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The term roughness is used to describe a specific sound sensation which may occur when listening
to stimuli with more than one spectral component within the same critical band. It is believed that the
spectral components interact inside the cochlea, which leads to fluctuations in the neural signal and,
in turn, to a sensation of roughness. This study presents a roughness model composed of two successive
stages: peripheral and central. The peripheral stage models the function of the peripheral ear. The central
stage predicts roughness from the temporal envelope of the signal processed by the peripheral stage. The
roughness model was shown to account for the perceived roughness of various types of acoustic stimuli,
including the stimuli with temporal envelopes that are not sinusoidal. It thus accounted for effects of
the phase and the shape of the temporal envelope on roughness. The model performance was poor for
unmodulated bandpass noise stimuli.
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Notations

AM – amplitude-modulated,

AN – auditory nerve,

BM – basilar membrane,

CF – characteristic frequency,

ERB – equivalent rectangular bandwidth,

pAM – pseudo amplitude-modulated,

RMS – root mean square,

SAM – sinusoidally amplitude-modulated,

SFM – sinusoidally frequency-modulated,

SI – synchronization index,

SPL – sound pressure level.

1. Introduction

Roughness is the term first introduced by von
Helmholtz to describe a harsh, buzzing or rattling
sound sensation (Helmholtz, 1895). This sound qual-
ity usually accompanies stimuli with more than one
spectral component within the same critical band.
In the peripheral ear, interaction of these spectral
components produces beats. For the frequencies up
to about 20 Hz, the beats are perceived as fluctua-
tions in loudness; for the frequencies between about
20 and 300 Hz, the beats are perceived as roughness

(Mathes, Miller, 1947; Terhardt, 1974; Vassi-
lakis, 2001).
The unit of roughness is the asper – 1 asper is

the roughness of a 100% SAM tone with a frequency
of 1 kHz, a sound pressure level (SPL) of 60 dB and
a modulation frequency of 70 Hz (Fastl, Zwicker,
2007). A number of studies have shown the dependen-
cies of perceived roughness on physical parameters of
synthetic stimuli, e.g., for two-tone stimuli (Plomp,
Steeneken, 1968; Vassilakis, 2001; Miśkiewicz
et al., 2006; 2007), sinusoidally amplitude-modulated
(SAM) tones (Terhardt, 1974; Aures, 1984), si-
nusoidally frequency-modulated (SFM) tones (Kemp,
1982), mixed modulated (SAM and SFM) tones
(Hartmann, Hnath, 1982; Kin, Dobrucki, 1998),
stimuli with envelopes that are not sinusoidal
(Mathes, Miller, 1947; Pressnitzer, McAdams,
1999), and unmodulated bandpass noises (Aures,
1985), reviewed in (Fastl, Zwicker, 2007; Daniel,
Weber, 1997). It has been shown that the depen-
dence of roughness of SAM tones, broadband noises, or
SFM tones on modulation frequency exhibits a band-
pass characteristic – it increases with increasing mod-
ulation frequency, reaches its maximum, and then de-
creases, as the modulation frequency further increases
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(Fastl, Zwicker, 2007). A similar bandpass char-
acteristic exhibits the roughness of two simultaneous
pure tones, shown as a function of their frequency dif-
ference (Miśkiewicz et al., 2006).
Not only the frequency difference between the spec-

tral components, but also their relative phase may af-
fect roughness. Mathes and Miller (1947) showed
the phase effects using quasi frequency-modulated
(QFM) tones; Pressnitzer and McAdams (1999)
used pseudo amplitude-modulated (pAM) tones and
stimuli with asymmetrical temporal envelopes. Some
of the stimuli had a similar temporal envelope but
were perceived with a different roughness. Press-
nitzer and McAdams (1999) processed these stimuli
by a model of the peripheral ear and obtained signals
with a different shape of the temporal envelope – the
stimuli with a higher roughness had steeper rising parts
of the temporal envelope.
Various roughness models have been developed

in the past decades, for a review see (Vassilakis,
2001; Leman, 2000). So called “curve-mapping”
models detect frequency components in the spectrum
of the sound and map it onto a psychoacoustical
curve of roughness (Leman, 2000). For example,
Vassilakis (2000) designed a roughness model of
this type. The curve-mapping models cannot predict
roughness of signals with a continuous spectrum, e.g.,
noises, or roughness of pAM stimuli, or stimuli with
asymmetrical temporal envelopes (Vassilakis, 2001;
Leman, 2000). A more general approach to predict
roughness is to employ auditory models (models of the
peripheral ear). Daniel andWeber (1997) improved
on a model designed by Aures (1985), see also (Wang
et al., 2013). The model predicts roughness from the
estimated modulation depth of a signal filtered by
a bank of critical band (Bark scale) filters. Daniel and
Weber verified the roughness model and showed a very
good agreement between predictions and subjective
data for SAM and SFM tones and for unmodulated
bandpass noises (Daniel, Weber, 1997). Leman
(2000) introduced the synchronisation index (SI)
roughness model. The SI model employs an auditory
model which transforms the input acoustic stimulus
into the simulated neural signal in auditory nerve
(AN) fibers; it predicts roughness from the energy
of the short-term spectrum of the simulated neural
signal – synchronisation of the neural signal with beats
increases the energy at low frequencies (up to 300 Hz).
The Daniel and Weber and SI roughness models

cannot account for effects of the phase on roughness
(Pressnitzer, McAdams, 1999; Leman, 2000). In
order to cover these stimuli,Kohlrausch et al. (2005)
adjusted the peripheral stages of the Daniel and We-
ber and SI roughness models. They included various
algorithms simulating the adaptation of the neural sig-
nal in AN fibers. This modification made the Daniel
and Weber roughness model sensitive to the shape of

the waveform envelope. However, Kohlrausch et al.
(2005) concluded that the predicted data did not agree
well with the subjective roughness.
This study presents a roughness model which em-

ploys a previously designed model of cochlear hydrody-
namics. The roughness model is an improved variant
of the roughness models published in (Vencovský,
2014a; 2014b). It allows to take into account the shape
of the temporal envelope of the signal obtained after
processing by a model of the peripheral ear. The study
verifies the model using results (reproduced from lit-
erature) of listening tests for SAM tones, pAM tones,
stimuli with asymmetrical temporal envelopes, SFM
tones, unmodulated narrowband noise, and two-tone
stimuli composed of harmonic complex tones (har-
monic intervals of the chromatic scale).

