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In building speech recognition based applications, robustness to different noisy background condition
is an important challenge. In this paper bimodal approach is proposed to improve the robustness of
Hindi speech recognition system. Also an importance of different types of visual features is studied for
audio visual automatic speech recognition (AVASR) system under diverse noisy audio conditions. Four
sets of visual feature based on Two-Dimensional Discrete Cosine Transform feature (2D-DCT), Principal
Component Analysis (PCA), Two-Dimensional Discrete Wavelet Transform followed by DCT (2D-DWT-
DCT) and Two-Dimensional Discrete Wavelet Transform followed by PCA (2D-DWT-PCA) are reported.
The audio features are extracted using Mel Frequency Cepstral coefficients (MFCC) followed by static and
dynamic feature. Overall, 48 features, i.e. 39 audio features and 9 visual features are used for measuring
the performance of the AVASR system. Also, the performance of the AVASR using noisy speech signal
generated by using NOISEX database is evaluated for different Signal to Noise ratio (SNR: 30 dB to
−10 dB) using Aligarh Muslim University Audio Visual (AMUAV) Hindi corpus. AMUAV corpus is Hindi
continuous speech high quality audio visual databases of Hindi sentences spoken by different subjects.
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1. Introduction

Automatic speech recognition (ASR) is the most
ensembles’ technology, which provides easy accessibil-
ity for man-machine communication. It has shown sig-
nificant improvement in man-machine interaction, but
the performance of ASR degrades when working under
noisy environment (Potamianos, Neti, 2003). There-
fore, there is a need of robust technique which can
reduce the effect of noisy background condition and
improve the ASR performance.
Addition of visual information not affected by noise

for enhancing the robustness in ASR is reported in
(Chen, 2001), where mouth height and width were
selected as visual features. In (Potamianos, Neti,
2001) 24 DCT coefficients were selected as a visual
feature from the region of interest (ROI), i.e. selecting
a speaker’s mouth as ROI and 24 MFCC coefficients
as audio features. Both features were concatenated to
form a single feature vector, which reported an im-
provement in SNR of 61% over audio only processing.
It is reported by Huang et al. (2004) that extraction

of visual information from full face video was difficult
due to variations in pose, lighting and background con-
ditions; therefore, selection of the speaker’s mouth as
the region of interest can be used and may provide
improved recognition rate.
In another work by Carboneras et al. (2007), the

authors reported that the visual features added to the
audio features generally resulted in a small gain in ac-
curacy. They performed experiments in two phases. In
the first phase of their experiment a simple feature fu-
sion was performed, in which 128 DCT coefficient along
with 39 audio coefficients, i.e. MFFCs + ∆ (delta) +
∆−∆ (delta-delta) were selected. Due to high dimen-
sionality and improper modelling with hidden Markovs
model (HMM), it resulted in a poor recognition rate. In
the second phase, the same experiment was performed
with 16 low dimension DCT coefficients, which results
in better recognition, i.e. outperforming the DCT fea-
ture by 2–3% with respect to 128 DCT coefficients.
Experiment on phoneme recognition by Ahmad et al.
(2008) reported that features using Linear Discrimi-
nate Analysis (LDA) perform well when using high en-
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ergy coefficients. In their experiment they used DCT
and DWT based visual features. Results of their ex-
periment (with using features in different frequency re-
gion) indicated that intermediate frequencies are more
informative for speech recognition than lower frequen-
cies. Seymour et al. (2008) reported that robustness
in AVASR system can be achieved by adding the dy-
namic visual features. An experiment was performed
over different image transformed, i.e. DCT, Fast Dis-
crete Curvelet Transform (FDCT), PCA and LDA.
Seymour et al. (2008) reported that adding delta (∆)
feature to static feature resulted in a reduction in word
error rate (WER) of 12.9% for DCT, 8.7% for FDCT,
9.4% for PCA and 8.1% for LDA over static feature
only. A work based on audio-visual Hindi phoneme
recognition was reported in Upadhyaya et al. (2012),
where an experiment was performed using three viseme
classes. In their experiment 13 audio features using
MFCC and 2-D DCT based visual features were se-
lected for the experiment. It was reported by Upad-
hyaya et al. (2012) that adding the visual information
outperforms the recognition rate, especially under the
noisy background condition and increase in recogni-
tion rate can be achieved by using fewer visual coeffi-
cients. The extended work of this work was reported in
Varshney et al. (2014) in which Hindi viseme classes
were increased from three to five. Recently, the work
reported in (Upadhyaya et al., 2013; 2014) on Hindi
speech proved, that addition of dynamic visual fea-
tures plays an important role in deciding the robust-
ness of AVASR system. An overall improvement of
26.04% in word recognition is achieved with 12 low
dimensional visual (LDV) DCT feature. Another ap-
proach was given by Zhou et al. (2014) in which latent
variable model (LVM) was used to learn the compact
representation of visual feature. It provides a model
structure of image sequences of the same utterance by
a path graph and incorporates the structural informa-
tion through using the low-dimensional curve.
Due to the limited availability of audio-visual

