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A rigorous analysis of sound radiation by a pulsating sphere forming a resonator together with a semi-
spherical cavity is presented. Both hard and soft boundaries are considered, as well as mixed. The problem
is solved by dividing the entire region into two subregions, one surrounding the sphere and containing
the cavity and the other for the remaining half-space. The continuity conditions are applied to obtain
the acoustic pressure. Then the acoustic radiation resistance is calculated both in the near- and far-field.
The acoustic radiation reactance is calculated in the impedance approach. The resonance frequencies are
determined, for which a significant growth of the sound pressure level is observed as well as the sound
field directivity. The accuracy and convergence of these rigorous results has been examined empirically.
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1. Introduction

The radiation and scattering of acoustic waves by
spherical objects are important in an oceanic environ-
ment. The results of scientific investigations are usually
useful for designing the depth sounders and sonar an-
tennas applied in fishery, water warfare, biology and
medicine. The results obtained are often useful in dif-
ferent branches of science. So far, there have been
a number of studies dealing with this topic. Foldy
(1949) presented the power efficiency of passive lin-
ear electroacoustic transducers. Anderson (1950) an-
alyzed sound scattering by a spherical obstacle of size
comparable to the wavelength. Faran (1951) consid-
ered sound scattering by cylindrical and spherical ob-
stacles containing shear waves in addition to compres-
sional waves. Ferris (1952) analyzed the natural fre-
quencies and mode shapes of a spherical cavity filled
with a gaseous medium. Rudgers (1974) studied the
acoustic impedance of an array of complex transduc-
ers in a cylindrical baffle with spherical caps at both
of its ends with an additional cylindrical reflector con-
sidering the reciprocal interactions of the transducers
in detail. Thompson Jr. (1973; 1976) considered an
interesting problem of sound radiation by a sphere
eccentrically located within a fluid sphere using the
Clebsch–Gordan coefficients, which enables expressing

the acoustic field of a spherical source in some eccen-
tric spherical coordinates, and also solved the problem
of sound radiation by a spherical source located near
a fluid sphere. The method was further developed by
Gaunaurd andHuang (1996), who used it for solving
the problem of sound scattering by a spherical object
near a hard flat bottom. Hasheminejad (2003) ana-
lyzed rigorously the modal radiation load on a sphere
immersed in an acoustic halfspace bounded by a rigid
plane using the same method. Hasheminejad and
Azarpeyvand (2003a,b; 2004a,b) used the method
for solving the problem of the asymmetric sound radi-
ation by an oscillating sphere above a rigid/compliant
plane. They also investigated the problem of sound
radiation by a spherical cap near a hard/soft flat
screen and the sound radiation from a vibrating sphere
within an acoustic quarterspace. Another achievement
of theirs is describing in detail the acoustic radiation
from a sphere suspended within a thermoviscous fluid
sphere, including the effects of eccentricity. Azarpey-
vand and Azarpeyvand (2014) analyzed theoreti-
cally the acoustic manipulation of porous spherical
shells for applications in magnetic resonance imaging
using high order Bessel beams and Biot’s theory of
poro-elasticity. Levine and Leppington (1991) con-
sidered analytically the acoustic power from moving
and pulsating spheres. Levine (2001) presented a tu-



76 Archives of Acoustics – Volume 41, Number 1, 2016

torial exposition of cavity excitations with some simple
analytical methods. Brański and Leniowska (1992)
investigated the far field of a concentric ring vibrat-
ing on a rigid sphere over a side branch deep cavity in
a rectangular duct. Aarts and Janssen (2010; 2011)
used the Zernike polynomials to model the sound ra-
diation from a resilient spherical cap on a rigid sphere.
Tang, Wu and Tang (2010) improved the sound ra-
diation performance of a spherical cap radiator by
adding an acoustic soft material belt between the vi-
brating cap and the rigid baffle. Barmatz and Col-
las (1985) studied the acoustic potential on a sphere
for small wavelengths. Kim, Lauchle, and Gabriel-
son (2008) performed measurements of the near-field
acoustic intensity under water. Azarpeyvand (2005;
2014) created silent zones in a diffuse sound field us-
ing a vibrating spherical piston, and also analyzed the
phenomenon of backward dragging forces on objects
illuminated by a symmetric acoustic Bessel beam. The
sound radiation was also examined in different bound-
ary geometries. Pelat, Félix and Pagneux (2009)
presented the use of leaky modes in open waveguides
for the sound propagation modeling in street canyons.
Szemela (2015) examined sound radiation of vibrat-
ing piston in an acoustic canyon with walls of infinite
height. Kolber, Snakowska, and Kozupa (2014)
studied the effect of plate discretization on accuracy
of the sound radiation efficiency measurements for
a speaker embedded into a rectangular cavity. Jeong,
Kang and Kim (2012) presented an analytical model
for sound radiation of a Korean bell.
Although the literature on the acoustic field of

a spherical source is extensive, the problem of the
sound radiation of a pulsating rigid sphere located in
the outlet of a hemispherical baffle in a flat screen for
four different boundary configurations of the baffle has
not been treated using rigorous methods, as far as the
author’s knowledge extends. This problem is, there-
fore, treated in this paper.