2. Roughness model

The roughness model is composed of two successive
stages: peripheral and central. Figure 1 shows a dia-
gram of the model. Algorithms used in the peripheral
stage were adapted from literature; the central stage
was designed in this study.

Fig. 1. Roughness model diagram.

2.1. Peripheral stage

The peripheral stage is composed of three succes-
sive blocks: an outer- and middle-ear model, a model
of the basilar membrane (BM) and cochlear hydrody-
namics, and a model of the inner hair cells (IHCs) and
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the auditory nerve (AN) synapse. Its input is an acous-
tic waveform at the entrance of the outer ear, and its
output is a probability of neural discharge in AN fibers.

Outer- and middle-ear model

The outer- and middle-ear model was designed
and implemented in (MAP, 2014). Its first part, the
outer-ear model, is composed of two parallel 1-st order
Butterworth bandpass filters which approximate res-
onances of the auditory canal. One of the filters has
a gain of 10 dB, a lower cutoff frequency of 1 kHz, and
a higher cutoff frequency of 4 kHz. The other one has
a gain of 25 dB, a lower cutoff frequency of 2.5 kHz,
and a higher cutoff frequency of 7 kHz. The output
signal of the outer-ear model is a sum of the filtered
signals and the sound pressure wave at the input of the
outer-ear model. The middle-ear model transforms the
output of the outer-ear model to the simulated vibra-
tions of the stapes. It is composed of two cascaded 1st-
order Butterworth filters: a lowpass filter with a cutoff
frequency of 50 Hz, and a highpass filter with a cut-
off frequency of 1 kHz. The filtered signal is multiplied
by a scalar of 45× 10−9, which transforms the filtered
signal into the stapes displacement in meters.

Model of the BM and cochlear hydrodynamics

The model of the BM and cochlear hydrodynam-
ics was designed in (Mammano, Nobili, 1993; No-
bili, Mammano, 1996; Nobili et al., 2003). It ap-
proximates the BM by an array of damped oscillators
coupled via surrounding fluid. The displacement, ξi, of
the i-th oscillator is given by

miξ̈i(t) + hiξ̇i(t) + si[2ξ̇i(t)− ξ̇i−1(t)− ξ̇i+1(t)]

+ kiξi(t) = fHi
(t) + fOi

[ηi(t)], (1)

where mi, hi, si, and ki are mass, positional viscosity,
sharing viscosity and stiffness, respectively. The oscil-
lators are driven by force fHi

(t) given by

fHi
(t) = −GSi

aSi
(t)−

N∑

j=1

Gj
i ξ̈j(t), (2)

where aSi
(t) is the acceleration of the stapes and ξ̈i(t)

is the acceleration of the individual oscillators. GSi

and Gj
i are coefficients transforming the accelerations

into the corresponding forces. The second force term
fOi

[ηi(t)] is a nonlinear sigmoidal function transform-
ing outer hair cell (OHC) stereocilia displacement ηi(t)
into the OHC force. The stereocilia displacement is
given by the second array of oscillators simulating the
subsystem composed of the tectorial membrane (TM)
and cells in the organ of Corti. For details, the reader
is referred to (Nobili et al., 2003).
In this study, the model is used with parameters

given in (Nobili et al., 2003). However, damping hi
was multiplied by a constant of 0.31 and feedback force

fOi
[ηi(t)] of the oscillators by a constant of 0.43 in or-

der to decrease the bandwidth of cochlear filters at
higher levels. Table 1 shows the equivalent rectangular
bandwidths (ERBs) of the simulated cochlear filters.
ERBGM are the ERBs of auditory filters measured
in (Glasberg, Moore, 1990). The model is com-
posed of 300 oscillators with characteristic frequencies
(CFs) ranging between 30 Hz and 17 kHz. The CF of
each channel is the frequency of 10-dB SPL pure tone
which causes the highest excitation in the given chan-
nel. Only the signals in 158 out of the 300 channels are
fed into the subsequent IHC/AN model. The channels
were chosen according to their CF, such that the den-
sity of the CF was four channels per each critical band
with ERB provided in (Glasberg, Moore, 1990).

Table 1. Equivalent rectangular bandwidth (ERB)
of the simulated cochlear filters.

Level
[dB SPL]

Characteristic frequency [kHz]

0.125 0.25 0.5 1 2 4

equivalent rectangular bandwidth [Hz]

20 43 62 89 141 225 390

40 43 62 90 148 245 521

60 43 70 122 201 337 818

80 54 98 168 307 528 1107

ERBGM 38 52 79 133 241 456

Inner hair cells and auditory-nerve synapse model

The IHC/AN model transforms the BM displace-
ment in each channel of the cochlear model to a prob-
ability of neurotransmitter release into the synapse of
AN fibers. This process is modelled by means of the al-
gorithms designed in various studies and implemented
in (MAP, 2014).
The BM displacement, w(t), is first transferred into

the displacement of the IHC stereocilia, u(t), given by

τc
du(t)
dt

+ u(t) = τcCcilia
dw(t)
dt

, (3)

where τc is a time constant and Ccilia is a gain factor
(Shamma et al., 1986). This equation ensures that the
stereocilia move in phase with the BM velocity at low
frequencies and in phase with the BM displacement at
high frequencies (Shamma et al., 1986; Sumner et al.,
2002). Bending of the stereocilia opens ion channels.
This is, according to (Sumner et al., 2002), modelled
as a change of the apical conductance, G(u), given by
a Boltzmann function

