signals with unintentional nonuniform sampling. For

example, a correction of old recordings with distor-
tions which resulted from nonuniform velocity of the
media (“wow” distortion) (CIARKOWSKI et al., 2005;
CzYZEWSKI, 2007; 2010), a problem which is typically
addressed with interpolation techniques (MAZIEWSKI,
2006). On the other hand, with a correctly sampled sig-
nal, we might simulate such distortions using the same
VFD SRC algorithm. In both cases we make use of the
fact that a nonuniformly sampled signal reconstructed
with uniform sampling changes its pitch inversely pro-
portionally to the sample rate changes.

2. Fractional delay filter

The SRC algorithm investigated in this paper is
based on fractional delay (FD) filters and its perfor-
mance depends on the design method used to calcu-
late coefficients of these filters. The problem is that
the impulse response of the ideal FD filter with total
delay 74

hia[n] = sinc(n — 74) (1)

is infinite and non-causal. Therefore, in practice in-
stead of using the ideal filter, a filter approximating
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its frequency response defined by the following formula
(LAAKSO et al., 1996)

Hia(f) = exp(—j27f1a),

has to be used.

Because of the causality requirement high perfor-
mance FD filters are characterized with nonzero inte-
ger delay D = round(7q), which for FIR filters is usu-
ally selected close to the bulk delay 7 = (N — 1)/2,
where N is length of impulse response of the filter.
With those two delays defined, we receive the follow-
ing formula for the total delay

fel-05,05) (2)

Ta=D+d=1n+c¢, (3)

where d € [—0.5,0.5) is the fractional delay and ¢ is the
net delay. The value of the fractional delay d relates to
the difficulty of FD filter design, the closer it is to zero
the lower approximation error can be achieved. Nev-
ertheless, in application which require variable delay,
it is more convenient to use the net delay ¢ because
in contrast to the fractional delay d it is a continuous
function of the total delay 74. Since in most practical
applications ¢ € [—0.5,0.5), discontinuity of d is not
a problem for filters of odd length N, for which the
integer delay D is usually selected equal to 7. In such
case, both fractional d and net delays ¢ are the same.
For even N, however, fractional delay d is discontinu-
ous at Tq = 7N

In this paper we use the FIR FD filters which ap-
proximate the ideal frequency response Hiq(f) with
the frequency response

N—-1

Hy(f) = 3 hin]exp(—j2mfn), (4)

n=0

where h[n] is the impulse response. Usually the de-
signer computes the impulse response h[n] using one of
several design methods offering optimal FD filters with
maximally flat (MF), least squares (LS) and minimax
being the most popular. The optimality criteria for all
of these methods are based on complex approximation
error (LAAKSO et al., 1996)

E(f) = Hn(f) = Hia(f)- (5)

For MF filters approximation error and its N—1
derivatives must be equal to zero at f = 0. In the
result, the MF filter offers excellent performance, but
only around zero frequency. In contrast, the LS and
minimax filters allow the designer to specify the ap-
proximation band f € [0, f,] in which the error is min-
imized. The LS FD filter (LAAKSO et al., 1996) has
minimized the energy of error

fa
Bis(fy) =2 / B()2 df (6)

0

while the minimax FD filter (LAAKSO et al., 1996;
BLOK, 2005) has minimized the peak error (PE)

Err(fa) = max [E(f)] (7)

in the approximation band.

The coefficients of the impulse response, vector
h = [h[0],h[1],...,R[N—1]]T, of all these optimal fil-
ters, MF, LS and minimax, with fractional delay d
can be found solving the following matrix equation
(LAAKSO et al., 1996)

Ph = p, (8)

where the coefficients of matrix P and vector p depend
on the optimization criterion. For MF filter matrix P
is a Vandermonde matrix

Piiini1 =nF (9)
and vector p has elements

Pik+1 = Tdka (10)

where k,n = 0,1, ..., N—1. To find the LS filter we need
only to change coefficients of matrix P

Pii1.ns1 = fasincfa(n — k) (11)

and column vector p

P11 = fasine fa(k — 74). (12)

A minor modification is needed for minimax filters.
First, a set of N+1 frequency points fx, called extremal
points, must be found using recursive complex Remez
algorithm (BLOK, 2002b). Then, coefficients of matrix
P and vector p can be computed using the following
formulas

Prt1n+1 = cos(2mfrn) — sin(27 frxn),

(13)
Piiintr = (—1)F
and
Piri1 = cos(27 fx1a) — sin(27 fr.7a), (14)
where k =0,1,..., Nandn =0,1,..., N—1. In this case

vector h has one additional element with magnitude
equal to peak approximation error (7).

