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Thermal self-action of an acoustic beam with one discontinuity or several shock fronts is studied in
a Newtonian fluid. The stationary self-action of a single sawtooth wave with discontinuity (or some integer
number of these waves), symmetric or asymmetric, is considered in the cases of self-focusing and self-
defocusing media. The results are compared with the non-stationary thermal self-action of the periodic
sound. Thermal self-action of a single shock wave which propagates with the various speeds is considered.
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1. Introduction

The fact that acoustic beams may manifest thermal
self-action similarly to laser beams has been pointed
out in (Askaryan, 1966). The nonlinear transfer of
acoustic energy into energy of the thermal mode leads
to enlargement of a fluid’s temperature in the course
of sound propagation. This affects the sound speed
and, as a consequence, produces thermal lenses. That
is also a reason for refraction of sound rays. A beam ex-
periences additional divergence or convergence. Ther-
mal inhomogeneity of a fluid alters both a width of
sound beam and transversal distribution of the mag-
nitude of acoustic pressure. The speed of sound in-
creases with enlargement of temperature in gases, and
acoustic beam undergoes defocusing, while in a liq-
uid (except for water) with a negative thermal coef-
ficient δ = (∂c/∂T )p/c0 < 0 it undergoes focusing.
c =

√
CP /CV βρ denotes the infinitely small-signal

sound speed in a fluid, ρ and p are fluid’s density
and pressure, β = ρ−1 (∂ρ/∂p)T is the isothermal com-
pressibility, CP and CV are specific heats under con-
stant pressure and volume, respectively, and T denotes
temperature. The sound speed, evaluated at unper-
turbed pressure and temperature, p0 and T0, respec-
tively is marked by the lower index 0. The first theo-
retical results concerning thermal self-action of sound
were reviewed in (Bakhvalov et al., 1987), and the
first experiments confirming the theory of acoustic self-
focusing were described in (Assman, 1985; Andreev

et al., 1985). Considerable attention was paid to the
thermal self-action of quasi-harmonic sound waves due
to counterparts in thermal self-action of optic waves
(Akhmanov et al., 1968). Optic waves are strongly
dispersive, which makes it possible to consider prop-
agation of harmonic compounds of a waveform and
their thermal self-action individually (Talanov, 1964;
1970). On the contrary, sound alters nonlinear dis-
tortions which enrich the spectrum of a waveform as
it propagates. The nonlinear self-action is especially
significant in the case of intense ultrasound waves in
a weakly attenuating media.
The comprehensive review by Rudenko and

Sapozhnikov (2004) focuses on the thermal self-
action of periodic beams containing shock fronts in
weakly dispersive media with quadratic and cubic non-
linearities. The waveforms with shock fronts are of
great importance in technical and medical applications
of ultrasound in fluids, solids, and biological tissues
(Miller, 2012; Chan et al., 2003). Waveforms con-
taining shock fronts represent a broad frequency spec-
trum signals. The joint action of nonlinearity, diffrac-
tion, and absorption makes a wave to acquire the
N-shape as it propagates. The only parameters of
a waveform are the peak value and its duration. Sta-
tionary waveforms with discontinuities are similar to
solitons in nonlinear dispersive media, and they are
of particular importance. As usual, the scale of ther-
mal inhomogeneity is much larger than the acoustic
wavelength. They are formed slowly, with the charac-
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teristic time of formation much larger than the wave
period. That allows to treat these inhomogeneities as
almost stationary as compared with quickly propagat-
ing acoustic perturbations. The approximation of ge-
ometric acoustics which is used in the theory implies
weak diffraction.
The statement of the problem of thermal self-action