database there has been only few research in audio-
visual speech processing because testing and veri-
fication of any algorithm is a difficult task. Few
database reported in literature are: IBM ViaVoiceTM
audio-visual (VVAV) database (Neti et al., 2000);
Extended M2VTS (XM2VTS) (Cardinaux et al.,
2003); Clemson University Audio Visual Experi-
ments (CUAVE) (Patterson et al., 2002); VidTIMIT
database (Sanderson, Paliwal, 2004); TCD-TIMIT
(Naomi, Eoin, 2015); AMUAV corpus (Upadhyaya
et al., 2013).
In this paper, we compare the three different im-

ages transformed based (DCT, PCA, and DWT) vi-
sual feature available in the literature (Potamianos,
Neti, 2001; Carboneras et al., 2007; Ahmad et al.,
2008; Seymour et al., 2008). Four sets of visual
feature based on Two-Dimensional Discrete Cosine

Transform feature (2D-DCT), Principal Component
Analysis (PCA), Two-Dimensional Discrete Wavelet
Transform followed by DCT (2D-DWT-DCT) features
and Two-Dimensional Discrete Wavelet Transform fol-
lowed by PCA (2D-DWT-PCA) feature are reported.
The audio features are extracted using Mel Frequency
Cepstral Coefficients (MFCC) followed by static and
dynamic feature. Overall 48 features, i.e. 39 audio fea-
tures and 9 visual features, are reported for measuring
the performance of the AVASR system under noisy
background conditions. Performance of noisy speech
signals using NOISEX (Varga, Steeneken, 1993)
database is evaluated for different Signal to Noise ratio
(SNR: 30 dB to −10 dB) using AMUAV corpus for 10
subjects. Different acoustic environments (white Gaus-
sian noise, car noise, babble noise, factory noise and
machine gun noise) are considered.
The rest of the paper is organized in following way:

Sec. 2 deals with the importance of the Hindi language
for audio-visual speech recognition system; Sec. 3 deals
with feature selection techniques and proposed method
for extracting the audio and visual feature for AVASR
system; Sec. 4 and Sec. 5 deal with results analysis and
conclusions, respectively.

2. Significance of Hindi language

Hindi language is the fourth most spoken
language by number of native speakers, fol-
lowed by Mandarin, Spanish and English as re-
ported in IPA (International Phonetic Alphabet)
(http://www.internationalphoneticalphabet.org). Re-
cently, Hindi language has become more popular
worldwide and that is the reason that most of speech
enable technologies are building the Hindi speech
interface system. Hindi as a language contains more
number of phone sets than English language (Neti
et al., 2002). Hindi language consists of 64 phone sets,
out of which 39 phone sets are common in English
language. Another issue is that the International
Phonetic Alphabet (IPA) has defined the phone set
for labelling the speech data, but there are some
sounds which are not included in IPA, i.e. DN, DXX,
AWN, (Neti et al., 2002) but they play an important
role while building the phone model which is used for
speech recognition purpose. Hindi language contains
more number of fricatives which have very similar
characteristics of noise. Therefore, it is very difficult to
recognize speech signal under noisy environment. That
is why identification of the robust feature for Hindi
language has provided the opportunity for the research
to work on this native language and to enhance the
performance of ASR in noisy environment.
The major work in the area of speech recogni-