The aforementioned design methods guarantee that
each FD filter offers the best performance in respect to
the selected criterion. Nonetheless, as we will demon-
strate in this paper, in the case of the SRC algorithm
better results can be achieved with the use of the off-
set window method (YARDIM et al., 1996; 1997; BLOK,
2012b; 2013)

ha[n] = hia[n]w(n — €), (15)
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where a symmetric prototype window is offset by the
net delay e (3) of the designed filter. One of the ad-
vantages of this method is that the FD filter band-
width can be readily adjusted (BLOK, 2012a; 2012b).
To achieve this, in formula (15) the ideal impulse re-
sponse of a fullband FD filter (1) has to be replaced
with its lowpass version

hia[n] = 2fesinc(2f.(n — 74)), (16)

where f. is the assumed cutoff frequency of the filter.

Nevertheless, in order to use the offset window
method efficiently two problems must be solved. First
is a prototype window selection. This can be solved
with window extraction method (HERMANOWICZ,
1998; BLOK, 2012b) in which a prototype window is
extracted from the impulse response of a single opti-
mal (minimax or LS) FD filter hqpi[n)

Wext = hopt [n]/hld [n] (17)

The second problem is window offsetting since it re-
quires computation of new samples of the prototype
window delayed by a fraction of the sampling period.
Such prototype window delaying can be efficiently done
using the short FD filters (BLOK, 2012b), but the
drawback is that the window offsetting increases com-
putational complexity of the FD filter impulse response
update. Fortunately, it is enough to compute several
impulse responses beforehand and on such basis im-
plement a VFD filter using the Farrow structure pre-
sented in Sec. 5.

3. Sample rate conversion using VFD filter

The classic three rate sample rate conversion algo-
rithm is presented in Fig. 1. Input signal with sam-
ple rate Fs; is upsampled by means of insertion of
L—1 zeros between each pair of consecutive input sam-
ples. Next, at the intermediate sample rate, the low-
pass interpolation filter with upper frequency f, =
min(0.5/L,0.5/M) prevents the aliasing and removes

stage, the sample rate is reduced to the desired one
by means of decimation, only every M-th sample re-
mains in the output signal.

F,
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Fig. 1. Classic three-rate sample rate conversion algorithm
by rational factor L/M.

The classic approach, because of its simplicity, is
well suited for simple cases requiring a constant sam-
ple ratio with small factors L and M. In other cases the
intermediate sampling ratio is very high, which results
in an extremely narrow passband of the interpolation
filter. In the result, computational costs increase dras-
tically and, what is more important, the interpolation
filter becomes very difficult to design. Therefore for ar-
bitrary resampling ratios the VFD filter is used (Fig. 3)
(TARCZYNSKI et al., 1994; HERMANOWICZ et al., 2000;
EVANGELISTA, 2003).

As we can see in Fig. 2, each output sample y[m)]
is no farther from the nearest input sample than the
fraction of the input sampling period. This distance is
the fractional delay d[m] and can be computed using
the following recursive formula (BLOK, 2002a)

dlm] = d[m — 1] — r[m] + An[m], (18)

where r[m] is the inverse of the instantaneous resam-
pling ratio defined as the ratio of assumed input and
output sampling rates sampled at output instants

rlm] = Fa[m]/Falm] = Telm]/Talm] — (19)
and
An[m] = round(r[m] — d[m — 1]) (20)

is a number of new samples expected in the input buffer
before the next output sample can be computed. For
the rational resampling ratio (Fig. 1)

spectral images resulting from upsampling. At last rlm] = M/L (21)
0 1 2 3 4 n

Anll] An[2] An[4]