consists in fact of two issues: the first one is to es-
tablish acoustic pressure, and the second one is to
evaluate slow variations of the background temper-
ature in the course of sound propagation and their
influence on a sound beam itself. The simplified sys-
tem of equations includes the Khokhlov-Zabolotskaya-
Kuznetsov [KZK] equation taking into account vari-
ation in the sound speed due to variations in tem-
perature, and equation which describes dynamics of
an excess temperature of the thermal mode. The ini-
tial equations have been derived by O.V. Rudenko and
co-authors (Karabutov, Rudenko, Sapozhnikov,
1988; Rudenko, Sagatov, Sapozhnikov, 1990);
stationary and non-stationary thermal self-action of
strictly periodic waves with discontinuities was also
studied by this group of authors. Thermal self-action
of a single sawtooth wave or the integer number of
sawtooth waves is the subject of this study. Thermal
self-action of a solitary shock wave which propagates
with different speeds is also considered. Though the
mathematical content reminds the one which has been
developed by Rudenko et al. in studies of self-action of
periodic sound beams, there is a significant distinction
which concerns aperiodicity of impulses under study.
We make use of instantaneous, not averaged over the
sound period acoustic force of heating. It has been de-
rived by the author in (Perelomova, 2006).

2. The governing equations and starting points

The system of equations which describes thermal
self-action in axially symmetric flow of a Newtonian
fluid takes the form (Rudenko, Sapozhnikov, 2004;
Karabutov et al., 1988; Rudenko et al., 1990):

∂

∂τ

(
∂p

∂x
− δT

c0

∂p

∂τ
− ε

c30ρ0
p
∂p

∂τ

− b

2c30ρ0

∂2p

∂τ2

)
=
c0
2
∆⊥p, (1)

∂T

∂t
− χ

ρ0CP
∆⊥T = F, (2)

where x and r are cylindrical coordinates, x denotes co-
ordinate along axis of a beam, t is time, p is the acous-
tic pressure, ρ0 is the unperturbed density of a fluid,
τ = t−x/c0 is the retarded time in the reference frame
which moves with the sound speed c0, ∆⊥ is the Lapla-
cian with respect to the radial coordinate r, ε is the
parameter of nonlinearity, and χ denotes the coeffi-

cient of thermal conductivity. F is an acoustic force of
a fluid’s heating due to loss in acoustic energy. Equa-
tion (1) describes an acoustic pressure in a beam which
propagates in the positive direction of the axis x. The
total attenuation b is a sum of terms representing the
shear viscosity µ, bulk viscosity η and thermal conduc-
tivity,

b =
4

3
µ+ η +

(
1

CV
− 1

CP

)
χ. (3)

In the theory of nonlinear self-action of sound beams,
〈F 〉 usually replaces F in the right-hand side of Eq. (2)
(Rudenko, Soluyan, 2005). The angular brackets de-
note averaging over integer number of sound periods.
〈F 〉 has been well-established for the periodic sound
(Rudenko, Soluyan, 2005):

〈F 〉 = b

c40ρ
3
0CP

〈(
∂p

∂τ

)2
〉
. (4)

In contrast to the KZK equation, Eq. (1) accounts for
variations in the wave speed due to slow enlargement
of the fluid temperature (the second term in the left-
hand side of equation) (Rudenko, 2010). The form
of Eqs. (2), (4) imposes that a) an acoustic heating is
a slow process as compared to fast variations of sound
perturbations sound, and b) sound is periodic at any
time and any distance from a transducer. The first con-
dition is always valid but the second one is no longer
valid in the case of aperiodic sound, impulses, or wave
packets. Strictly speaking, it is not valid for physical
conditions of transmission of periodic at a transducer
sound which starts at some time and has a finite du-
ration, that is, which is periodic inside some temporal
domain. The instantaneous acoustic force has been de-
rived by the author in (Perelomova, 2006):