G(u) = Gmax
cilia

[
1 + exp

(
−u(t)− u0

s0

)

×
[
1 + exp

(
−u(t)− u1

s1

)]]−1

+Ga, (4)

where Gmax
cilia is the maximal conductance with all chan-

nels open, s0, u0, s1, and u1 are constants determining
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the shape of the nonlinear Boltzmann function and
passive conductance

Ga = Gmax
cilia

[
1 + exp

(
u0
s0

)

×
[
1 + exp

(
u1
s1

)]]−1

+G0, (5)

where G0 is the resting conductance.
Ions entering the IHC change the membrane poten-

tial. The process is modelled by

Cm

dV (t)

dt
+G(u)(V (t)− Et) +Gk(V (t)− E′

k) = 0,

(6)
where Cm is the cell capacitance, V (t) is the mem-
brane potential, Gk is the voltage-invariant basolat-
eral membrane conductance, Et is the endocochlear
potential, and E′

k is the reversal potential of the basal
current corrected for the resistance of the supporting
cells: E′

k = Ek+EtRp/(Rt+Rp) (Shamma et al., 1986;
Sumner et al., 2002).
Changes in the membrane potential open ion chan-

nels for calcium ions, which then mediate the release
of neurotransmitter into the synaptic cleft. Calcium
current ICa is given by

ICa(t) = Gmax
Ca m3

ICa
(t)(V (t)− ECa), (7)

where ECa is the reversal potential for calcium, Gmax
Ca

is the maximal calcium conductance with all the ion
channels open, andmICa

is the fraction of open calcium
channels (Sumner et al., 2002). The steady state value
of the fraction of open ion channelsmICa,∞ is simulated
by a Boltzmann function (Sumner et al., 2002)

mICa,∞ = [1 + β−1
Ca exp(−γCaV (t))]−1, (8)

where βCa and γCa are constants. The fraction of open
ion channels mICa

is given by

τICa

dmICa
(t)

dt
+mICa

(t) = mICa,∞, (9)

where τICa
is a time constant (Sumner et al., 2002).

The concentration of calcium ions in the cell [Ca2+] is
calculated from the calcium current ICa by

τ[Ca]
d[Ca2+](t)
dt

+ [Ca2+](t) = ICa(t), (10)

where τ[Ca] is a time constant (Sumner et al., 2002).
The concentration of calcium ions then defines the

probability of release of the neurotransmitter into the
synaptic cleft, k(t). It is, according to (Meddis, 2006),
calculated by

k(t) = z[Ca2+]3(t), (11)

where z is a scalar constant converting the calcium
concentration into the release rate.

Release of the neurotransmitter into the synaptic
cleft causes firing of neural discharge into the synapse
of AN fiber. Circulation of the neurotransmitter is, ac-
cording to (Meddis, 1986), modelled by

dq(t)
dt

= y(1− q(t)) + xw(t) − k(t)q(t), (12)

dc(t)
dt

= k(t)q(t)− lc(t)− rc(t), (13)

dw(t)
dt

= rc(t) − xw(t). (14)

The neurotransmitter is released from the immediate
(q) store into the cleft (c) at rate k(t). The release
rate is mediated by the calcium concentration. Some
of the transmitter in the cleft is lost at rate l. The
remaining transmitter is taken back into reprocessing
store (w) in the cell at rate r and then into (q) at rate x.
Concentration of the neurotransmitter in the cleft (c)
is the output of the IHC/AN model. It is proportional
to the probability of spike firing into the AN fiber.
In this study, parameters of the algorithms were

adjusted (see Table 2) in order to achieve a wide dy-

Table 2. Parameters of the IHC/AN model.

IHC membrane potential

τc, cilia/BM time constant [s] 1.3E-4

Ccilia, cilia/BM coupling gain [dB] 0.03

s0, displacement sensitivity [m−1] 30E-9

u0, displacement offset [m] 5E-9

s1, displacement sensitivity [m−1] 1E-9

u1, displacement offset [m] 1E-9

Gmax
cilia, max. mechanical conduct. [S] 6E-9

G0, resting conductance [S] 8E-10

Et, endocochlear potential [V] 0.1

Ek, potassium reversal potential [V] −0.08

Rp/(Rp +Rt), resting conductance [S] 2E-8

Cm, total capacitance [F] 4E-12

Presynaptic calcium level

ECa, reversal potential [V] 0.066

βCa 400

γCa 130

τm, calcium current time constant [s] 5E-5

τCa calcium clearance time constant [s] 4E-5

z, converts from [Ca2+]3 to probability 2E42

Gmax
cilia, maximum Ca

2+ conductance 1.4E-8

IHC transmitter release parameters

y, replenishment rate [s−1] 6

l, loss rate [s−1] 250

x, reprocessing rate [s−1] 60

r, recovery rate [s−1] 500

M , maximum free transmitter quanta 12
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namic range. Figure 2 shows the input/output (I/O)
functions obtained using pure tones with a frequency
of 0.25, 1 and 4 kHz; the I/O functions were obtained
in the model channels with CF equal to the frequency
of the pure tones.

Fig. 2. Input/output (I/O) functions of the pe-
ripheral stage obtained using pure tones with
a frequency of 0.25, 1 and 4 kHz. The functions
were obtained in the channels of the peripheral
stage with CF equal to the frequency of the pure

tones.