4 5 6 m

Fig. 2. Illustration of sample rate conversion by L/M = 5/4. Input samples z[n] — o, output samples y[m] — x.
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Fig. 3. General VFD filter structure applied to SRC.

a limited number of fractional delays has to be imple-
mented, since sequences d[m] and An[m] are periodic
with period L. In the other cases we need to be able to
implement any fractional delay, which can be achieved
with the VFD filter. In such case the resampling ratio
can be an arbitrary positive number and, moreover,
can change in time. Nevertheless, if we want to avoid
nonlinear distortions of the resampled signal, the ratio
r[m] must be limited by the instantaneous oversam-
pling ratio of the input signal. Alternatively, the band
of the input signal has to be limited to assure that
instantaneous oversampling ratio is large enough, for
example, by adjusting the cutoff frequency of the over-
all interpolation filter.
With two parameters defined in (18) and (20) the

resampling algorithm is following (Fig. 4):

1. Fill the buffer with zeros and start with d[0] = 0

and An[0] =0,
2. wait for An[m| new samples in the input buffer,

3. compute a value of the output sample y[m] using
FD filter with the fractional delay d[m)],

4. calculate An[m] and d[m] for the next m and go
back to step 2.

( START)

Y
m=0;d[m]=0
An[m] =
Y
Wait for An[m] compute
input samples An[m]=round(r[m]-d[m—-1])
and
y d[m]=d[m—1]-r[m]+An[m]
calculate A
h[n] - impulse response
of FD filter with d[m]
| m=m+1 |
Y 7Y
calculate
output sample y[m]
using h[n]
I

Fig. 4. Diagram of SRC algorithm based on VFD filter.

For every output sample the resampling algorithm
requires different fractional delay (18). This means
that for each output sample we need to compute a
new impulse response of the FD filter. Since for ra-
tional resampling ratios we only need L impulse re-
sponses, we can store them in a look-up-table (LUT)
(HERMANOWICZ et al., 2000). Conversely, when the ra-
tio is arbitrary, and additionally changing in time, the
filters needed in the resampling cannot be specified be-
forehand. They have to be computed during runtime
which can be done readily using the Farrow structure
(FARROW, 1988; HARRIS, 1997; HERMANOWICZ, 2004;
BLOK, 2005).

4. FD filter design for SRC

The selection of FD filters for the SRC algorithm
implementation might seem simple, since we can use
optimal FD filters such as minimax or LS FD filters
(LAAKSO et al., 1996; BLOK, 2002a; 2002b). The prob-
lem is that it is not sufficient to minimize the approxi-
mation errors of FD filters within approximation band
specified by the designer to guarantee the best overall
performance of such SRC algorithm.

Let us notice that for the rational resampling ratio
M/L the SRC algorithm based on FD filters (Fig. 3
and 4) is equivalent to the classic approach (Fig. 1)
(BLOK, 2002a) if the interpolation filter is replaced
with the overall filter ho[n] composed of all FD filters
hapm)[n] used in the resampling (BLOK, 2002a). Since
for the rational resampling rate equal to M/L only L
different FD filters are used regardless of M we have

ho[m +nL] = hgpp[n], m=0,1,...,L -1, (22)
where fractional delays d[m] are arranged in the de-
creasing order

dim—1]=dm]+1/L, m=1,...,L—1. (23)
Using the overall filter (22) we can readily analyze dis-
tortions introduced by the SRC algorithm based on
FD filters since this filter must fulfill the same require-
ments as the interpolation filter in the classic approach
(Fig. 1). Such analysis based on the overall filter con-
cept can be applied directly only for rational resam-
pling ratios, but the conclusions can be readily adapted
to any arbitrarily selected resampling ratio.

In Fig. 5 we can see magnitude responses of the
overall filters obtained for FD filters of length N =
17 designed using two different approaches: the op-
timal filter design minimizing peak error (7) (mini-
max FD filters) with f, = 0.4 and the offset window
method with window extracted from minimax filter
with N =17, d = —0.5 and f, = 0.4. The window in
the offset window method is offset using MF filter of
length Nog = 5. Additionally in case of the offset win-
dow method, the lowpass impulse response (16) with
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minimax

0 05 1 1.5 2 25 3 35 4
F/Fq [1/S4]

Fig. 5. Comparison of magnitude responses of overall filters

composed of minimax FD filters (L = 9) and FD filters

designed using offset window method.

fe = 0.4 is used instead of the impulse response of the
fullband ideal FD filter (1).