F =
1

c60ρ
3
0

(
(1/CV − 1/CP )χ

α
p
∂2p

∂τ2

+

(
c20
CP

(
4µ

3
+η

)
−D (1/CV −1/CP )χ

α

)(
∂p

∂τ

)2

+

(
−ε(1/CV − 1/CP )χ

2α
+

(ε− 1)χ

CV α

+0.5
χCP
β2C2

V

∂2T

∂p2
+ 0.5

χ

CP

∂2T

∂ρ2

+
χ

βCV

∂2T

∂p∂ρ

)
∂p2

∂τ2

)
, (5)

where α = −ρ−1
(
∂ρ
∂T

)
p
is the thermal expansion, and

D is a coefficient expressed in terms of the partial
derivatives of the internal energy of a fluid, e:

D =
αc20
CP

(
−1 + c20ρ

2
0

∂2e

∂p2
+ ρ20

∂2e

∂p∂ρ

)
. (6)

Temperature and internal energy of a fluid in Eqs. (5),
(6) are considered as functions of pressure and den-
sity. Equation (5) coincides with Eq. (18) from



A. Perelomova – Thermal Self-Action of Acoustic Beams Containing Several Shock Fronts 541

(Perelomova, 2006), which is rearranged recalling
that the isobaric perturbations of temperature T ′ and
density ρ′ are connected by equality T ′ = −ρ′/(αρ0).
In this study, we focus attention on the aperiodic

waveforms. Among them, one period (or integer num-
ber of periods) of the sawtooth wave is of the most
interest. These waveforms are defined exclusively by
their magnitude which depends on the distance from
a transducer and from the axis of a beam and plays
a similar role as the amplitude of a single harmon-
ics in optics. Another important waveform is the soli-
tary shock wave which may propagate with the speed
which differs from the linear sound speed. In spite of
the fact that Eq. (2) with the acoustic source (5) re-
flects all reasons for the Newtonian attenuation, it is
fairly difficult for analytical description of thermal self-
focusing in the thermoconducting fluid. We consider
a fluid without thermal conduction; some brief com-
ments regarding thermoconducting flows will be given
in the Concluding Remarks.
The approximation of the geometrical acoustics is

successful when the acoustic nonlinearity is impor-
tant and a beam is slightly divergent. For the validity
of approximation of geometrical acoustics, diffraction
should be insignificant over the characteristic length of
the self-focusing. The acoustic pressure may be found
in the form which follows from the theory of geomet-
rical acoustics (Rudenko, Sapozhnikov, 2004),

p = p(x, r, θ), θ = τ − ψ(x, r)/c0, (7)

where ψ denotes eikonal. Substituting it into Eq. (1),
we arrive at the following equations in the case of short
wavelengths, which are small as compared with the
scale of thermal inhomogeneities:

∂p

∂x
− ε

c30ρ0
p
∂p

∂θ
− b

2c30ρ0

∂2p

∂θ2
+
∂ψ

∂r

∂p

∂r
+
∆⊥ψ

2
p = 0, (8)

∂ψ

∂x
+

1

2

(
∂ψ

∂r

)2

+ δT = 0. (9)

This set of equations, along with Eq. (2), is the
famous starting point in the studies of thermal
self-focusing of acoustic beams in Newtonian fluids
(Rudenko, Sapozhnikov, 2004; Karabutov et al.,
1988; Rudenko et al., 1990).

3. Sawtooth wave consisting of one

of some integer number of shock fronts

Each period of a sawtooth wave whose shock front
has a finite width described by the formula (Rudenko,
2010):

p(x, r, θ) = A(x, r)

(
−ωΘ

π
+ tanh

(
εΘ

b
A(x, r)

))

+LP0. (10)

2π/ω denotes the characteristic duration of the wave-
form. The amplitude of the shock wave A(x, r) varies
with coordinates, and

Θ = θ +
π(x/xs +G)

ω
L

= θ +

(
P0

A(x, r)
+G− 1

)
π

ω
L,

where

xs =
πc30ρ0
εωP0

(11)

denotes the distance at which a break of initially sinu-
soidal planar wave occurs. P0 is the initial peak acous-
tic pressure at the axis of a beam and L, G are ar-
bitrary dimensionless constants correspondent to the
physical meaning of the problem. Equation (10) re-
calls the exact solution of the Burgers equations which
describes the planar nonlinear wave. One period of this
planar wave is determined in the domain