2.2. Central stage

The central stage calculates the roughness from the
signal processed by the peripheral stage (see Fig. 1).
The parameters of the central stage were set in order to
achieve an agreement with the subjective data concern-
ing the roughness of 100% SAM tones. The subjective
data – shown below in Subsec. 3.1.1 – were reproduced
from Fig. 11.2 in (Fastl, Zwicker, 2007).
In the central stage, the first block called “enve-

lope” estimates the envelope of the simulated neural
signal in each k-th channel of the peripheral stage. The
solid line in the top panel of Fig. 3 shows the simulated
neural signal in the channel with CF = 1 kHz. The

Fig. 3. Top panel: the auditory model output
signal at CF of 1 kHz obtained in response to
a 100% SAM tone with a frequency of 1 kHz,
modulation frequency of 70 Hz, and level of
60 dB SPL. The dashed line shows the sig-
nal envelope. Bottom panel: the signal envelope
smoothed by a 1st-order Butterworth filter with
a cutoff frequency of 70 Hz. The tick lines show
the rising parts of the smoothed envelope.

signal was obtained in response to a 100% SAM tone
with a frequency of 1 kHz, a level of 60 dB SPL, and
a modulation frequency of 70 Hz. The signal envelope
– shown by the dashed line – was obtained by cubic
spline interpolation of peaks in each half-wave of the
signal’s fine structure. The second block called “low-
pass filter” processes the envelope estimated by the
first block. It is a 1st-order Butterworth lowpass filter
with a cutoff frequency of 70 Hz. This filter decreases
the temporal resolution of the model, i.e., it decreases
the envelope fluctuations at frequencies above 70 Hz.
The bottom panel of Fig. 3 shows the filtered envelope
of the neural signal plotted in the top panel.
The filtered envelope, s(t, k), in each channel is

then divided into successive time frames with duration,
Tfr, of 30 ms. Each time a frame is fed into three par-
allel branches: the first branch detects and processes
the rising slopes of s(t, k), the second branch calcu-
lates the root-mean-square (RMS) values of s(t, k), and
the third branch calculates the cross-correlation coef-
ficients between the individual channels of s(t, k). The
outputs of the three branches are then used to calcu-
late the overall roughness.

First branch: The block called “modulation features”
detects the rising slopes of the filtered envelope, s(t, k),
(the tick lines in the bottom panel of Fig. 3). It then –
separately for each i-th rising slope within the time
frame – extracts its minimal, Emin(i, k), and maxi-
mal, Emax(i, k), value (see the bottom panel of Fig. 3).
These values are used to calculate two modulation
features of each rising slope: the modulation index,
M(i, k), given by

M(i, k) =
Emax(i, k)− Emin(i, k)

Emax(i, k) + Emin(i, k)
; (15)

and the duration of the rising slope, Trs(i, k), given
as the difference between the temporal positions of
Emax(i, k) and Emin(i, k) in seconds. For 100% SAM
tones, the dependence of roughness on the modula-
tion frequency exhibits bandpass characteristic: for the
SAM tone frequency ≥ 1 kHz, it is maximal at the
modulation frequency of about 70 Hz; and for the SAM
tone frequency < 1 kHz, it is maximal at modula-
tion frequencies < 70 Hz (Fastl, Zwicker, 2007) (see
Fig. 7). Parameter Trs(i, k) allows to account for the
lower slope of the roughness dependency, and mod-
ulation index M(i, k) for the higher slope. The 70-Hz
low-pass filter assures that theM(i, k) decreases as the
modulation frequency increases above 70 Hz. More-
over, the peripheral stage of the roughness model sim-
ulates the function of the cochlea, which can be mod-
elled by a bank of bandpass filters. Since the band-
width of the filters is small for low CF (Glasberg,
Moore, 1990), the side components, fc − fm and
fc+fm, of a SAM tone with a frequency, fc, and a mod-
ulation frequency, fm, falls into the adjacent bands for
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smaller values of fm than in the case of SAM tones
with higher fc. The modulation index, M(i, k), thus
for SAM tones with a frequency < 1 kHz starts to de-
crease at modulation frequencies < 70 Hz.
To calculate roughness, Rsp(k), in each k-th chan-

nel, M(i, k) and Trs(i, k) are combined by1, 2

Rsp(k) = max
i

{Msat(i, k) · F 1.5
sat (i, k)}, (16)

where Msat(i, k) is the modulation index of the rising
slope saturated at 0.5,

Msat(i, k) =

{
M(i, k) if M(i, k) ≤ 0.5,

0.5 if M(i, k) > 0.5,
(17)

and Fsat(i, k) is the parameter calculated from the du-
ration of the rising slopes, Trs(i, k),

Fsat(i, k)=





1

Trs(i, k)
if

1

Trs(i, k)
≤ 96 s−1,

119.5 if
1

Trs(i, k)
≥ 149 s−1,

3.7 · 10−3

T 2
rs(i, k)

+
1.36

Trs(i, k)
else.

(18)

The values of the modulation index, M(i, k), are often
in a range between 0 and 0.5 in the model channels of
CF close to the spectral components of a 100% SAM
tone, and higher than 0.5 in the adjacent channels.
Equation (17) thus decreases the predicted roughness
in the channels which are not close to the CF of the
spectral components of the 100% SAM tone. Equa-
tion (18) calculates the reciprocal of Trs(i, k) and also
shapes and limits its values (see Fig. 4) in order to
predict the roughness of 100% SAM tones.

Fig. 4. Transformation function given by
Eq. (18). The function transforms the du-
ration, Trs(i, k), of the rising part of the

filtered temporal envelope.

The calculated roughness, Rsp(k), in each channel
k is then processed further. The quantiles (20%) of

1There is a mistake in (Vencovský, 2014a; 2014b). The ex-
ponent 1.5 should be placed above the term Fsat calculated from
the duration of the rising slopes of the filtered envelope.
2The relation resembles the Fastl and Zwicker roughness

model (Fastl, Zwicker, 2007, Eq. (11.1)).