As we can notice, the problem with the SRC imple-
mentation based on minimax filters, is that the overall
filter demonstrates large lobes in stopband which can
also be observed if LS and MF filters are used (BLOK,
2012a). These large lobes, which may result in aliasing
when input signal has components above f,, are re-
lated to properties of the overall window. This overall
window is obtained from the interpolation filter using
the formula for window extraction (17) based on the
assumption that the interpolation filters is a lowpass
filter designed using the window method. When min-
imax, LS or MF FD filters are used to compose the
overall filter, the overall window exhibits periodic dis-
continuities with period equal to input sampling period
(BLOK, 2012b). These discontinuities result in large
side lobes in frequency response of the overall window,
which are directly related to the large lobes in the stop-
band of the overall filter. Moreover, the location of the
transition band of the overall filter cannot be adjusted
(BLOK, 2012a).

To overcome disadvantages of minimax and LS FD
filters the offset window method (YARDIM et al., 1996;
1997; BLOK, 2012b) can be used. Since in this approach
each window used in the FD filter design is a delayed
version of a single prototype window, the resulting
overall window is smooth. In the result, when filters
designed using the offset window method are used in
the SRC algorithm, the large lobes in the stopband of
the overall filter are eliminated (Fig. 5). Additionally
with the window method we can readily adjust the lo-
cation of the transition band of the overall filter using
the lowpass impulse response (16) as the prototype FD
filter.

For example, selection of f. = 0.4 for the offset
method in the example presented in Fig. 6 results in
the overall filter which, in comparison to the overall
filter obtained from minimax FD filters, has narrower
passband.

Although overall filters presented in Fig. 5 are com-
posed of just L = 9 filters, properties of their mag-
nitude responses, discussed in this section, are main-
tained for any resampling ratio. In Fig. 6 we can see the
results of testing the SRC algorithm with ratio 160/147

Frequency

—_
- o N

Frequency

051

Time

Frequency

Time

Frequency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time
Fig. 6. Spectrograms illustrating resampling with constant
resampling ratio 160/147 using VFD filters from Fig. 5
implemented with the Farrow structure of order ¢ = 5:
a) input chirp signal, b) signal resampled using minimax
FD filters (fa = 0.4), c) signal resampled using fullband
(fe = 0.5) FD filters designed using offset window, d) sig-
nal resampled using FD filters designed using offset window

for fo = fa.

using the constant amplitude LFM chirp, which is
an excellent signal for performing such tests. As we
can see, the signal converted using minimax FD filters
demonstrates high distortions when input signal fre-
quency exceeds f,. On the other hand, the signal con-
verted using FD filters designed with offset window
has no components caused by nonlinear distortions
larger than —60 dB. This is because the offset window
method allows us to adjust the cutoff frequency f..



236 Archives of Acoustics — Volume 39, Number 2, 2014

In all cases presented in Fig. 6, the attenuation of re-
sampling distortions, which is equal to stopband at-
tenuation of the overall filter, is directly related to the
peak error (7) of the worst FD filter used in the SRC
algorithm (BLOK, 2002a) and can be adjusted with
a proper selection of FD filter specification, its length
and width of approximation band.

5. VFD filter implementation

Since the VFD filter needs to be able to change its
delay for each output sample, high computational costs
related to solving matrix Eq. (8), or costs of offsetting
a window in the offset window method (15) become a
significant problem. The most popular solution of this
problem is the Farrow structure (FARROW, 1988; HAR-
RIS, 1997; HERMANOWICZ, 2004; BLOK, 2005). This
structure is based on a concept that each sample of
the impulse response can be approximated with a sep-
arate polynomial of order ¢ dependent on fractional

delay d
q

hin) =" cm[n]d™. (24)
m=0
Now, the output samples of the FD filter can be ex-
pressed with the following formula

N-1 q
ylnl = > hnlaln =kl = ym[nld™,  (25)
k=0 m=0
where
N—-1
Ym[n] = em|klx[n — K. (26)
k=0