−π + π(1 −G)L < ωθ < π + π(1−G)L, (12)

with A being a function of coordinate x:

A(x) =
P0

1 + x/xs
. (13)

Equation (10) possesses a sawtooth profile in the limit
when bω/(c20ρ0) tends to zero. The domain of dis-
tances where a shock belongs to the interval [−π +
π(1−G)L, π+π(1−G)L], is determined by inequality
|LP0| ≤ A(x). In the case of L = 0, a shock wave is
symmetric, and it propagates along axis Ox with the
speed c0. Substituting Eq. (10) into Eq. (8) and allow-
ing bω/(c20ρ0) → 0 yields the transport equation for
the amplitude A(x, r):

∂A

∂x
+

A2

xsP0
+
∂ψ

∂r

∂A

∂r
+

∆⊥ψ

2
A = 0. (14)

The acoustic force of heating in the case of symmetric
periodic shock wave in the limit bω/(c20ρ0) → 0 has
been obtained by Rudenko and co-authors. It has been
used in the evaluations of thermal self-action of the
sound (Rudenko et al., 1990):

〈F 〉 = 2εω

3πρ30c
4
0CP

A3. (15)

A single “period” given by Eq. (10) can no longer be
considered as periodic at any time. Equations (4), (15)
are no longer valid either. Substitution Eq. (10) into
Eq. (5) allows to evaluate a perturbation of the back-
ground temperature in accordance to Eq. (2) when
χ = 0 by simple integration from −π/ω till any Θ
after passing of the shock front (that is, Θ > 0). The
limit of temperature T when bω/(c20ρ0) tends to zero
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is a function of coordinates x, r but it does not depend
on Θ and constants L and G:

T = T0 +
4εA3

3ρ30c
4
0CP

= T0 +
2π

ω
〈F 〉. (16)

This equation describes variation in temperature
caused by one period of the sawtooth wave. Variation
in temperature equals 2πn

ω 〈F 〉 for integer number of pe-
riods n. Evaluations are readily simplified by assuming
the parabolic wave front, that is,

ψ(x, r, t) = ψ0(x, t) +
r2

2

∂

∂x
ln f(x, t) (17)

and with allowance for power series of temperature
T in the transversal coordinate in the leading order
(Rudenko, Sapozhnikov, 2004),

T = T0 −
r2

2
T2(x, t). (18)

Equation (17) reflects the sphericity of the wave front
at any x and t, only its curvature may vary during
propagation of a beam. The unknown function of two
variables, f , is responsible for these variations, and
ψ0(x, t) is the phase shift of the wavefront at the axis
of a beam. In accordance to Eqs. (9), (17), evolution
of eikonal ψ is described by equation

1

f

(
∂2f

∂x2

)
= δT2. (19)

The solution of Eq. (14) with account for Eq. (17) takes
the form (Rudenko, Soluyan, 2005)

A(x, r)=
P0

f
Φ

(
r

a0f

)
1+ 1

xs
Φ

(
r

a0f

) x∫

0

dx′

f(x′)



−1

. (20)

The function Φ describes the initial transversal distri-
bution, A(x = 0, r) = P0Φ

(
r
a0

)
, where a0 denotes the

initial beam’s radius at x = 0. Following Rudenko and
co-authors (Rudenko, Sapozhnikov, 2004), we will
consider the Gaussian beams at a transducer, for which

Φ(ξ) = exp(−ξ2).