Rsp(k) over four adjacent channels are calculated as
given by

Rspq
(n) = quantile

20%

{Rsp(k), Rsp(k + 1),

Rsp(k + 2), Rsp(k + 3)}, (19)

∀k ∈ 1, 3, 5, ..., 158− 3.

This gives Rspq
(n) with n ranging from 1 to 78. The

purpose of Eq. (19) is described on an example shown
in Fig. 5, in which the solid line shows Rsp(k) of a 100%
SAM tone with a frequency of 250 Hz, a level of 60 dB
SPL, and a modulation frequency of 50 Hz. The dashed
line in Fig. 5 shows Rspq

(n) calculated from Rsp(k)
using Eq. (19). The three dips in Rsp(k) (the solid line)
corresponds to the three spectral components of the
SAM tone, with a frequency of 200, 250, and 300 Hz.
The roughness of a 250 Hz SAM tone is highest at
a modulation frequency of about 43 Hz (see Fig. 7). If
the modulation frequency of the SAM tone is increased
above 43 Hz, Rsp(k) decreases mainly in the places of
the dips; it may even increase in the adjacent channels.
Equation (19) thus helps to ensure that the dependence
of the predicted roughness of 100% SAM tones on the
modulation frequency agrees with subjective data –
mainly for SAM tones with a frequency < 1 kHz.

Fig. 5. Predicted roughness in individual chan-
nels, k or n, of the roughness model. The data
are shown for a 100% SAM tone with a fre-
quency of 250 Hz, a level of 60 dB SPL, and
a modulation frequency of 50 Hz. The solid line
shows the values of Rsp(k) given by Eq. (16).
The dashed line shows the values of Rspq

(n)
given by Eq. (19).

Second branch: RMS values of the filtered envelope,
s(t, k), within one time frame are given by

xrms(k) =

√√√√
1

Tfr

∫

Tfr

s2(t, k)dt, (20)

where Tfr is duration of the time frame (30 ms). The
RMS values are then averaged by

xmr
(n) = mean{xrms(k), xrms(k + 1),

xrms(k + 2), xrms(k + 3)}, (21)

∀k ∈ 1, 3, 5, ..., 158− 3.
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The averaging decreases the number of channels to
78 (equal to the number of channels of Rspq

(n)). The
channels of RMS below a specific threshold value are
excluded from the roughness prediction by setting its
RMS value to 0 as given by

xmr
(n) =

{
xmr

(n) if xmr
≥ 0.1xmax

0 else

xmax = max
n

{xmr
(n)}.

(22)

Third branch: The last parameter which is used to
predict roughness are the cross-correlation coefficients,
c(n), between the filtered envelopes, s(t, k). The cross-
correlation coefficients are calculated between the first
and the last channel of four adjacent channels in s(t, k)
as given by

c(n) = corr{s(t, k), s(t, k + 3)}

∀k ∈ 1, 3, 5, ..., 158− 3,

c(n) =

{
c(n) if c(n) ≥ 0
0 else.

(23)

The cross-correlation coefficients are employed in or-
der to decrease the predicted roughness of noise stim-
uli. The roughness models designed in (Aures, 1985;
Daniel, Weber, 1997) also employ cross-correlation.

Roughness calculation: The roughness in one time
frame of s(t, k) is calculated by

R =
√
b
∑

n

h(n)Rspq
(n)c(n)xmr

(n)∑
n xmr

(n)
, (24)

where Rspq
(n), xmr

(n), and c(n) are the aforemen-
tioned parameters, h(n) is a weighting function, and L
is the number of the channels where xmr

(n) > 0. The
calculated RMS values, xmr

(n), of s(t, k) are used in
Eq. (24) in order to emphasise the predicted roughness
in the channels where xmr

(n) is high. The term
√
b and

the weighting function, h(n), ensure that the predicted
roughness quantitatively fits the subjective roughness
(in aspers) of 100% SAM tones (Fastl, Zwicker,
2007). Figure 6 shows the weighting function, h(n). For

Fig. 6. Weighting function applied in Eq. (24)
to predict quantitatively similar data of rough-
ness in aspers as show the subjective data for

100% SAM tones (see Fig. 7).

the model channels with CF closest to the frequency
of 0.125, 0.25, 0.5, 1, 2, 4, 8, and 16 kHz, the values of
h(n) were set to 1.35, 1.22, 1.01, 1, 0.72, 0.41, 0.33, and
0.25, respectively. The values of h(n) in the remain-
ing channels were then calculated by a cubic spline
interpolation of the experimentally set values. Since
the central stage predicts the roughness in successive
30-ms time frames, the overall predicted roughness is
calculated as the median.

3. Verification of the roughness model

The roughness model was verified using various
types of acoustic stimuli. The predicted data were com-
pared with subjective data reproduced from literature.

3.1. Roughness of sinusoidally amplitude-modulated
tones

SAM tones are given by

p(t) = A [1 +m · cos(2πfmt)] cos(2πfct), (25)

where A is the amplitude, m is the modulation index,
fm is the modulation frequency, and fc is the tone
frequency.

3.1.1. Dependence on the modulation frequency

Figure 7 shows the roughness of a 100% SAM tone
as a function of the modulation frequency: the dashed

Fig. 7. Dependence of the roughness of a 100% SAM
tone on the modulation frequency. The dashed lines
show the results of listening tests reproduced from
(Fastl, Zwicker, 2007). Markers connected by solid
lines show the predicted roughness. The level of the
SAM tone was 60 dB SPL and its frequency is given

in the upper right corner of each panel.
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lines show the perceived roughness, reproduced from
(Fastl, Zwicker, 2007), measured by Aures (1984),
and the markers connected by solid lines show the pre-
dicted data. Frequencies of the SAM tone are given in
the upper right corner of each panel. The level of the
SAM tone was 60 dB SPL. The central stage of the
roughness model was designed and its parameters were
set in order to achieve an agreement between the pre-
dicted and subjective data. Spearman’s and Pearson’s
correlations between the data are significant; the low-
est is the Spearman’s correlation for the 4-kHz SAM
tone (rho = 0.85, p = 1.3 · 10−4); however, for the re-
maining data: rho ≥ 0.96, p ≤ 7.72 · 10−8.