tion for Hindi language has been carried out at Tata
Institute of Fundamental Research (TIFR), Mum-
bai (Samudravijaya, 2004). Some research for Hindi
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speech is being reported in (Chourasia et al., 2007;
Farooq et al., 2010; Mishra et al., 2011; Prad-
han et al., 2012; Upadhyaya et al., 2012; 2013).
For this research work Hindi language has been cho-
sen as the benchmark due to the fact that it is spo-
ken by a large number of people internationally and
very little work has been carried out on audio-visual
Hindi speech recognition. The bimodal Hindi speech
database (AMUAV) is being developed at Aligarh
Muslim University-Aligarh, India for research pur-
pose. AMUAV corpus (Upadhyaya et al., 2013) is a
Hindi continuous speech high quality audio and video
database which contains 100 speakers. Each speaker
in AMUAV corpus recorded 10 sentences out of which
2 sentences are common to all speakers. Recordings
have been made in realistic conditions for testing ro-
bust audio visual schemes. The video was recorded at
640× 380 resolutions with 25 fps in full colour. The
audio was recorded in 16-bit stereo at 44.1 kHz. Hindi
sentence used in the AMUAV corpus is phonetically
balanced. Still more work on AMUAV corpus is under
development and soon it will be available publicly for
researchers working in the field of Hindi speech.

3. System description for Hindi AVASR

AVASR system consists of two important units:
front-end unit and back-end unit (Abdelaziz et al.,
2015). The main purpose of the front-end unit is pre-
processing and feature extraction. The back-end unit
is used for training and classification purpose. Prepro-
cessing is used to reduce the effect of background noise,
characteristic of recording device and channel noise.
Feature extraction is a dimensionality reduction stage,
which tries to extract relevant features that are useful
in separating different pattern/classes.
Some commonly used audio feature extraction tech-

niques reported in literature are PCA (Seymour et al.,
2008); Linear Predictive Coefficients (LPC) (Lokesh,
Balakishnan, 2012); Perceptual Linear Prediction
(PLP) (Hoenig et al., 2005); DWT (Navnath,
Raghunath, 2012);Wavelet Based Features (Farooq

Fig. 1. Visual feature extraction technique used in AVASR.

et al., 2005) and MFCC (Potamianos, Neti, 2003).
MFCC is commonly used technique in ASR which uses
auditory filter-bank structure with a cosine transform
having a frequency separation roughly similar to the
auditory system (Potamianos, Neti, 2003).
In this paper, audio features are extracted using

MFCC. The relation between Mel frequency and fre-
quency is shown in Eq. (1):

mel(fm) = 2595× log10

(
1 + log

f

700

)
. (1)

To include the temporal evolution of MFCC, addi-
tional feature∆ (delta) and∆−∆ (delta-delta) is com-
puted. Finally, these feature vectors are concatenated
to form as a single modality, i.e. da = 39. Detailed de-
scription of audio feature extraction can be found in
(Upadhyaya et al., 2014).
On the other hand, for visual front, preprocessing

is done to select the required portions of a frame ex-
tracted from a video which is useful in speech recog-
nitions, i.e. selecting a region of interest (ROI) from
which the visual features are to be extracted. In case
of visual speech recognition, ROI in many research
(Potamianos, Neti, 2001; Carboneras et al., 2007;
Ahmad et al., 2008; Seymour et al., 2008, Upad-
hyaya et al., 2012; 2013) is the area around the lip
region. Some commonly used visual feature extrac-
tion techniques reported in literature are Geometric
based and Model based approach (Neti et al., 2000;
Potamianos et al., 2004). Both techniques require the
inner and outer lip contour for feature extraction.
Procedure for extraction of visual features is shown

in Fig. 1. Lip movements are more useful in conveying
information. Hence, lip region is selected as the region
of interest (ROI). Initially, recorded video is split into
frames. For faster processing three dimensional RGB
image is converted into gray scale image. Face local-
ization on gray image is selected by using a template
matching method (Lee, Park, 2008), which returns
the four co-ordinate points representing the face posi-
tion, as shown in Fig. 2.
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Fig. 2. Face detection from frame.