Making use of Eqs. (18), (19) and performing expan-
sion of A in powers of transversal coordinate r in the
vicinity of a beam axis, one arrives at the equation:


1 +

z∫

0

dz′

f(z′)



4

f4

(
d2f
dz2

)
= Π, (21)

z =
x

xs
, Π =

8δMπ2c40
a20εCPω

2
, (22)

where M = P0/ρ0c
2
0 is the initial Mach number. In

the case of the waveform containing n shock fronts,
Π should be replaced by Πn,

Πn =
8nδMπ2c40
a20εCPω

2
. (23)

Equation (21) differs from equation which describes
the stationary self-focusing of a periodic beam
(Eq. (20) from Rudenko, Sapozhnikov, 2004) not
only by its form, but also in essence. Rudenko and
Sapozhnikov considered stationary self-focusing of a
periodic beam in a medium with non-zero thermal con-
ductivity exclusively. The parameters of the Eq. (20)
from (Rudenko, Sapozhnikov, 2004) depend on the
coefficient of thermal conductivity χ; they do not in-
clude the initial beam’s radius a0. That is due to ex-
pansion in the series in powers of r of Laplacian of
temperature, not perturbation of temperature.
Rudenko and co-authors considered also the non-

stationary self-action, for which thermal conduction is
unimportant. It occurs at times much smaller than the
characteristic time t0,

t0 =
a20CP εω

4|δ|Mπc40
=

2πε

ω|Π | . (24)

The equation which determines function f in this
case, takes the form (we reproduce Eq. (22) from
(Rudenko, Sapozhnikov, 2004)):


1 +

z∫

0

dz′

f(z′)



4

f5 ∂

∂θ

(
1

f

∂2f

∂z2

)
= ±1, (25)

where θ = t/t0. The sign plus in the right-hand side
of Eq. (25) corresponds to positive δ and defocusing
medium, and the sign minus relates to the case of self-
focusing medium with negative δ. Results of numeri-
cal simulations of Eq. (21), the case of stationary self-
focusing of a single shock wave in a fluid without ther-
mal conduction and Eq. (25) the case of non-stationary
self-focusing of a periodic wave in a fluid without ther-
mal conduction (Rudenko, Sapozhnikov, 2004), are
shown in Fig. 1 for the planar at a transducer wave
which corresponds to the initial conditions

f(z = 0) = 1,
∂f

∂z
(z = 0) = 0. (26)

In the non-stationary simulations for periodic
sound in accordance to Eq. (25), f(θ = 0) = 1. Dot-
ted lines refer to different dimensionless times θ =
t/t0. The bold lines represent numerical simulations
of Eq. (21) at different values of Π . The graphs show
a dimensionless amplitude of a beam at the axis,

A(z, r = 0)

P0
=

1

f


1 +

z∫

0

dz′

f(z′)




−1

(27)
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a) b)

c) d)

Fig. 1. Dimensionless width of a beam a/a0 and amplitude of acoustic pressure at the axis of a beam A(z, r = 0)/P0 versus
dimensionless distance from a transducer z. Curves (a,b) correspond to self-defocusing and curves (c,d) to self-focusing of
initially planar wave. Solid lines relate to solutions of Eq. (21) for a single sawtooth waveform at different parameters Π ,
and dotted lines relate to solutions of Eq. (25) for periodic everywhere sound at different dimensionless times θ = t/t0.

and its characteristic dimensionless width (referring to
the level where the magnitude decreases e times),

a(z)

a0
= f

√√√√√ln


e+ (e − 1)

z∫

0

dz′

f(z′)


. (28)

The non-stationary curves at θ = 0 cover with these
for a single shock wave at Π = 0.

4. Stationary shock wave

4.1. Stationary shock wave which propagates

with the linear sound speed

The waveform which resembles a stationary solu-
tion of the planar Burgers equation takes the form
(Rudenko, Soluyan, 2005):

p(x, r, θ) = A(x, r) tanh

(
εθA(x, r)

b

)
. (29)

The relative transport equation for the pressure step
A(x, r) with allowing the duration of the shock front
to tend to zero, takes the limiting form:

∂A

∂x
+
∂ψ

∂r

∂A

∂r
+

∆⊥ψ

2
A = 0, (30)

which has a solution

A(x, r) =
P0

f
Φ

(
r

a0f

)
. (31)