3.1.2. Dependence on the modulation index

Figure 8 shows the roughness of a 1-kHz SAM tone
as a function of the modulation index. The level of
the tone was 70 dB SPL and the modulation frequency
was 70 Hz. The dashed, dash-dotted, and dotted lines
show the power-law relation used in (Daniel, We-
ber, 1997): R = 1.36 · mp, where m is the modu-
lation index (0-1) and p is the exponent. The value
of the exponent was estimated to be equal to 1.6
(Fastl, Zwicker, 2007), 2 (Terhardt, 1968), and
1.5 (Vogel, 1975). The predicted roughness is plotted
as circles connected by solid lines. The best agreement
between the model predictions and the power-law ap-
proximations is in the range of m between 0 and 0.8.
Spearman’s and Pearson’s correlations calculated be-
tween the predicted and subjective data are significant:
rho ≥ 0.98, p ≤ 1.12 · 10−5.

Fig. 8. Roughness of a SAM tone with a fre-
quency of 1 kHz, a level of 70 dB SPL, and
a modulation frequency of 70 Hz, plotted as
a function of the modulation index. The
dashed, dashed-dot, and dotted lines were ob-
tained using relation R = 1.36 · mp, where m
is the modulation index and p is an exponent
equal to 1.6, 2, and 1.5, respectively. The val-
ues of p were estimated from the subjective ex-
perimental data: Fastl and Zwicker (2007)
estimated p = 1.6, Terhardt (1968) p = 2,

and Vogel (1975) p = 1.5.

3.2. Roughness of stimuli with envelopes
that are not sinusoidal

3.2.1. Pseudo amplitude-modulated tones

The amplitude spectrum of a 100% SAM tone con-
tains three spectral components. The central compo-
nent with frequency fc (frequency of the modulated
tone) and side components with frequencies fc − fm
and fc + fm (fm is the modulation frequency), and
amplitudes equal to half of the amplitude of the cen-
tral component. Setting the starting phases of the side
components to zero and altering the starting phase of
the central component, φ, creates pseudo amplitude-
modulated (pAM) tones. If φ is nonzero, the time
waveform envelope of the pAM tone is not sinusoidal.
pAM tones with opposite φ (e.g. −π/6 and π/6) have
similar waveform envelopes but differ in their temporal
fine structure (Pressnitzer, McAdams, 1999).
Figure 9 shows the roughness of pAM tones as

a function of the starting phase absolute value, |φ|, of
the central component; panels in the top row show the
perceived roughness reproduced from (Pressnitzer,
McAdams, 1999), and panels in the bottom row show
the predicted roughness; dashed lines show the data
for negative values of φ, solid lines – for positive val-
ues. The level of the pAM tones was 60 dB SPL,
the frequency of the central component was equal
to fc and the modulation frequency was equal to
fm, given in the upper right corner of each panel.
Pressnitzer andMcAdams (1999) used the method
of pairwise comparison to measure the roughness of
pAM tones; and then they used the Bradley-Terry-
Luce (BTL) method to transform the comparison judg-
ments into the normalised linear interval scale. The
standard deviations of the roughness data were esti-
mated using the bootstrap technique (Pressnitzer,
McAdams, 1999). The predicted roughness was nor-
malised by the maximal value of the data shown
in each panel. This was done in order to better vi-
sualize the data. The left ordinate of each panel
shows the normalised roughness and the right ordi-
nate (gray) shows the predicted roughness in aspers.
Since the subjective method gave the data on an inter-
val scale, the subjective and predicted data should be
compared as ranking data, which means that Spear-
man’s correlations between the predicted and subjec-
tive data are the most important. However, Spear-
man’s and also Pearson’s correlations calculated be-
tween the data significant for all fc: rho ≥ 0.79, p ≤
0.048.
The roughness model accounts for the subjective

data because of the algorithms used in the central stage
– after processing the pAM tones by the peripheral
stage, the rising slopes of the signal envelopes are for
the pAM tones with +φ values steeper than for the
pAM tones with −φ values.
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Fig. 9. Roughness of pAM tones as a function of the starting phase absolute value, |φ| – the dashed and solid lines show
the data for negative and positive values of φ, respectively. The top panels show the mean values and standard errors of
the mean of subjective data reproduced from (Pressnitzer, McAdams, 1999). The bottom panels show the predicted
roughness normalised by the maximal predicted value in each panel. The right ordinates show the predicted roughness in

aspers. The frequency, fc, and the modulation frequency, fm, of the pAM tones are given in the panels.