For ROI extraction, a gray scale image is converted
into the binary image (Khanam et al., 2010) hav-
ing black and white pixels. Lip localization is chosen
by counting the black pixel in the binary image. The
centre of the image was chosen as the reference and
then vertical and horizontal black pixel density his-
togram was evaluated. Finally, for obtaining robust vi-
sual features from the extracted ROI, different feature
extraction technique, based on Set A (2D-DCT), Set B
(PCA), Set C (2D-DWT-DCT) and Set D (2D-DWT-
PCA) are applied. For extracting visual feature for
Set A, the two dimensional DCT (Potamianos et al.,
2003) was applied on the ROI and DCT coefficients
are obtained using Eq. (2) from the lowest frequency
component to highest frequency component:

Xij = aiaj

M−1∑

i=0

N−1∑

j=0

Ym,n cos
π (2m+ 1) i

2M

· cos π (2n+ 1) j

2N
, (2)

where

ai =

{
1
/√

M, i = 0,√
2/M, 1 ≤ i ≤M − 5

and

aj =

{
1
/√

N, j = 0,√
2/N, 1 ≤ j ≤ N − 5.

Fig. 3. PCA feature extraction for ROI.

The 2-D DCT of an image returns the same size
2D matrix coefficients. However, it is found that most
of the energy and discriminatory information corre-
spond to low frequencies (Seymour et al., 2008; Ah-
mad, 2010). Therefore, visual feature coefficient, i.e.
X11, X12, . . ., X[M−1][N−1] are obtained, order of row
and column is represented by n and m respectively.
Finally, 9 visual features coefficients are selected in
a zigzag pattern starting from lowest frequencies where
usually most of the information is confined.
For extracting visual feature for Set B, the Prin-

cipal Component Analysis (PCA) (Smith, 2002;
Potamianos et al., 2003) was applied on the ROI.
PCA is a variable reduction procedure and it is use-
ful when obtained data have some redundancy. PCA
is used to reduce the dimensionality of the data by re-
taining as much variation as possible with original data
sets. In our case PCA is applied on the ROI, which
returns the principal component coefficients. Figure 3
shows the step by step procedure for obtaining the Set
B feature.
Initial step is to compute the 2-dimension mean

vector (x, y) from extracted ROI. Further, covariance
matrix of 2-dimensional data is computed. Finally, the
eigenvalues and eigenvectors of the covariance matrix
are computed and sorted from higher to lower eigen-
values. New feature vector is formed by taking n-
eigenvectors and forming a feature vector matrix as
shown in Eq. (3).

Feature Vector = (eig1, eig2, . . . , eign). (3)

After obtaining feature vector, visual feature is ob-
tained by taking the transform of feature vector and
multiplying it on left of the original data set, as shown
in Eq. (4). Total nine visual features coefficients are
selected from the Eq. (4).

Visual Feature = row(Feature Vector)

×row(Data Adjust). (4)

For obtaining Set C and Set D visual features, ex-
tracted ROI was further reduced by one-level 2D-DWT



P. Upadhyaya et al. – Comparative Study of Visual Feature for Bimodal Hindi Speech Recognition 613

Fig. 4. Block diagram of AVASR.

using “Haar” as a mother wavelet. Haar wavelet is se-
lected as the basis function as it is the simplest wavelet
transform with compact support (Bruce et al., 2002;
Gundimada, Asari, 2004). Haar Wavelet Transform
is mainly used for image compression and feature ex-
traction and requires simple mathematical calculation
in terms of addition and subtraction. So they are faster
to compute transformation (Bruce et al., 2002). The
approximated coefficients which carry the majority
of discriminatory information were transformed using
2D-DCT. Set C, visual features are obtained through
the hybrid combination of 2D-DWT-DCT techniques.
Finally, nine lowest frequency components were se-
lected as visual features for Set C. Similarly, Set D
visual features are obtained through the hybrid com-
bination of 2D-DWT-PCA techniques. The approxi-
mated coefficients were transformed by applying PCA
analysis. Finally, first nine principal components were
selected as visual features for Set D.
For making the fair comparison between visual fea-

ture extraction techniques for Set A, B, C and Set D,
the same number of visual features is taken into ac-
count for easy analysis. Finally, these features are
concatenated using early integration (Potamianos
et al., 2003; 2004) techniques, i.e. audio and visual fea-
tures are concatenated at initial phase before passing
through the classifier. Therefore, in our experimental
work thirty nine audio features (da = 39) and nine vi-
sual (dv = 9) features were selected to form a 48 audio-
visual feature (dav = 48). Figure 4 shows the complete
procedure for evaluating the features for AVASR sys-
tems. Finally, these features are passed through the
classifier and overall recognition, for audio only recog-
nition and audio-visual recognition for Set A, B, C
and D is evaluated respectively. MFCC features are
taken as a baseline feature.