An excess temperature coincides with that given by
Eq. (16). Equations (18), (19) yield an equation which
determines the unknown function f ,

f4

(
d2f
dz2

)
= Π, (32)
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a) b)

c) d)

Fig. 2. Dimensionless width of a beam a/a0 and magnitude of acoustic pressure at the axis of a beam A(z, r = 0)/P0 versus
dimensionless distance from a transducer z. Curves (a,b) correspond to defocusing and curves (c,d) to the self-focusing of

a single shock stationary wave which is planar at the transducer.

with dimensionless coordinate z and coefficient Π de-
termined by Eq. (22).
The graphs show the magnitude of a beam at the

axis and its characteristic width,

A(z, r = 0)

P0
=

1

f
,

a(z)

a0
= f (33)

as functions of a dimensionless distance from a trans-
ducer z at various Π .

4.2. Solitary shock wave which propagates

with a speed different from the linear sound speed

A magnitude of the stationary waveform which was
considered in the previous subsection (Eq. (29)) tends
to finite but non-zero values at both infinities, θ → ∞
and θ → −∞. There exist other stationary wave-
forms propagating with speed c̃ different from the lin-
ear sound speed c0. We consider an acoustic pressure

which exhibits a functional form of the retarded time
τ , τ = t− x/c̃, and µx, where µ is a small parameter.
The coordinate µx is the so-called slow scale correspon-
dent to the retarded time τ . This is a standard way
to derive simplified wave equations valid at the lead-
ing order with respect to the powers of µ (Rudenko,
Soluyan, 2005; Hamilton et al., 1997). The Burgers
equation may be readily rearranged into the following
one:

∂p

∂x
+

(
1

c0
− 1

c̃

)
∂p

∂τ
− ε

c20c̃ρ0
p
∂p

∂τ

− b

2c0c̃2ρ0

∂2p

∂τ2
= 0. (34)

Its stationary solution is

p = A

(
1 + tanh

(
Aε(Aε+ c20ρ0)τ

bc20ρ0
+

ln(ε)

2

))
, (35)
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where A is some constant. An acoustic pressure (35)
propagates with the speed which may exceed the linear
sound speed c0, if A > 0, or with the smaller speed,
if A < 0:

c̃ = c0 +
Aε

2c0ρ0
(36)

and tends to zero when τ tends to minus infinity
(A > 0), or when τ tends to plus infinity (A < 0).
Making use of all steps of the scheme which was re-
ported by Rudenko and co-authors, that is: consider-
ing A as a function of x and r, choosing a new variable
θ = τ − ψ(x, r)/c̃ while going to the non-planar ge-
ometry of a flow, allowing duration of a shock front
tend to zero, and considering a Gaussian perturbation
at a transducer, one finally arrives at the equation for
the unknown function f , which determines A(x, r) by
means of Eq. (31) and the equation as follows:

f4

(
d2f

dz2

)
= Π

(
1 +

4εM

3f

)
. (37)

It differs from the equation which describes the sym-
metric shock wave propagating with the speed c0,
Eq. (32). In view of that εM is typically much less than
one, and f takes values in the vicinity of the unit, the
difference in solutions is not noticeable. The conclusion
is that a beam diverges slower for positive Π and con-
verges slower for negative Π in the case of the shock
wave in the form (35) as compared with the shock wave
in the form (29).

5. Concluding remarks

This study considers thermal self-action of wave-
forms with finite number of shock fronts propagat-
ing in a Newtonian fluid. The conclusions are valid
for shock waves with temporal profiles containing dis-
continuities or steep shock fronts of finite width much
smaller than the characteristic duration of a pertur-
bation (bω/(c20ρ0) ≪ 1), where 2π/ω is a duration of
an impulse. The solitary shock waves which propagate
with different speeds, are also considered. Figure 1 re-
veals some peculiarities of thermal self-action of one
(or integer number of) shock wave(s) which may prop-
agate in a Newtonian fluid. The width of a beam in-
creases or decreases depending on the sign of the ther-
mal coefficient δ. The magnitude of the acoustic pres-
sure at the axis of a beam depends on the signs of
δ and Π . Zero value of Π coincides with the begin-
ning of the non-stationary self-action of the harmonic
at the transducer sound beam. The difference of the
width of a beam and its peak pressure increases with
enlargement of the absolute value of Π , as compared
with that in the case of non-stationary self-action of
a periodic beam (evaluations in accordance to formu-
las of (Rudenko, Sapozhnikov, 2004)). The nonlin-
ear broadening of a beam is followed by flattening of