3.2.2. Sawtooth and reversed stimuli

To study effects of the waveform envelope asymme-
try on roughness,Pressnitzer andMcAdams (1999)
used “sawtooth” and “reversed” stimuli (also called
“ramped” and “damped”, respectively). The “saw-
tooth” stimuli are amplitude-modulated tones given
by

pst(t) =

(
1 +

m ·Est(t)

max{Est(t)}

)
cos
(
2πfct−

π

2

)
, (26)

where fc is the tone frequency, m is the modulation
index, and Est(t) is the modulation signal. Est(t) is a
harmonic complex tone given by

Est(t) =
N∑

n=1

1

n
cos
(
2πnfmt−

π

2

)
, (27)

where fm is the modulation frequency and N is a num-
ber of harmonics. The value of N is set to fulfill the
condition N · fm ≤ 0.5ERB(fc). The condition en-
sures that the spectral components of xst(t) are within
one critical band of bandwidth equal to the ERB of
auditory filters, which was estimated in (Glasberg,
Moore, 1990). The “reversed” stimuli – time rever-
sals of the “sawtooth” stimuli – can be generated by
inverting the sign (to +π/2) in the argument of cosine
functions in Eq. (26) and Eq. (27).
Figure 10 shows the roughness of the “sawtooth”

(crosses connected by dashed lines) and “reversed”
(circles connected by solid lines) stimuli: panels in the
top row show the perceived roughness, as reproduced

Fig. 10. Roughness of tones with asymmetrical
temporal envelope: crosses connected by dashed
lines show the roughness of “sawtooth” stim-
uli, and circles connected by solid lines show
the roughness of “reversed”stimuli. The top pan-
els show the mean and standard errors from
the mean of subjective data reproduced from
(Pressnitzer, McAdams, 1999). The bottom
panels show the predicted roughness normalised
by the corresponding maximal value for each
panel, which gave the maximal predicted rough-
ness of 1. The frequency, fc, of the stimuli was
2.5 and 5 kHz, the modulation frequency, fm, was

70 Hz and the level was 60 dB SPL.

from (Pressnitzer, McAdams, 1999), obtained us-
ing the same method as for the pAM tones, and pan-
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els in the bottom row show the predicted roughness.
The data are plotted as a function of the modulation
index. The level of the stimuli was 60 dB SPL, the
modulation frequency was 70 Hz, the tone frequency
was 2.5 and 5 kHz, and the number of harmonics in
the modulation signal, N , was 2 and 4, respectively,
for the panels in the left and right column. The pre-
dicted roughness, which is shown by the panels in the
bottom row of Fig. 10, was normalised to its maxi-
mal value, separately for the data in each panel. The
left ordinates show the normalised roughness, and the
right ordinates (gray) show the predicted roughness
in aspers. The roughness model predicted – in agree-
ment with the subjective data – more roughness for
the “reversed” stimuli. However, the contrast between
both stimuli is not as high as in the subjective data
for fc = 5 kHz, where the “sawtooth” stimulus with
a modulation index of 0.8 was judged less rough than
the “reversed” stimulus with a modulation index of 0.4.
A similar discrepancy is in the data for fc = 2.5 kHz –
for the “sawtooth” stimulus with a modulation index
of 0.8 and the “reversed” stimulus with a modulation
index of 0.6. However, Spearman’s and Pearson’s cor-
relations calculated between the predicted and subjec-
tive data are significant: rho ≥ 0.85, p ≤ 0.032.

3.3. Roughness of sinusoidally frequency-modulated
tones

SFM tones are given by

p(t) = A · sin
[
2πfct−

∆f

fm
cos(2πfmt)

]
, (28)

where A is the amplitude, fc is the tone frequency, ∆f
is the frequency deviation, and fm is the modulation
frequency.Kemp (1982) used the method of magnitude
estimation to measure the roughness of SFM tones.
He presented the listeners with a pair of stimuli, stan-
dard and comparison (stimulus under test), and asked
them to assign a number reflecting the roughness of
the comparison relative to the roughness of the stan-
dard. A 100% SAM tone with a frequency of 1.6 kHz,
a level of 60 dB SPL, and a modulation frequency of
70 Hz was used as the standard.

3.3.1. Dependence on the modulation frequency

Figure 11 shows the roughness of SFM tones as
a function of the modulation frequency, fm: crosses
connected by dashed lines show medians and quar-
tiles of the subjective data reproduced from (Kemp,
1982), and circles connected by solid lines show the
predicted roughness. The SFM tones had a frequency
of 1.6 kHz, a level of 60 dB SPL and a frequency
deviation of ±800 Hz. The data are plotted as rela-
tive roughness to the roughness of a SFM tone with
a modulation frequency of 70 Hz. The right ordinate

Fig. 11. Dependence of roughness of SFM tones
on the modulation frequency, fm. Crosses con-
nected by dashed lines show medians and quartiles
of the subjective data reproduced from (Kemp,
1982). Circles connected by solid lines show the
predicted roughness. The frequency of the SFM
tones was 1.6 kHz, the modulation index,∆f , was
800 Hz, and the level was 60 dB SPL. The data
are shown as the relative roughness to the rough-
ness of a SFM tone with a modulation frequency
of 70 Hz. The right ordinate shows the predicted

roughness in aspers.

shows the predicted roughness in aspers. The subjec-
tive and predicted data agree within a range of quar-
tiles. Spearman’s and Pearson’s correlations are signif-
icant: rho ≥ 0.94, p < 1 · 10−4.

3.3.2. Dependence on the frequency deviation

Figure 12 shows the roughness of SFM tones as
a function of the frequency deviation: crosses con-

Fig. 12. Dependence of roughness of SFM tones
on the frequency deviation (modulation index),
∆f . Crosses connected by dashed lines show me-
dians and quartiles of the subjective data repro-
duced from (Kemp, 1982). Circles connected by
solid lines show the predicted roughness. The fre-
quency of the SFM tones was 1.6 kHz, the mod-
ulation frequency was 70 Hz, and the level was
60 dB SPL. The data are shown as the relative
roughness to the roughness of a SFM tone with a
frequency deviation of 800 Hz. The right ordinate
shows the predicted roughness in aspers.
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nected by dashed lines show the medians and quar-
tiles of subjective data reproduced from (Kemp, 1982),
and circles connected by solid lines show the predicted
roughness. The data are plotted as relative roughness
to the roughness of a SFM tone with a frequency devi-
ation of 800 Hz. The frequency of the SFM tones was
1.6 kHz, the modulation frequency was 70 Hz, and the
level was 60 dB SPL. For the frequency deviation up to
800 Hz, the predicted data qualitatively agree with the
subjective data. However, above 800 Hz the predicted
roughness starts to decrease. As a result, Spearman’s
and Pearson’s correlations between the predicted and
subjective data are not significant at the 0.05 level:
Spearman’s correlation is rho = 0.49, p = 0.15 and
Pearson’s correlation is rho = 0.63, p = 0.53.