4. Result analysis

The experiment was performed in Matlab version
7.12.0.635 (R2011a). Hidden Markovs model (Young,

2008) was used by calling C library module of selected
HTK version 3.4.1. Three states left-right HMM model
along with the one state silence model were used for
modelling phoneme. The percentage of the correctly
recognized words (C), and percentage of the word ac-
curacy (Wacc) were computed using Eq. (5) and (6),
respectively:

Percent Correct(C) =
N−D−S

N
×100, (5)

Percent Word Accuracy(Wacc) =
N−D−S−I

N
×100, (6)

where N is the total number of evaluated words, D is
the total number of deletions, S is the total number
of substitutions, and I is the total number of insertion
error.
Total of 100 sentences with 1225 words was used for

evaluation of performance. A bi-gram language model
was created based on the transcriptions of the training
data set. Recognition was performed using the Viterbi
decoding algorithm, with the bi-gram language model.
The same training and testing procedure was used
for both audio-only and audio-visual automatic speech
recognition experiments.
During recognition process, grammar scale factor

and the word insertion penalty are used for controlling
the influence of the language model over the computed
probabilities. Insertion penalty is a fixed cost added to
each token when it transmits from the end of one word
to the beginning of the next. Grammar scale factor is
the amount by which the language model probability
is scaled before being added to each token as it transits
from the end of one word to the beginning of the next.
To make the fair comparison word insertion penalty
and grammar scale factor were kept same, i.e. 0.0
and 5.0, respectively. To test the algorithm over a wide
range of SNRs, noise was added to the audio signals.
The experiments for SNRs from 30 dB to −10 dB were
performed. Five types of noise were selected from NOI-
SEX database, i.e. white noise, car noise, babble noise,
factory noise and machine gun noise. These noises were
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injected in a clean audio signal to produce the noisy
environmental conditions. To match the bandwidth of
speech signal and noisy signal, speech signal was down
sampled to 8 kHz. As in speech signal most of the en-
ergy is concentrated up to 8 kHz. Each audio signal
was then mixed with the noisy signal at a different
SNRs range, i.e. from 30 dB to −10 dB.

4.1. Performance of audio only recognition

under clean and adverse environment

Percentage of word accuracy for audio features
along with four different categories of visual features
under clean environment condition is shown in Fig. 5a.
Word accuracy (Wacc) for clean signal is found to
be 96.41% whereas for others features it is 75.02%,
95.18%, 86.53% and 93.39% for Set A, B, C and
Set D, respectively under clean environment condi-
tions. Inclusion of Set A shows a 21.39% drop in Wacc,
where 9.88% drop in Wacc is reported for Set C com-
pared to baseline feature. Wacc reduces due to the
addition of the high dimensionality DCT visual fea-
ture which results in inadequate modelling with HTK
(Carboneras et al., 2007; Upadhyaya et al., 2013).
On the other hand, little improvement in word ac-
curacy is seen for Set C over Set A features. Hybrid
combination of DCT+DWT results in better compact
structure, i.e. it contains the higher energy coefficients,
and DWT allows the better localization of the signal.
Set B and Set D visual features show the performance
close to that of the baseline feature. Addition of vi-
sual feature with clean audio has not shown any im-
provement over baseline feature (MFCC) in clean au-
dio condition. Set B shows the best performance for
audio visual features. Figure 5a shows the percentage
recognition of audio only under noisy acoustic condi-
tions. There is a drop in (Wacc) for audio only recog-
nition for 10 dB to −5 dB SNR. Results obtained from
Fig. 5b clearly shows clean audio signal distorted more
due to the presence of white noise.

Fig. 6. Percentage of word recognition for audio only and audio visual speech recognitions using white noise.

a)

b)

Fig. 5. a) Recognition under clean environment conditions,
b) audio only recognition under noisy environment condi-

tions.