the transversal beam profile due to stronger absorp-
tion near the axis (the so-called isotropization of the
directional distribution, which has been discovered in
the (Karabutov et al., 1988). The effects relating
to self-refraction of a monopolar shock wave originate
from dependence of shock speed on the magnitude of
acoustic pressure. They may exceed the effects relat-
ing to the thermal self-action: the variation in speed
of the shock front is proportional to the pressure mag-
nitude A(x, r), while variations in sound speed due to
thermal effects of sawtooth wave are proportional to
A(x, r)3 (Rudenko, Sapozhnikov, 2004). It may be
readily discovered that speed of the shock wave given
by Eq. (10) equals c0 + εLP0

ρ0c0
in the leading order. It

is independent on coordinate, hence there is no self-
refraction due to the shock sawtooth wave in the form
Eq. (10).
Equation (21) and relative evaluations depend on

dimensionless coefficient Π , which in turn is expressed
in terms of thermodynamical properties of a medium,
sound frequency and initial width of a beam. That
allows to consider a wide variety of physical condi-
tions of transmission which correspond to a concrete
quantity of a dimensionless parameter. For example,
series of 300 shock waves in acetone which are emit-
ted by three centimeter transducer with the power
of 20 W (this matches M = 10−4), corresponds to
Π = 1.
Similarly to the thermal self-actions, other inertial

self-action may occur by means of formation of the
hydrodynamic streams in a medium due to loss of mo-
mentum of an intense sound wave (“acoustic stream-
ing”). This mechanism always leads to additional di-
vergence because the drift caused by streaming makes
the speed of sound to increase in the central part
of a beam; this occurs in the course of propagation
of any waveform in a viscous fluid, periodic or not.
In this study, we assume that the thermal self-action
takes place in a static medium. The effects associ-
ated with the inertial self-action of the sawtooth waves
in Newtonian fluids were discussed in (Karabutov
et al., 1988). The nonlinear effects of ultrasound are
of great importance in medical and biological applica-
tions, particularly in medical diagnostics and therapy
(Gurbatov et al., 2011; O’Brien, 2007).
The conclusions of the previous sections concern

the case of a medium without thermal conductivity.
This is the most simple case which allows to evalu-
ate an excess temperature of a medium by a simple
integration of the acoustic force of heating. The gen-
eral equation which governs the excess temperature in
the case of the sawtooth waveform containing n shock
fronts may be readily derived by making use of Eq. (5),
expanding temperature in the series in the paraxial re-
gion,

T = T0 −
r2

2
T2(x, t)−

r4

4
T4(x, t) (38)
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and equating multipliers by the even powers of r
in Eq. (2). For an ideal gas in the limiting case
bω/(c20ρ0) → 0, T2 takes the form

T2 =
8nεP 3

0

a20c
2
0CP f

5ρ30

(
1 + 1

xs

x∫
0

dx′

f(x′)

)4 +
8χT4 · t
CPρ0

,

T4 =

8nεP 3
0

(
−3 + 1

xs

x∫
0

dx′

f(x′)

)

a40c
4
0CP f

7ρ30

(
1 + 1

xs

x∫
0

dx′

f(x′)

)5 .

(39)

The preliminary evaluations reveal that thermal
conduction makes thermal self-action of acoustic beam
weaker. That is to be expected, because the thermal
conduction smoothes the non-uniformity of a medium’s
temperature.
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