2. The acoustic field

The Neumann/Dirichlet boundary problem is con-
sidered for a pulsating rigid sphere of radius a. The
sphere is embedded in the outlet of a semi-spherical
cavity of radius b in screen (cf. Fig. 1). The problem is
axially symmetric. The Helmholtz equation

(
∇2 + k2

)
p(r, θ, t) = 0 (1)

is satisfied within the entire region Ω filled with water,
where the acoustic pressure

p(r, θ, t) = p(r, θ) exp(−iωt) (2)

is time harmonic, p(r, θ) is the amplitude, exp(−iωt)
is the time dependence (which will be suppressed in
the further analysis), ω is the angular frequency, k is

Fig. 1. The pulsating rigid sphere of radius a in
the outlet of the hard/soft semi-spherical cavity

(the region Ω = Ω1 +Ω2).

the wavenumber, and (r, θ) are spherical coordinates.
Assuming that the sphere is perfectly rigid, and that
the surfaces of the cavity and the screen can be ei-
ther acoustically hard or soft, it is possible to distin-
guish four different boundary problems, as illustrated
in Fig. 2 two with homogeneous boundaries, hard or
soft, and the other two with mixed boundaries, hard-
soft or soft-hard. Since all the problems are solved sim-
ilarly, only one of them will be presented in detail. For
the other three problems, the main differences will be
presented. For this purpose, the region Ω = Ω1+Ω2 of
the semi-spherical cavity and the half-space has been
artificially divided into two subregions (cf. Fig. 1)

Ω1 = {0 < a 6 r 6 b; 0 6 θ 6 π},

Ω2 = {b 6 r 6 ∞; 0 6 θ 6 π/2} .
(3)

The region Ω1 is the annular spherical layer, and
the region Ω2 covers the rest of the considered space.
The acoustic pressures has been denoted by p1 and p2
for the two subregions.

a) b)

c) d)

Fig. 2. Four different boundary configurations.
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2.1. An acoustically hard boundary

In the case of an acoustically hard boundary (cf.
Fig. 2a), the following boundary conditions are satis-
fied

∂p1
∂r

∣∣∣∣
r=a

= −ik̺0cv0; 0 6 θ 6 π,

p1(b, θ) = p2(b, θ); 0 6 θ 6 π/2,

∂p1
∂r

∣∣∣∣
r=b

=





∂p2
∂r

∣∣∣∣
r=b

; 0 6 θ 6 π/2,

0; π/2 6 θ 6 π,

∂p2
∂θ

∣∣∣∣
θ=π/2

= 0; b 6 r 6 ∞,

(4)

where ̺0 is the rest density of water and c is the speed
of sound. The radiation condition (Sommerfeld,
1964)

lim
r→∞

r

(
∂p2
∂r

− ikp2

)
= 0 (5)

is also satisfied. The normal component of the vibra-
tional velocity on the sphere for r = a (the normal unit
vector ~n is oriented outside the considered region Ω)
can be formulated as

v(t) = v0 exp(−iωt), (6)

for the steady time harmonic vibrations, where v0 ∈ C

is the amplitude and S = 4πa2 is the area of pulsating
sphere. The acoustic pressure amplitude (referred to in
the future as the acoustic pressure) can be expressed
as (Morse, 1948, Eq. 27.13, pg. 317)

p1(r, θ) =

∞∑

n=0

[
Anjn(kr) +Bnh

(1)
n (kr)

]
Pn(cos θ);

for Ω1,

p2(r, θ) =

∞∑

n=0

Cnh
(1)
2n (kr)P2n(cos θ); for Ω2,

(7)

where jn and h
(1)
n are the spherical Bessel and Hankel

functions of the n-th order, and the index values 2n
result from the condition (d/ dθ)P2n(cos θ)|θ=π/2 = 0
for r > b. The amplitude coefficients Bn can be ex-
pressed by applying the boundary condition in Eq. (4)1
to Eq. (7)1, multiplying the latter side by side by
Pn′(cos θ) sin θ, integrating it with respect to θ over
the interval from 0 to π, using the orthogonality of the
Legendre polynomials in Eq. (2)1, which gives Bn =

−{i̺0cv0h(1)0 (kr) + Anj
′
n(ka)}[h(1) ′0 (ka)]−1. Then in-

serting it into Eq. (7)1 yields

p1(r, θ) = −i̺0cv0
h
(1)
0 (kr)

h
(1) ′
0 (ka)

+
∞∑

n=0

Anz
(1)
n (kr, ka)Pn(cos θ) (8)

for Ω1, where

z(1)n (kr, ka) = jn(kr) −
j′n(ka)

h
(1) ′
n (ka)

h(1)n (kr). (9)