Formulas (25) and (26) define the Farrow structure
presented in Fig. 7 where each row of coefficients im-
plements separate filter with impulse response ¢;,[n].
To find coefficients ¢y, [n] we need to compute only a
few impulse responses of FD filters with fractional de-
lays d uniformly spread in range [—0.5, 0.5]. In practice,

to compute approximation polynomials it is enough to
use only ¢ + 1 impulse responses. The polynomials of
order ¢ equal to 6 or 7 offer performance adequate
for high quality FD filters with approximation error
about —100 dB (BLOK, 2005). The resulting structure
is equally efficient for both the optimal (minimax or
LS) FD filters and FD filters designed using the offset
window method (BLOK, 2012a).

The drawback of the implementation based on the
Farrow structure is that, although its coefficients can
be computed beforehand for selected f. in case of the
offset window method, each change of f. requires a
new set of structure coefficients. Thus for this structure
only a preselected f. value can be used which has to be
a compromise between a retained band of the processed
signal and a level of aliasing distortions.

6. Resampling with variable ratio

In this section we will demonstrate SRC with
changing ratio. The first simple, yet spectacular exam-
ple is the conversion of sinusoidal signal with constant
frequency Fi, into a chirp signal with linear instanta-
neous frequency

Fout[m] = Fy + mAF, (27)

where Fj is the initial output chirp frequency and AF
is the chirp rate. In this example the input sample rate
is constant and the output sample rate must change in
such way that the oversampling ratio changes linearly
according to the output time index m.

FSQ[m] = EnF_SQ/Fout [m]; (28)

where Fj, is the constant output sample ratio for which
the resampled signal can be observed as a chirp with
the assumed instantaneous frequency (27). Since in
this example the input sampling frequency Fj; is con-

ettt input buffer ,
x[n] —~ I 1 -1 A
{7 z Z z 2
Cz[0ﬁ7 c2[1i cl2]
OO
c,[0ﬁ7 cl[li al2
) &)
Co[oﬁ7 co[lﬁ ¢[2]
h,[0] () )

Fig. 7. Farrow structure of order ¢ = 2 implementing VFD filter of length N = 6.
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stant, the formula for the inverse of the instantaneous
resampling ratio can be readily obtained

Fin(Fo +mAF)

29
FSIFS2 ( )

Tenirp[m| = Fs1/Fsa[m] =

The effects of resampling are presented in Fig. 8.
Let us notice that when the output signal is recon-
structed using the variable output sample rate (28)
the input (Fig. 8a) and output (Fig. 8c) signals repre-
sent the same analog signal. However, if we assume the
constant output rate Fyo, the output samples of SRC
algorithm represent the chirp signal (Fig. 8b) which we
wanted to obtain.

a)
x10*
2+ J
15¢ b
)
[ =4
o
3
o
o 1t 1
C
0.5F 1
0 1 1 1 1 1 1 1 1 1
0.1 02 03 04 05 06 07 08 09
Time
c)
4
x10
\
\
2 \ Fsdm] /2 g
\
\
\
1.5 \ 1
) N
g R
g ~
[ B 1
~ ~ -
— -~ - -
0

0 0.1 02 03 04 05 06 07 08 09
Time

The process described above can be reversed using
the same algorithm. The chirp signal obtained in the
previous step can be converted back into sinusoid, but
the selection of the ratio r[m] is now more difficult. In
the first scenario the sample rate and the frequency
of the input signal are constant, which simplifies the
derivations. This time we need to assume that either
the frequency of the input signal or its sample rate is
changing. Since we want to demonstrate how to reverse
the resampling process we will assume that the signal
frequency is constant with variable distance between
input samples.