4.2. Performance analysis of audio only versus audio

visual recognition for white noise

Figure 6 shows the performance in terms of word
accuracy for audio only and audio-visual using four
visual sets. From the graph (Fig. 6) it can be ob-
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served that concatenation of audio-visual features at
30 dB has not outperformed baseline feature. Addition
of Set A feature with audio feature reported gain in ac-
curacy from 5dB downward, whereas Set B has shown
the improvement for all levels of SNR, i.e. 20 dB to
−10 dB. Addition of Set C and Set D features, also
reported the improvement in noisy condition for SNR
value ranging from 10 dB to −10 dB.
The result obtained from Fig. 6 concludes that the

addition of visual feature provides gain in accuracy in
the presence of white noise. In Table 1 the detailed er-
ror distribution of the four feature sets in noisy back-
ground (white noise) along with clean acoustic condi-
tions is shown. Table 1 indicates that for white noise,
deletion error (D) increases and insertion error (I) de-
creases with the decrement of SNR.
For Set A feature, both substitution errors (S) as

well as deletion error (D) increase simultaneously, with
a decrease in SNR. On the other hand, insertion er-
ror (I) decreases with decrease in SNR, with the base-
line feature (MFCC). Table 2a shows the sum of the er-
ror distribution (S+D+I) for white noise, which clearly
indicates total error distribution for Set A, exceed the
baseline, i.e. total sum error of MFCC at 10 dB SNR.
So no improvement in accuracy is achieved for Set A at
10 dB SNR. But, as the SNR decreases (10 dB down-
ward), the total sum error of Set A outperformed base-
line feature achieving gain in accuracy. For Set C, i.e.
the addition of the DWT feature with DCT decreases

Table 1. Error distribution of white noise for different feature extraction technique with total number of deletion
(D) error, substitution (S) error and insertion (I) error for audio only and audio visual recognition.

SNR 10 dB 5 dB 0 dB −5 dB −10 dB
X
X
X
X
X
X
X
X
X

Feature
Error

D S I D S I D S I D S I D S I

Audio only 210 484 25 607 378 1 821 176 0 825 172 0 825 172 0

Set A 274 435 40 346 535 29 390 569 27 462 513 15 461 510 14

Set B 264 321 7 617 359 2 749 244 0 803 193 0 800 197 0

Set C 225 321 23 397 519 23 591 388 6 736 248 3 727 254 1

Set D 290 374 21 599 367 4 773 219 1 788 208 2 797 200 2

Table 2. Sum of deletion (D) error, substitution (S) error and insertion (I) error for different feature extraction
technique for audio only and audio visual recognition.

Noise (a) White Noise (b) Car Noise

SNR 10 dB 5 dB 0 dB −5 dB −10 dB 10 dB 5 dB 0 dB −5 dB −10 dB
X
X
X
X
X
X
X
X
X

Feature
Error

D+S+I D+S+I D+S+I D+S+I D+S+I D+S+I D+S+I D+S+I D+S+I D+S+I

Audio only 719 986 997 997 997 107 328 776 945 961

Set A 749 910 986 990 985 435 608 904 955 969

Set B 592 978 993 996 997 125 388 772 941 965

Set C 569 939 985 987 982 208 381 776 944 964

Set D 685 970 993 998 999 118 399 833 950 969

the substitution error (S) and insertion error (I) when
compared with Set A (DCT feature). Thus, decrease
in the insertion error (I) increases the gain accuracy
of Set C when compared with Set A. This shows the
robustness of DWT features over DCT features. From
Table 2a the total error distribution sum, i.e. S+D+I
error, for Set A, from 0 dB to −10 dB SNR, has ap-
proximately the same sum for error distribution when
compared with baseline feature. This is the reason why
constant recognition is achieved at 0 dB to −10 dB
SNR, for Set A, in the presence of white noise. This
results in a worse recognition performance in the pres-
ence of white noise.
Similarly, for Set B, i.e. addition of visual feature

using PCA decreases the insertion error (I), which
results in high gain in accuracy when compared with
other visual feature. The maximum %Wacc under
white noise is found to be 10.36%, 12.25 %, and 2.77%
for Set B, Set C and Set D respectively at 10 dB SNR.
Whereas for Set A maximum %Wacc under white noise
is found at 5 dB SNR, which is found to be 6.21%. By
comparing the performance of all visual set, i.e. Set
A/B/C/D, we found that the performance of Set B
outperforms the baseline feature from 20 dB to 5 dB
SNR, and Set C outperforms the baseline feature
from 0 dB to −10 dB SNR. The conclusion that can
be drawn out for the feature selection method is as
follows. Set A shows the poor performance at higher
SNR (from 30 dB to 5 dB) but shows consistent recog-
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nition due to their higher energy coefficient at lower
SNR value. Set B shows the best performance with
respect to all sets due to a dimension reduction tech-
nique of PCA. Set C performs well because combina-
tion of DCT+DWT results in better compact struc-
ture, i.e. it contains the higher energy coefficients and
DWT allows the better localization of the signal. Thus,
addition of visual feature in noisy environments out-
performed the audio-only recognition. Hence, the addi-
tion of visual feature at clean condition has not shown
any improvement over baseline (MFCC) feature but
shows better performance in noisy condition. This re-
sult proves the robustness of visual features for noisy
speech.

