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The aim of this paper is to present methods of digitally synthesising the sound generated by vibroa-
coustic systems with distributed parameters. A general algorithm was developed to synthesise the sounds
of selected musical instruments with an axisymmetrical shape and impact excitation, i.e., Tibetan bowls
and bells. A coupled mechanical-acoustic field described by partial differential equations was discretized
by using the Finite Element Method (FEM) implemented in the ANSYS package. The presented synthe-
sis method is original due to the fact that the determination of the system response in the time domain
to the pulse (impact) excitation is based on the numerical calculation of the convolution of the forcing
function and impulse response of the system. This was calculated as an inverse Fourier transform of the
system’s spectral transfer function. The synthesiser allows for obtaining a sound signal with the assumed,
expected parameters by tuning the resonance frequencies which exist in the spectrum of the generated
sound. This is accomplished, basing on the Design of Experiment (DOE) theory, by creating a meta-model
which contains information on its response surfaces regarding the influence of the design parameters. The
synthesis resulted in a sound pressure signal in selected points in space surrounding the instrument which
is consistent with the signal generated by the actual instruments, and the results obtained can improve
them.
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1. Introduction

A synthesis of sound using digital models of vi-
broacoustic systems was conducted for selected mu-
sical instruments – Tibetan bowls and bells. These in-
struments, from the group of idiophones, were chosen
due to their unique axisymmetrical shape, which has
evolved into its current state over the years, as well as
due to how their vibration is caused by impact. The dif-
ferences between them related to the curvature of the
surface as well as wall thickness, causing them to have
varying proportions between the resonance frequencies
contained in the sound spectrum. The desired propor-
tions between frequencies are determined based on ex-
periments conducted for the first time in the 6th cen-
tury BC by Pythagoras (Fauvel et al., 2006), the aim
of which was to explain why consecutive or harmonis-
ing sounds created while playing a musical instrument
result in their consonant or dissonant perception by
the listener. It is worth noting that while analysing
the results, Pythagoras did not concern himself with
the concept of frequencies; instead, using geometrical

proportions, e.g., the length of a monochord string be-
ing shortened. He deducted that consecutive sounds
are pleasant to the listener if the string length follows
proportions outlined by fractions consisting of small
integer numbers. This allowed for creation of guide-
lines for the first musical scale – a set of given propor-
tions between sound frequencies, called intervals. In
the recent years, the explanation for the phenomenon
of consonance and dissonance is based on the nonlin-
ear dynamics of auditory perception with a scheme of
mutually coupled oscillators (Lots, Stone, 2008).
Tibetan bowls, also known as singing bowls, are

designed and created in accordance with tradition in
many Asian countries. There are two methods of en-
forcing the vibrations of Tibetan bowls. One of them
involves using a wooden cylinder held in one’s hand
to hit the edge or side area of the bowl, which results
in an impulsive sound. The second method, which will
not be taken into account in this work, involved drag-
ging the cylinder over the perimeter of the bowl, which,
due to friction, results in forcing vibrations and a con-
stant singing sound. Dynamic tests of selected bowls



140 Archives of Acoustics – Volume 41, Number 1, 2016

using both methods were conducted (Inácio, Hen-
rique, 2006). The model used by the authors does
not take into account the coupling of the structural
vibrations with the acoustic field, although the assess-
ment of the model parameters was carried out based
on acoustic readings. The consecutive proportions be-
tween the first five component frequencies of the spec-
trum and the first frequency fall between 2.7–2.9,
4.8–5.7, 7.5–9.1, 10.6–13.1. The dynamic behaviour of
the surface of the bowl after filling it with water was re-
searched (Terwagne, Bush, 2011), though in the con-
text of phenomena occurring in the fluid rather than
of assessing the acoustic pressure.
The second group of instruments used in the syn-