From (28) we know the sample ratio at sampling
instants corresponding to samples of the input sig-

b)
x 10

Frequency

I L ! L L 1 L

005 01 015 02 025 03 035 04 045
Time

x 10

Frequency

Fig. 8. Conversion from sinusoidal signal into chirp and back using SRC based on VFD filters. VFD filter with f, = 0.4 of

length N = 17 and the Farrow structure order ¢ = 5 designed using window offset using MF FD filter of length Nog = 5:

a) spectrogram of input sinusoidal signal, b) spectrogram of chirp signal obtained from sinusoidal signal. Assumed constant

sample rate Fso = Fs1, ¢) spectrogram from Fig. 8b reshaped with accordance to variable sample rate. Dashed line indicates
the folding frequency, d) spectrogram of restored sinusoidal signal.
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nal but need to find the ratio r[m] (19) specified in
equidistant output instants m. Let us assume that we
know the instantaneous input sample rate Fgi[n] =
1/Ts1]n] sampled in the same instants as the input
signal z[n] and the instantaneous output sample rate

Fs3[m] = 1/Ts2[m] sampled in the same instants as
the output signal y[m]. Now we are looking for a ra-
tio r[m] = Tso[m]/Ts1[m] where Tsi[m] is the input

sampling period corresponding to the output time in-
stant m.

Assuming that we know the positions of input sam-
pling instants, which are our output instants from the
previous problem

tin [TL] = Z Tsl[n] = tin [n - 1] + Tsl[n] (30)

and output sampling instants, which are our input in-
stants from the previous problem

m

tous[m] = Y Tea[m] = tous[m — 1]+ Tam].  (31)

i=1
We propose the following algorithm for computation of

the inverse of the instantaneous resampling ratio r[m|.

1. Start with input and output discrete time indexes
n = 0 and m := 0 with corresponding continuous
time instants t;, := 0 and toyt := 0.

2. Compute distance from the current output time in-
stant to the current and the next input time instant:

At := tous — tin,
E = Tsl[n] — At.
3. If At >=0 then

(a) if the previous output sample is located in the
same input sampling interval (Ar = 0 and
At > 0) then

rlm] := Tsam]/Ta[n],
otherwise
r[m] := At/Ts1[n] + Ar,
(b) If At < Tsa[m] then
Ar = At/Ty[n]
and move to the next input instant
tin := tin + Ts1[n],

n:=n-+1,
otherwise
Ar =0,

(¢) move to the next output instant
tout = tout + Ts2[m]a

m:=m++1,

4. otherwise (At < 0)

(a) Ar:=Ar+1,

(b) move to the next input instant
tin = tin + Ts1[n],
n:=n-+1,

5. Go to point 2.

Figure 9 presents a modified version of the above
algorithm with modifications which eliminate the prob-
lem of continuous increase of input and output times
which eventually would lead to roundoff errors.

START

Ar=Ar+1

Y A
r[m]=

At =At—T,[n] T,[n] Ty[n]

A n=n+1

At =At+T,[m]
m=m+1

Fig. 9. Diagram for computation of r[m] (19) based
on instantaneous input and output sample rates.

With the ratio r[m] calculated using the proposed
algorithm the chirp signal presented in Fig. 8b can be
resampled back into sinusoid. A spectrogram of ob-
tained sinusoidal signal is presented in Fig. 8d. We
can observe the nonlinear distortions but their level
can be controlled with the selection of the overall filter
attenuation in the stopband (Fig. 5).

7. Examples of audio signals resampling

The algorithm for calculation of the r[m] ratio pre-
sented in previous section is universal and can be used
for computation of an instantaneous ratio r[m] for any
variable input and output sample rate. In Fig. 10 an
example demonstrating introduction and removal of
sinusoidal sample rate changes into piano music are
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Fig. 10. Manipulations on piano music. Introduction and removal of sinusoidal fluctuations into instantaneous sample

ratio: a) spectrogram of the input piano signal, b) spectrogram of piano signal with introduced sinusoidal fluctuations

of sample rate, c) spectrogram from Fig. 10b reshaped with accordance to variable sample rate, d) spectrogram of the
restored signal.

presented. Resampling have been performed using the
VFED filter of length N = 47 with f, = 0.45 imple-
mented using the Farrow structure of order ¢ = 6. FD
filters were designed using windows offset with MF
FD filters of length Nog = 6. Processing presented
in Fig. 10 simulates changes of velocity of magnetic
tape resulting from mechanical problems. On the other
hand, the proposed solution can be used efficiently
to remove such distortion (Fig. 10d), but only if we
are able to find out how the velocity/sampling ratio
changes (CIARKOWSKI et al., 2005; CZYZEWSKI et al.,
2007; 2010).