4.3. Performance analysis of audio only versus audio

visual recognition for car noise

Table 2b shows the error sum, i.e. S+D+I error for
car noise. Detailed error distribution of car noise for
different feature set is reported in Table 3. Due to addi-
tive car noise deletions error (D) increases as the SNR
level decreases when compared with baseline (MFCC)
feature as shown in Table 3. Substitution error (S) in-
creases from 10 dB to 5 dB SNR and then there is a
sudden decrease in substitution error (S) from 0 dB to
−10 dB SNR. Addition of visual features along with
MFCC did not perform well in noisy environments.
Car noise is more prominent in the low-frequency part
of the signal but decays rapidly as the frequency in-

Table 3. Detailed error distribution for audio visual recognition performance of car noise for different feature
extraction technique, where D = Deletion error, S = Substitution error and I = Insertion error.

SNR 10 dB 5 dB 0 dB −5 dB −10 dB

Features D S I D S I D S I D S I D S I

Set A 173 249 13 247 342 19 578 321 5 768 187 0 799 170 0

Set B 43 72 10 165 206 17 523 242 7 764 177 0 798 167 0

Set C 80 111 17 148 206 27 449 320 7 734 210 0 792 172 0

Set D 36 69 13 202 181 16 613 216 4 781 169 0 798 171 0

Fig. 7. Percentage word recognition for audio only and audio visual speech recognition using babble noise.

creases (Hansen, Zhang, 2009). Low frequency com-
ponents of the speech features are corrupted more by
car noise, and as the background noise changes, speech
spectral changes. Thus, alteration in speech spectra re-
sults in dramatic fall during recognition. Also, from
Table 2b, total sum error distribution, i.e. S+D+I, for
car noise, increases as the SNR value decreases, which
shows the similar behaviour as white noise, which re-
sults in worse recognition performance. None of the
visual feature performed well for car noise. Therefore,
visual robust feature, which can perform well in pres-
ence of car noise, is to be investigated.

4.4. Performance analysis of audio only versus audio

visual recognition for babble noise

Comparison of audio-visual features performance
of Set A, Set B, Set C and Set D with respect to
babble noise is also evaluated. Figure 7 shows that
addition of visual feature using Set A and Set C
demonstrates no improvement in the accuracy. Small
gain in accuracy is reported at −5 dB SNR using
Set A and Set C. Similarly for Set B an improve-
ment in recognition below 5 dB SNR is reported.
Set D performed well under babble noise condition,
and the improvement is achieved at all value of
SNR, i.e. 10 dB to −10 dB. For babble noise Set D
(2D-DWT followed by PCA feature) outperformed
when compared with other visual feature. Table 4
shows the detailed error distribution of babble noise.
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Table 4. Detailed error distribution for audio visual recognition performance of babble noise for different feature
extraction technique, where D=Deletion error, S=Substitution error and I=Insertion error.

SNR 10 dB 5 dB 0 dB −5 dB −10 dB

Features D S I D S I D S I D S I D S I

Set A 165 307 24 166 400 35 187 548 54 240 632 57 271 648 57

Set B 43 87 25 71 207 60 163 369 47 305 518 33 491 448 9

Set C 89 138 22 90 238 36 180 442 62 226 571 83 244 649 95

Set D 22 75 18 49 194 45 137 422 66 268 575 53 378 559 34

Table 5. Percentage recognition for audio only and audio visual recognition for sets of visual features.