thesis are bells. One of the oldest known types of bells
are Chinese bells (Chih-Wei et al., 2013) which gen-
erate a sound with two basic component tones due
to their oval shape. In the Western culture, the bells
that became common during the Middle Ages were in
the shape of a tulip (Fletcher, Rossing, 1998). The
frequencies of the vibrations of a bell obtained dur-
ing the casting process are usually additionally tuned
by choosing the proper material of the inside surface
of the bell, which is very important in the case of
bells in chimes (Sankiewicz et al., 1994, Budzyński,
Sankiewicz, 2000). The first resonance frequency in
the sound spectrum of bells is called a hum and usu-
ally does not stand out. The tone height perceived by
the listener is influenced by the following resonance
frequencies appearing in the sound spectrum, named
after their characteristic intervals: prime, minor third,
fifth, and octave (Fletcher, Rossing, 1998). What
makes the timbre of the bell special is the third and
prime frequency between which the minor third in-
terval happens. Research was carried out in order to
change this interval into a major third (Lehr, 1987)
which resulted in bells with a new shape obtained by
building and optimising the model created by using the
finite element method (FEM). Researchers from Aus-
tralian Bell (McLachlan, Keramati, 2003) elabo-
rated on this and designed many more shapes of bells
optimising them by analysing the sensitivity of node
displacement in the FEM model in order to only gen-
erate circular vibrations that allowed truly harmonic
bells to exist, for which the first seven components are
fifth and octave intervals.
Tuning of the frequencies is done by Design of Ex-

periments (DOE) and Response Surface (RS) meth-
ods (Mańczak, 1978; Myers, Montgomery, 2004;
Jiju, 2014). When it comes to bowl construction, the
scope of proportions between resonance frequencies in
a spectrum is wide. This is related to the consistent
thickness and almost elliptic shape of the bowl. This
means a perfect tuning of the component frequencies
of the spectrum to the frequencies of specific musical
intervals. A compromise has to be made, as correcting
the proportions between any given frequencies worsens

the proportions of others. Although, fine tuning the
frequencies of bells is possible due to their hyperbolic
surface shape and varying thickness.
Sound synthesis methods are divided (Bilbao,

2009) into two basic groups: abstract and physical.
The earliest work related to abstract sound synthe-
sis started in the late 50s in the 20th century at Bell
Laboratories. It involved methods such as additive syn-
thesis, which was based on summation of sinusoidal
signals, subtractive – based on generating an input sig-
nal, e.g., white noise, and modifying it by filtering, or
AM and FM synthesis – based on amplitude modula-
tion or frequency of sinusoidal signals. An advantage
of these methods is the possibility of applying them
in real time with a relatively low processing power.
The disadvantages are low audio quality and an un-
natural tone (Bilbao, 2009). In physical model meth-
ods, the basis consists of a mathematical description
of the physical system (the instrument). It takes the
form of partial differential equations describing vibra-
tions of the strings, the surface, or changes in acoustic
pressure. Historically, the first method was the use of
lumped mass–spring networks (Cadoz et al., 1983),
in which connected networks with lumped parameters
(mass and spring) describe, e.g., string vibration in
1D and membrane vibration in 2D. Another method
used a modal synthesis in which the natural frequen-
cies and mode shapes are both obtained for the dif-
ferential equations describing the system, followed by
receiving the system response by use of modal super-
position (Ren et al., 2013). Another important syn-
thesis method is the digital waveguides method as
presented in a very computationally effective way by
Julius Smith (Smith, 1992). He proposed an algorithm
for one-dimensional acoustic systems described with a
wave equation (Rossing, 2007), in which vibrations
are modelled as two travelling waves not affecting each
other, and digital synthesis is performed by using two
delay lines, which is very effective computationally.
This idea was then expanded by the creation of com-
plex structures consisting of networks of delay lines
in different configurations (Bilbao, 2009; Czyżewski
et al., 2002, 1996).
In methods of direct numerical simulation, obtain-

ing an analytical solution for an acoustic wave equation
is possible for multiple systems (Rdzanek, 2011), al-
though it requires simplification regarding the shape
of the area in question, especially the fragment of the
boundary which defines the source of sound. For the
purposes of acoustic field modelling in systems with ad-
vanced geometry, numerical methods are used (Gołaś,
1995), such as the finite difference method (FDM),
the boundary element method (BEM) (Dobrucki,
Bolejko, 2006; Nowak, Zieliński, 2015), or FEM
(Filipek, Wiciak, 2005; 2008). The mathematical
model of the system used for the presented sound syn-
thesis was created by using FEM, and it takes into ac-
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count the coupling between vibrations of the structure
and the acoustic medium surrounding it.