3.4. Roughness of unmodulated bandpass noise

Aures (1985) measured the roughness of unmodu-
lated bandpass noises. During the measurements, he
asked the listeners to adjust the modulation index
of a SAM tone with a frequency of 1 kHz, a level of
70 dB SPL, and a modulation frequency of 70 Hz, to
be perceived with the same roughness as the band-
pass noise. Figure 13 shows the roughness of unmod-
ulated bandpass noise as a function of its bandwidth:

Fig. 13. Roughness of unmodulated bandpass
noises. Circles connected by dashed lines show
the medians and quartiles of subjective data
adapted from (Aures, 1985). Squares con-
nected by solid lines show the medians and
quartiles of the predicted roughness obtained
for ten realisations of the stimuli. Abscissa
shows the noise bandwidth. Each panel is for
a bandpass noise with centre frequency fc and

a level of 70 dB SPL.

circles connected by dashed lines show the medians
and quartiles of the subjective data, and squares con-
nected by solid lines show the medians and quartiles
of the predicted roughness. The subjective data mea-
sured by Aures were transformed into aspers using the
relation R = 1.36 · m1.6. Each panel shows the data
for unmodulated bandpass noise with frequency equal
to fc and level of 70 dB SPL. The predicted roughness
agrees with the subjective data only for fc = 4 kHz;
for the remaining stimuli, the predicted roughness is
much larger than the subjective data. Since the dis-
agreement is very obvious, Spearman’s and Pearson’s
correlations between the predicted and subjective data
were not calculated.

3.5. Roughness of harmonic intervals
of the chromatic scale

Vassilakis (2005) measured the roughness of two
tone stimuli (dyads) composed of harmonic complex
tones. Each tone had six harmonics with amplitude An

of the n-th harmonic given by An = A1/n. The fun-
damental frequency of the lower tone in the dyads was
set to middle C (C4, fundamental frequency 256 Hz,
equal temperament3). The level of the stimuli was
75 dB SPL. Listeners rated the roughness on a con-
tinuous scale ranging from 0 (not rough) to 42 (rough)
(Vassilakis, 2005).
Figure 14 shows the roughness of the dyads as

a function the fundamental frequency of the higher
tone: squares connected by dashed lines show the mean
values and standard deviations of the mean of the
subjective data reproduced from (Vassilakis, 2005),

Fig. 14. Roughness ratings of two tone stim-
uli composed of harmonic complex tones. Cir-
cles connected by dashed lines show the mean
values of the subjective data, reproduced from
(Vassilakis, 2005), across ten listeners. Squares
connected by solid lines show the predicted rough-
ness normalised to its maximal value and scaled
by the maximal value of the subjective roughness,
to be in the range of the used rating scale.

3Equal tempered C4 with a fundamental frequency of 256 Hz
corresponds to A4 with a fundamental frequency of 430.5 Hz.
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and circles connected by solid lines show the predicted
roughness. In order to compare the data visually, the
predicted roughness was normalised to its maximal
value and scaled by the maximal value of the subjective
roughness. The predicted data agree with the subjec-
tive data – Spearman’s correlation is rho = 0.92, p = 0,
and Pearson’s correlation is rho = 0.94, p = 1.5 · 10−6.

4. Conclusion

The study presented a new roughness model and
verified it using various types of acoustic stimuli: si-
nusoidally amplitude-modulated (SAM) tones, stim-
uli with envelopes that are not sinusoidal, sinu-
soidally frequency-modulated (SFM) tones, unmodu-
lated bandpass noise stimuli, and two tone stimuli
composed of harmonic complex tones. The perceived
roughness of the stimuli was reproduced from litera-
ture. The model performed well for most of the used
stimuli. The performance was poor for unmodulated
bandpass noise where the model predicted more rough-
ness than was shown by the subjective data.
The central stage of the roughness model predicts

roughness from the envelope – its rising parts – of the
simulated neural signal at the output of the peripheral
stage. This way of prediction allowed the model to ac-
count for the roughness of stimuli with envelope that
is not sinusoidal. After processing by the peripheral
stage, the roughness differences between these stimuli
are reflected in the shape of the temporal envelopes –
for the stimuli with more roughness, the rising parts
of the temporal envelope are steeper. These effects are
poorly accounted for by the roughness models pub-
lished in literature (e.g. Daniel, Weber, 1997; Le-
man, 2000).
The inability of the roughness model to predict the

roughness of unmodulated bandpass noises may indi-
cate another result of this study. Roughness models
(e.g.Daniel, Weber, 1997; Leman, 2000), which em-
ploy models of the peripheral ear often contain a set
of weighting filters allowing the models to account for
the dependence of roughness on modulation frequency,
which for SAM and SFM tones exhibits bandpass char-
acteristic. The designed roughness model does not con-
tain such a set of weighting filters. Instead, it was de-
signed to rely on its peripheral stage with the physi-
cal cochlear model. Since the limited frequency reso-
lution of the peripheral ear is suggested to contribute
to roughness perception, this approach may be more
reasonable. Despite the strong amplitude fluctuations
at the output of the peripheral stage in response to un-
modulated bandpass noises, its perceived roughness is
small. This may imply that roughness of these stimuli
is accounted for at higher stages of the hearing sys-
tem. This would mean that the presented modelling
approach allows the separation of stimuli whose rough-
ness is more determined by the function of the periph-

eral ear from those whose roughness is more deter-
mined at higher stages of the hearing system.
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