Figure 11 presents an example of speech signal
(Fig. 11a) resampling with the resampling ratio com-
puted on the basis of fundamental frequency (Fp).

Based on the estimate of F frequency (Fig. 11¢) com-
puted using algorithm presented in paper (BLOK et
al., 2004), in each voiced segment a frequency modula-
tion of excitation have been suppressed. This effect is
clearly visible in Fig. 11e where frequency components
of voiced segment have constant frequency. In this case
resampling have been performed using the VFD filter
of length N = 33 with f, = 0.4 implemented using
the Farrow structure of order ¢ = 5. FD filters were
designed using a window offset with MF FD filter of
length Nog = 5 for cutoff frequency f. = 0.94.

To achieve this result we have to assume that the
instantaneous sample rate of the input signal is follow-
ing

Fsl[n] = Fleo/FQ[TL] (32)
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Fig. 11. Variable sample rate conversion of speech signal (phrase “You’ve got no chance”). Example demonstrating removal

and restoration of modulation of fundamental frequency: a) input speech signal, b) spectrogram of input signal, ¢) zoomed

spectrogram of input signal with marked Fy frequency (white lines), d) resampling ratios, e) spectrogram of resampled
signal with constant fundamental frequency, f) spectrogram of restored signal.

and the output sample rate is constant Fgo[m] = F;.
On this basis the reversed instantaneous resampling
ratio r[m| (Fig. 11d) is computed using the algorithm
presented earlier (Fig. 8). Additionally, in order to keep
the length of the speech signal unchanged, for each
voiced segment we have selected such constant value
of the output fundamental frequency Fy which results
in average value of r[m] equal to one. The resampled
speech signal sounds synthetic but is more melodious.

This process can be reversed and the excitation fre-
quency modulation can be restored (Fig. 11f). This
time computation of r[n] is simple since the input sam-
ple rate is now constant and we already know the vari-

able output sample rate sampled at output sampling
instants.

Trev[n] = Fo[n]/Fo. (33)
The signal is reconstructed with almost no noticeable
distortions (Fig. 11f). The only problems are a slightly
limited signal bandwidth and minor aliasing distor-
tions that can be noticed at ¢ = 0.7. This aliasing is
the result of a large r[m] > 1.5 which introduced dis-
tortions during the first stage of processing (Fig. 11e).
These distortions can be reduced by decreasing f., but
this would result in significant bandwidth limitation in
other segments of the processed signal. Another solu-
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tion is to use in the formula (16) a variable f. changing
in accordance to the ratio r[m] but this would signifi-
cantly increase computational cost since we would not
be able to use the Farrow structure.

8. Conclusion

We have demonstrated that a VFD filter imple-
mented using the Farrow structure can be applied to
audio signal resampling with continuously changing
sample rate ratio. The proposed approach can be used
to simulate signal distortions, for example to change
or remove speech intonation, as well as to correct old
recordings distorted due to non-constant media veloc-
ity, e.g. magnetic tape. Full utilization of the proposed
tool requires that the properties of recorded distor-
tions, as in the case of reconstruction of old record-
ings, are automatically measured (CIARKOWSKI et al.,
2005; CzZYZEWSKI et al., 2007; 2010). In this paper
we have demonstrated the capabilities of the proposed
solution based on the example of speech signal pro-
cessing. Resampling ratio have been selected based on
estimated fundamental frequency of voiced speech seg-
ments. On this basis, modulation of voiced excitation
has been suppressed and then reintroduced into the
processed signal. The primary limitation of the pro-
posed approach is the need to select a constant cutoff
frequency of the overall interpolation filter. It would
be better if we could change the cutoff frequency in
accordance with the instantaneous resampling ratio.
Therefore further research should focus on the appli-
cation of variable cutoff frequency and a search for an
efficient structure to implement FD filters designed us-
ing the offset window method allowing for such changes
during processing.

The demonstration code allowing for the re-
production of experiments presented in this paper
and audio sample files are available on the web page
http: //pg.edu.pl/26fd45817c marek.blok/VR-SRC-AofA.
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