2. Sound synthesis method

Digital sound synthesis takes place in a numerical
synthesiser presented in Fig. 1, which consists of two
main blocks. The task of the first block is to indicate
structural parameters allowing the generated sound to
fulfil the expected acoustic parameters. They are the
component frequencies of the spectrum of generated
sound and the appropriate proportions between them.
A meta-model is created based on the DOE method
that contains the structural parameters and their in-
fluence on the acoustic signal spectrum. It allows to
introduce restrictions based on the expected propor-
tions between the component frequencies of the spec-
trum and to find the structural parameters that allow
to match these proportions.
The second block depicted in Fig. 1. Sound syn-

thesis takes place in specific points of the field based
on the resulting from meta-model parameters. By us-
ing FEM, a complex model is created that describes
the mechanical and acoustic fields and takes into ac-
count the coupling between them. Next, based on the
resulting steady-state characteristics of the vibroacous-
tic system, the acoustic pressure signal is generated.
For linear, time invariant systems, as the system con-
sidered in this study, transfer function G(ω) between
system input X(ω) and output Y (ω) may be defined
in frequency domain as:

G(ω) =
Y (ω)

X(ω)
. (1)

Fig. 1. Sound synthesis flowchart.

When the system input in the time domain is assumed
as Dirac delta:

δ(t) =

{
∞, t = 0,

0, t 6= 0.
(2)

Laplace transform of the input x(t) is equal to
unity (X(ω) = 1) and it ensures that the equation
Y (ω) = G(ω) is fulfilled. The system impulse response
g(t) is calculated then by inverse Fourier transform
(Zieliński, 2005) of system’s transfer function:

g(t) = F−1(G(jω)). (3)

The system response y(t) for any excitation may be
calculated as a convolution:

y(t) = g(t) ∗ x(t), (4)

where x(t) is a forcing signal and g(t) is an impulse
response.

2.1. Mathematical model of coupled mechanical
and acoustic field

The key element of the synthesis algorithm is mod-
elling of the mechanical and acoustic field and the cou-
pling between them. Since the mechanical field at all
points with coordinates xi in domain ΩS is described
by displacements ui, equilibrium equations (balance of
the linear momentum) are given in the index form as:

ρ
∂2ui
∂t2

+ µ
∂ui
∂t

− σji,j − bi = 0, i, j = 1, 2, 3, (5)

where ρ is mass density, µ is damping coefficient, σji,j
are components of Cauchy stress tensor, bi are body
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force components. Boundary conditions can be given
as stress conditions on ∂tΓS by the traction condition
or as displacement conditions on ∂uΓS :

(σijnj)|∂tΓS
= ti, (6)

(ui)|∂uΓS
= ui. (7)

In the case of linear elasticity, the stress components
are given by stress-strain relations as:

σij = Dijklεkl, (8)

where ǫkl are strains and Dijkl are constitutive ma-
trix components. The properties of isotropic materials
are defined by two parameters: Young modulus E and
Poisson ratio ν:

Dijkl =
E

2(1 + ν)
(δilδjk + δikδjl)

+
Eν

(1 + ν)(1 − 2ν)
δijδkl, (9)

where δij is Kronecker symbol, and δij = 0 for i 6= j,
and δij = 1 for i = j. In the Cartesian tensor form
virtual strains are related to virtual displacements as:

δεij =
1

2
(δui,j + δuj,i) . (10)

An integral, variational form of Eq. (5) may be writ-
ten as:
∫

ΩS

δuiρ
∂2ui
∂t2
dΩ +

∫

ΩS

δuiµ
∂ui
∂t
dΩ

+

∫

ΩS

δεijσij dΩ −
∫

ΩS

δuibi dΩ

−
∫

ΓS

δuiti dΓ = 0. (11)

After finite element procedures (Zienkiewicz,
Taylor, 2000), when using Galerkin method, Eq. (11)
is given by:

MSüe +CSu̇e +KSue = fS , (12)

where MS , CS , KS are respectively mass, damping
and stiffness matrix, üe, u̇, ue are vectors of nodal
acceleration, velocity, and displacement, while fS is the
forcing vector.
Natural frequencies of the system with the absence

of damping are calculated with the assumption of har-
monic displacements ue = Re

(
ũee

jωt
)
where ω is the

angular frequency and ũe is the complex amplitude. It
leads to the equation given by:

(
−ω2MS +KS

)
ũe = 0. (13)

System natural frequencies and mode shapes corre-
spond to eigenvalues and eigenvectors of the Eq. (13)

and are calculated with the Lanczos method. The
mathematical description of the acoustic field is de-
rived from the Navier-Stokes equations of fluid mo-
mentum and the flow continuity equation with the as-
sumption that fluid is compressible and there is no
mean flow of the fluid. The resulting acoustic wave
equation is given by:

1

ρ0c2
∂2p

∂t2
−∇ ·

(
1

ρ0
∇p
)

= 0, (14)

where p is the acoustic pressure, ρ0 is the mean fluid
density, and c is the speed of sound. The finite element
formulation is obtained using the Galerkin procedure
by testing wave Eq. (10) with a test function δp and
integrating over the volume of the domain ΩF :

∫

ΩF

δp
1

ρ0c

∂2p

∂t2
dΩ +

∫

ΩF

∇δp
(

1

ρ0
∇p
)
dΩ

−
∫

ΓF

δp
1

ρ0
n̂∇p dΓ = 0, (15)

where dΩ is the volume differential of the acoustic do-
main ΩF , dΓ is the surface differential of the acoustic
domain boundary ΓF , and n̂ is the unit vector normal
to the boundary ΓF . For the fluid structure coupling,
there are crucial boundary conditions on the interface
surface. From the equation of momentum conservation,
the normal velocity on the boundary of the acoustic
domain is given by:

∂vn,F
∂t

= − 1

ρ0
n̂ · ∇p. (16)

Substituting (16) with (15) yields the form of (14),
given by:

∫

ΩF

δp
1

ρ0c

∂2p

∂t2
dΩ +

∫

ΩF

∇δp
(

1

ρ0
∇p
)
dΩ

−
∫

ΓF

δp
∂vn,F
∂t
dΓ = 0 (17)

The normal acceleration of the fluid particle can be
presented using the normal displacement of the fluid
particle uF :

n̂∇p = −ρ0n̂
∂2uF
∂t2

. (18)

Substitution of (18) with (17) leads to:

∫

ΩF

δp
1

ρ0c

∂2p

∂t2
dΩ +

∫

ΩF

∇δp
(

1

ρ0
∇p
)
dΩ

+

∫

ΓF

δp
∂2uF
∂t2
dΓ = 0. (19)
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Equation (19) after the FEM procedure (Zienkie-
wicz, Taylor, 2000) may be written as:

MF p̈e +KFpe + ρ0Rüe = 0, (20)

where MF , KF are matrices of the medium’s masses
and stiffness, respectively, ρ0 is the medium density,
R is the coupling matrix, üe is the vector of normal
accelerations to the boundary surface. The coupling
conditions on the interface between the acoustic fluid
and the structure are given by:

σn̂+ pn̂ = 0, (21)

n̂ · uS − n̂ · uF = 0, (22)

where σ is the stress tensor on the boundary of the
structure, p is the acoustic pressure, uS , uF are the
displacement vectors of the structure and fluid, re-
spectively. Conditions (21)–(22) allow the calculation
of pressure forces fpre originating from acting of the
fluid on the structure surface. After substitution of
fS = f+ fpre the equation (12) is given as:

MSüe +CSu̇e +KSue −Rpe = f. (23)

Equations (20) and (23) describe the complete finite
element discretized equations for the fluid-structure in-
teraction problem. These equations are written in an
assembled form as:
[
MS 0
ρ0R MF

][
üe
p̈e

]
+

[
CS 0
0 0

][
u̇e
ṗe

]