SNR (dB)
(a) Factory noise (b) Machine gun noise

Audio Set A Set B Set C Set D Audio Set A Set B Set C Set D

30 96.00 74.45 94.12 86.53 93.22 96.24 74.78 95.02 87.92 93.14

20 96.33 69.39 94.37 86.20 93.71 96.00 74.12 94.29 86.69 93.47

10 89.47 58.61 86.78 78.86 90.69 93.88 71.35 93.31 85.47 91.59

5 75.02 45.47 71.67 61.96 75.35 89.71 67.10 87.59 80.65 89.63

0 36.57 26.78 37.55 39.02 42.12 79.35 57.31 80.73 69.47 84.65

-5 23.51 21.06 22.61 19.67 23.76 60.24 47.67 67.02 57.47 69.55

-10 24.16 20.24 22.86 19.84 22.86 40.65 37.31 46.29 42.04 47.92

From the Table 4, it can be easily observed that,
as the SNR value decreases, all the three errors, i.e.
substitution error (S), deletion error (D) and insertion
error (I), increase. Among all three errors, contribu-
tion of substitution error (S) is more, which gradually
increases with the decrease in SNR. The same effect
is shown in the insertion error (I). Babble noise con-
tains the spectral peaks of the voice which are dis-
tributed over both time and frequency (Jürgens et al.,
2013). When two speech signals get overlapped, there
are chances of spectral smoothing between the babble
noise and speaker’s utterance, especially during silence
and pause period. Hence, if their correlation (match-
ing) between features is stronger, i.e. noise can resem-
ble speaker’s utterance, then the performance of ASR
increases, and if not it will result in poor performance.
Therefore, for Set A and Set C, from Table 4, error
distribution, i.e. (S+D+I), increases as the SNR value
decreases.
On the other hand, addition of visual features of

Set A and Set C has not shown any significant improve-
ment. Similarly, for Set B, error distribution is reduced
when compared with Set A and Set C, resulting in
better recognition. Set B features outperformed base-
line feature (MFCC) from 0 dB to −10 dB SNR. Simi-
larly, Set D outperformed baseline feature from 10 dB
to −10 dB SNR. The results prove the robustness of
visual features for noisy speech recognition. Maximum
%Wacc, for Set A/C/D is reported as 1.22%, 5.24%,
and 3.91% respectively at −5 dB SNR and for Set C
it is 7.27% at 0 dB SNR. Finally, the experiment was
performed for remaining two noises, i.e. factory noise
and machine gun noise as shown in Table 5.

Table 5b shows the percentage recognition, in terms
of word accuracy, for audio only and audio visual
speech recognition in presence of factory noise and ma-
chine gun noise, respectively. Thus, in the presence of
factory noise the speech signal is more corrupted and
addition of Set A/B/C visual feature also did not per-
form well under noisy condition. Set D feature pro-
vides the robustness to system, thereby outperforming
the baseline feature from 10 dB to −5 dB SNR. From
Table 5, we observe that improvement in the recogni-
tion is achieved at lower values of SNR. Thus, addition
of visual feature over MFCC in a noisy environment
proved to be robust. Also, comparing all the visual fea-
ture extraction technique proposed in this paper, Set D
outperformed the MFCC features in noisy condition.

5. Conclusion

This paper reports the Hindi bimodal technique
for increasing the robustness of an ASR system un-
der noisy background conditions. Performance of noisy
speech signals using NOISEX database is evaluated
for different Signal to Noise ratio (SNR: 30 dB to
−10 dB) using AMUAV corpus for 10 subjects un-
der different acoustic environments (white Gaussian
noise, car noise, babble noise, factory noise and ma-
chine gun noise). As experimental results reported in
Sec. 4 clearly show, the performance of an ASR sys-
tem degraded when injected noise power is more than
the source signal and additional of visual features along
with the audio features help to increase the robustness.
Word recognition using four set of visual feature, i.e.
Set A: Two-Dimensional Discrete Cosine Transform
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feature (2D-DCT) feature, Set B: Principal Compo-
nent Analysis (PCA) feature, Set C: Two-Dimensional
Discrete Wavelet Transform followed by DCT (2D-
DWT-DCT) features and Set D: Two-Dimensional
Discrete Wavelet Transform followed by PCA (2D-
DWT-PCA) have been reported for extracting the vi-
sual feature and adding only 9 visual dimension feature
have reported an increase in the word recognition rate.
Also, it has been concluded that the Set B and Set D
have shown better performance when compared with
other visual features. Hence, one can conclude that the
performance of audio visual is highly dependent on the
type of visual features as well as the type of acoustic
noise under which the performances is to be measured.
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