+

[
KS −R
0 KF

][
ue
pe

]
=

[
f

0

]
. (24)

In a steady-state conditions and with the assumption
of a harmonic excitation with the angular frequency
ω and amplitude f̃, ũe, p̃e as f = Re

(
f̃ejωt

)
, ue =

Re
(
ũee

jωt
)
, pe = Re

(
p̃ee

jωt
)
, differential Eq. (24) are

given as algebraic equations:
(
−ω2

[
MS 0
ρ0R MF

]
+ jω

[
CS 0
0 0

]
+

[
KS −R
0 KF

])

·
[
ũe
p̃e

]
=

[
f̃

0

]
. (25)

After defining the boundary conditions, it is possible
to solve Eq. (25) by solving a system of linear algebraic
equations with a proper numerical method.

Table 1. Defined material and geometric parameters.

Bowl
no.

Young
mod.

Density Poisson
ratio

Geometrical parameters

E
[GPa]

ρ

[kg·m−3]
ν

h
[m]

r
[m]

rg
[m]

g
[m]

1 1.05 8600 0.34 0.070 0.045 0.055 0.0011

2 0.075 0.300 0.067 0.0023

3. Bowl and bell sound synthesis

The mathematical models allowing for assessing
frequencies of the natural vibrations of systems were
created with the use of the FEM implemented in the
ANSYS Workbench suite. The objects studied first
were Tibetan bowls. Two distinct shapes of Tibetan
bowls were studied, the basic geometric parameters of
which were measured for actual structures and pre-
sented in Table 1. To ensure further alteration, a para-
metric geometric model of both shapes was created
(Fig. 2a). The shape of the bowl was defined by using
a line profile rotated about its axis. The profile con-
sisted of two curves linked by a connection clause. The
first one described the base of the bowl and was a sec-
tor of an ellipse with eccentrics at 0.1 m horizontally,
0.025 m vertically. The second one described the side
wall and was established as a circular segment with
a radius of R. The following parameters defined the
edge of the bowl: rg – radius of edge, h – height of
bowl.
a) b)

Fig. 2. Model of the bowl: a) model shape described with
parameters: R – radius of side wall, rg – radius of bowl

edge, h – bowl height, b) finite element mesh.

Next, the resulting surface was discretized (Fig. 2b)
by use of Shell281 elements with a constant thick-
ness g. Shell281 elements were chosen due to the
fact that they are suitable for modelling thin coated
structures and consist of eight nodes, being described
by parabolic shape functions. The material parameters
were established to be similar to the parameters of
brass – Young’s modulus E, density ρ, Poisson’s
coefficient ν, the values of which, alongside with vary-
ing geometric parameters, were summarized in Table 1.
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a) b)

Fig. 3. Model of the bell: a) parametric geometry cross-section, b) finite element mesh.

The size of the elements was selected based on a grid
independence analysis which showed that an element
edge length of 0.02 m is enough. This results in a model
consisting of approximately 200 elements and 700
nodes.
Bells were the second object of study. Sound syn-

thesis was carried out for the Sigismund Bell in the
Wawel Cathedral, which weighs 9650 kg with the di-
ameter of 2.42 m. A parametric geometric model was
created with the profile as shown in Fig. 7a. The exact
shape of the profile was derived from the German bell-
foundry tradition (Gołaś, Filipek, 2009). When it
comes to geometry-defining parameters (Fig. 3a), those
with a relative wall thickness – g, angle of the profile
lean – ϕ, relative base radius – r, were chosen. Every
change of the r parameter resulted in a rescaling of the
geometry in such a way as to retain the constant diam-
eter of the base of the bell. Twenty-node Solid186 solid
elements were used to create the mathematical model
of the bell. A half of the resulting mesh is presented in
Fig. 3b and the full model contains approximately 750
elements and 5000 nodes.

3.1. Modal frequencies determination
and system parameters tuning

The first phase of the study involved the designa-
tion of modal frequencies based on equation (13) as
well as mode shapes with parameters corresponding
to the actual models. The natural frequencies of the
bowls and the bell indicated in the experiment were
compared in Table 2 with the measured resonance fre-

Table 2. Defined material and geometric parameters.

No.
Measured
freq.
[Hz]

Model
freq.
[Hz]

Difference
[%]

Frequency
proportions

ideal obtained

B
ow
l
N
o.
1

1 472.0 480.4 −1.79 – 1.00

2 1329.0 1330.2 −0.09 – 2.77

3 2448.0 2416.8 1.27 – 5.03

4 3738.0 3678.6 1.59 – 7.66

5 5165.0 5094.3 1.37 – 10.60

B
ow
l
N
o.
2

1 334.0 321.1 3.86 – 1.00

2 806.0 811.0 −0.63 – 2.53

3 1488.0 1480.7 0.49 – 4.61

4 2352.0 2328.9 0.98 – 7.25

5 3356.0 3351.1 0.15 – 10.44

Si
gi
sm
un
d
B
el
l 1 91.0 92.3 1.41 1 1.00

2 203.0 205.7 1.33 2 2.23

3 230.0 232.8 1.19 2.4 2.52

4 277.0 275.2 −0.64 3 2.98

5 382.0 381.2 −0.22 4 4.13

quencies of the actual structures. The measurement
consisted of a frequency analysis of the acceleration
and acoustic pressure signal recorded with the use of
a data acquisition system (Filipek, 2013). The first
four mode shapes were compiled for bowl no. 1 in Fig. 4
and for the bell in Fig. 5. The comparison between the
vibrations of the bowls and the bell suggest that the
hyperboloidal bell surface shape causes the mode with
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a) b)

c) d)

Fig. 4. Tibetan bowl mode shapes: a) first (2,0), b) second (3,0), c) third (4,0),
d) fourth (4,0).

a) b)

c) d)

Fig. 5. Sigismund Bell mode shapes: a) first – hum (2,0), b) second – prime (2,1),
c) third – tierce (3,0), d) fourth – quint (3,1).
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the annular node line (2,1) in the second significant
acoustic natural frequency, which does not happen in
the case of bowls. According to Table 2, this allows
for an addition in the sound spectrum of a component
frequency approximately two times greater from the
base frequency, which is a consonant octave interval.
The introduced shape also causes the next mode shape
(3,0) to contain a frequency 2.4 times higher than that
of the base frequency, which is a minor third inter-
val.
To ensure effective tuning of the acquired frequen-

cies for them to fulfil the expected proportions per
the DOE method (Mańczak, 1979) a digital exper-
iment was planned. An extended Central Compos-
ite Design (CCD) plan was chosen (Myers, Mont-
gomery, 2004) which features five levels of parame-
ter changes. Upper and lower limits of the parameter
values were set including the measured values of the
actual bowls: height h ∈ [0.064, 0.09] m, radius R ∈
[0.045, 0.3] m, radius rg ∈ [0.042, 0.047] m, thickness
g ∈ [0.0011, 0.0023] m. Figure 6 depicts the applied
CCD plan for four normalised input variables.

Fig. 6. Normalised experiment plan for four design
parameters.

The proportions between the second, third, fourth,
and fifth natural frequencies and the first frequency
were assigned as the output parameters of the model.
The response of the system described by use of a re-
sponse hyper-surface was approximated by surfaces
based on second-order polynomials, for which the over-
all form of the equation is given by:

y(x1, x2, ...xN ) = a0 + a1x1 + a2x2 + ...

+ aNxN + a12x1x2 + a13x1x3 + ...

+ a23x2x3 + aMNxMxN + aN+1x
2
1

+ aN+2x
2 + ...+ aN+Nx

2
N . (26)

Calculation of ai, aij coefficients was carried out
by the use of the regression analysis – approximation

by the least square method (Mańczak, 1979). Exem-
plary response surfaces are depicted in Fig. 7, which,
in this case, for the r and h parameters show their in-
fluence on the proportion changes between the second
and first (p21) and the third and first (p31) frequencies
of natural vibrations. It is worth noticing, that there is
a visibly good agreement between marked with black
squares design point values and values predicted by
the response surface. The second observation is that
for p31 parameter a design point in which the value
reaches an integer number of 5 could be found, but it
also makes it impossible for the p21 parameter. The
tuning of model parameters was obtained by minimi-
sation of the cost function. The defined cost function
for m proportions between frequencies is in the form of:

Φ =

m∑

j=1

(
|y*j − yj |

ymax − ymin

)
, (27)

a)

b)

Fig. 7. Response surfaces for r and h parameter changes
which contain natural frequency proportions of: a) second

to first, b) third to first.
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where ymax, ymin are the maximum and minimum val-
ues on the response surface, y*j is the expected param-
eter, and yj is the parameter obtained in the digital
experiment.
Five parameters were chosen for the sound synthe-

sis of the bell with appropriate lower and upper bounds
of fi ∈ [0.69, 0.75] deg, gc ∈ [0.02,0.07] m, d ∈ [7.29,
7.51] m, ro ∈ [7600, 8800] kg/m-3, E ∈ [99, 121] GPa.
The process of surface approximation corresponded to
the one for the bowls.

3.2. Computation of the acoustic response

The acoustic response of the system (the changes
in the sound pressure in the volume of air surrounding
the vibrating structure) was determined by including
Fluid30 acoustic elements (Fig. 8) to Shell281 surface
elements in the case of bowls and to Solid186 solid

a)

b)

Fig. 8. Finite elements mesh including mechanical-acoustic
coupling for: a) bowl, b) bell.

elements in the case of bells. In accordance with the
relations described in Subsec. 2.2, they use sound pres-
sure as degrees of freedom. In addition, the acoustic
elements in contact with the walls of the structure
use node displacement as degrees of freedom as well.
The external surface of the acoustic volume contained
Fluid130 elements that took into account the condition
of complete emission of sound from the system, which
is the Sommerfeld radiation condition (Filipek, Wi-
ciak, 2008;Gołaś, Filipek, 2009). It is implemented
in semi-infinite elements and prescribes the asymptotic
behaviour of the solution of wave equation in this ex-
terior boundary value problem.
Both cases entailed a steady state analysis de-

scribed in Eq. (25). The forcing in the system orig-
inated from a harmonic force applied to an element
node. It was located on the edge of the bowl and on
the internal wall surface of the bell, 0.02 m from the
base. The amplitude of the force was 1 N and the fre-
quency incrementally changed with a 1 Hz step from 2
to 4000 Hz for the bowl and from 2 to 400 Hz for the
bell. Internal damping was introduced in the structure
that was assumed to be constant in the whole range
of frequencies, and was defined by using a damping
coefficient of 2 · 10−5.
Acoustic pressure changes were calculated for the

whole acoustic volume, though this work includes the
results for three selected points. In the case of bowls,
they were 0.5 m away from the point of origin for the
coordinates, and they were: point 1, on the intersection
of the plane that is going through the bowl and the di-
rection of force application; point 2, on the vertical
plane at a 45 degree angle, and point 3, at a 90 degree
angle on the bowl’s axis. Analogous points were placed
3 m from the centre of the base of the bell. The sound
pressure level and sound pressure phase angle regard-
ing the force on the bowl are presented in Fig. 9a and
Fig. 9b for the bell. Both systems indicate that the
maximum sound pressure level is similar for acousti-
cally important resonance frequencies. It varies from
2 to 12 dB between them. For the bell there is visi-
ble first resonance around 24 Hz for which the SPL is
smaller than the next by more than 36 dB. It is asso-
ciated with unrealistically rigid bell upper surface re-
straints and would definitely decrease after modelling
the full crown of the bell or modification of the bound-
ary conditions to a partly flexible characteristics with
the use of lumped spring elements. It is also notable
that amplitude frequency characteristics vary greatly
with the change of the synthesis point and in both
cases the measured levels for every resonance frequency
are the lowest for the point located at the instrument
axis. This is related to the directivity patterns that
rely heavily on the mode shapes, and maximum sound
pressure level is mostly in the direction perpendicular
to the plane comprising the edge of the bowl or the
base of the bell (Gołaś, Filipek, 2009).
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a)

b)

Fig. 9. Amplitude- and phase-frequency characteristic in selected points of the field for:
a) Tibetan bowl no. 1, and b) Sigismund bell.

The waveform of the synthesised signal was ob-
tained by using the methodology described in Sub-
sec. 2.2. Spectral transfer function was assigned for
three selected points as:

Gi(jω) =
p̃i(jω)

f̃S(jω)
, i = 1, 2, 3. (28)

With an assumption of the force f(t) as a half-cycle
sine pulse:

f(t) =

{
sin(ωt), t ∈ [0, π/ω]

0, t /∈ [0, π/ω]
(29)

the system response pi(t) was obtained by a convo-
lution of an inverse Fourier transform of the system
transfer function with the signal of the force:

pi(t) = F−1(Gi(jω)) ∗ f(t). (30)

The shape of the impulse in this synthesis was approx-
imated as a half-cycle sine pulse, though it is worth
noting that in the created synthesis method, the shape
of the impulse may be approximated by any course,
e.g., approximated on the basis of a signal acquired
experimentally (Fletcher et al., 2002) or by solving
equations related to the movement of a bell-clapper
system (Brzeski et al., 2015) and approximating the
force on the basis of collision modelling. The changes in
the force signal flow do not influence the resonance fre-
quencies occurring in the spectrum; they do, however,
have an impact on the changes in their accompanying
amplitudes.
To verify the universality of the used solutions

based on the created meta-model, a synthesis of bowl
sounds was carried out by assuming the expected pro-
portions and making a compromise in tuning the con-
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secutive components of the spectrum, and, in the case
of bells, in defining the parameters for a bell of the
same diameter as the Sigismund Bell with accurately
tuned component frequencies of the spectrum 2:2.4:3:4.
During the comparison of the appropriate signal pairs,
it can be subjectively assessed what the influence of
the applied corrections on the feeling of consonance is
and how less unique would the Sigismund Bell sound
be if it were to be precisely tuned.

4. Conclusions

The synthesis of the Tibetan bowls and bells’ sound
was carried out by a developed novel numerical syn-
thesiser algorithm making use of the Design of Exper-
iment (DOE) and Response Surfaces (RS) methods.
The acoustic pressure signal was obtained by FEM cal-
culations and further digital processing. This synthe-
sizer when used on actual structures allowed obtaining
a signal, the spectrum of which contains resonance fre-
quencies very similar to the actual ones. It additionally
allows for model parameter changes so that the listener
could experience sound with a specific timbre.
The sound synthesis method presented in this work

differs from the solutions used to date with the abstract
synthesis, such as additive, AM, and FM synthesis, as
the basis of this method is a mathematical model of an
actual physical system including both surface vibra-
tions and sound propagation in its vicinity. The pro-
posed algorithm is an extension of physical instrument
modelling methods. As a way of limiting the computa-
tional cost, which is an important aspect of their usage,
methods such as digital waveguide synthesis are used
(Czyżewski et al., 1996; 2002), which are well-suited
for simple shapes or simplifying assumptions related
to the sound radiation. An often overlooked aspect is
wavelength phenomena related to sound propagation
in space. A direct numerical simulation conducted in
the presented sound synthesis method is based on a
model described by partial differential equations dis-
cretized by using FEM, which takes into account the
full coupling of the mechanical and acoustic fields. Ob-
taining the system response in the time domain was
carried out by an algorithm based on convolution of
the force signal with the impulse response received by
the way of spectrum transmittance. The approach pre-
sented in this work, never before seen in the field of
sound synthesis, is based on carrying out a series of
digital experiments and, additionally, building a meta-
model of the system, allowing a reduction in the ob-
servation time of the influence of decision parameter
changes on the spectrum of the obtained sound, which
is possible by rapid readings and usage of results ap-
proximated by response surfaces.
The numerical synthesiser can be used for gener-

ating sounds of actual instruments as well as brand
new ones, allowing for an analysis of the timbre of the

instrument as early as at the planning stage. The syn-
thesis resulted in a set of structural parameters which
can be used while designing actual instruments. They
can be also used during instrument restoration to as-
sess the change in timbre caused by the modifications
necessary during a repair.
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