Further, we insert the solution in Eqs. (7)2 and (8) into
the boundary condition (4)2, multiply side by side by
P2n′(cos θ) sin θ, integrate with respect to θ from 0 to
π/2, use the orthogonality condition in Eq. (38)2 and
(38)3, and obtain

A2n′z
(1)
2n′(kb, ka) + N2n′

∞∑

n=0

A2n+1z
(1)
2n+1(kb, ka)

· P 2n′,2n+1 − Cn′h
(1)
2n′(kb)

= δ0,n′ i̺0cv0
h
(1)
0 (kb)

h
(1) ′
0 (ka)

, (10)

where the normalization constant is Nν is presented
in Eq. (39)1, and P in Eqs. (38)3 and (38)2. Then we
insert Eqs. (7)2 and (8) into Eq. (4)c, multiply side
by side by Pn′(cos θ) sin θ, integrate with respect to θ
from 0 to π, use Eq. (38)1, and obtain separately for
even and odd values of n′,

A2n′z
(1) ′
2n′ (kb, ka)− 1

2
Cn′h

(1) ′
2n′ (kb)

= δ0,n′ i̺0cv0
h
(1) ′
0 (kb)

h
(1) ′
0 (ka)

,

A2n′+1z
(1) ′
2n′+1(kb, ka)−

1

2
N2n′+1

∞∑

n=0

Cnh
(1) ′
2n (kb)

· P 2n,2n′+1 = 0.

(11)

Equations (10) and (11) form the system of algebraic
equations. Solving it numerically gives the unknown
coefficients An and Cn.

2.2. Acoustically soft boundaries

In the case of acoustically soft boundaries (cf.
Fig. 2b), the boundary condition (4)1 is satisfied as
well as the set

p1(b, θ) =




p2(b, θ); 0 6 θ 6 π/2,

0; π/2 6 θ 6 π,

∂p1
∂r

∣∣∣∣
r=b

=
∂p2
∂r

∣∣∣∣
r=b

; 0 6 θ 6 π/2

p2(r, π/2) = 0; b 6 r 6 ∞,

(12)
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along with the radiation condition (5). The acoustic
pressure can be expressed using Eq. (8), and

p2(r, θ) =
∞∑

n=0

Cnh
(1)
2n+1(kr)P2n+1(cos θ) (13)

for Ω2, where the index values 2n+ 1 result from the
condition P2n+1(0) = 0 for r > b. Inserting Eqs. (8)
and (13 into (12)1 and (12)2, and processing in a sim-
ilar way as in the former case, finally gives

A2n′z
(1)
2n′(kb, ka)− 1

2
N2n′

∞∑

n=0

Cnh
(1)
2n+1(kb)P 2n′,2n+1

= δ0,n′ i̺0cv0
h
(1)
0 (kb)

h
(1) ′
0 (ka)

, (14)

A2n′+1z
(1)
2n′+1(kb, ka)−

1

2
Cn′ h

(1)
2n′+1(kb) = 0,

N2n′+1

∞∑

n=0

A2nz
(1) ′
2n (kb, ka)P 2n,2n′+1

+A2n′+1z
(1) ′
2n′+1(kb, ka)− Cn′h

(1) ′
2n′+1(kb)

= i̺0cv0N2n′+1P 0,2n′+1
h
(1) ′
0 (kb)

h
(1) ′
0 (ka)

. (15)

Solving numerically the above system of algebraic
equations gives An and Cn.

2.3. Acoustically hard-soft boundaries

In the case of acoustically hard-soft mixed bound-
aries (cf. Fig. 2c), the boundary conditions (4)1, (4)2,
(4)3, and (12)3 are satisfied along with the radiation
condition (5). Inserting Eqs. (8) and (13) into (4)2 and
(4)3 gives

N2n′+1

∞∑

n=0

A2nz
(1)
2n (kb, ka)P 2n,2n′+1

+A2n′+1z
(1)
2n′+1(kb, ka)− Cn′h

(1)
2n′+1(kb)

= i̺0cv0N2n′+1P 0,2n′+1
h
(1)
0 (kb)

h
(1) ′
0 (ka)

, (16)

A2n′z
(1) ′
2n′ (kb, ka)− 1

2
N2n′

∞∑

n=0

Cnh
(1) ′
2n+1(kb)P 2n′,2n+1

= δ0,n′ i̺0cv0
h
(1) ′
0 (kb)

h
(1) ′
0 (ka)

, (17)

A2n′+1z
(1) ′
2n′+1(kb, ka)−

1

2
Cn′h

(1) ′
2n′+1(kb) = 0.

Solving numerically the above system of algebraic
equations gives An and Cn.

2.4. Acoustically soft-hard boundaries

In the case of acoustically soft-hard mixed bound-
aries (cf. Fig. 2d), the boundary conditions (4)1, (12)1,
(12)2, and (4)4 are satisfied together with the radiation
condition (5). The acoustic pressure can be expressed
by Eqs. (7)2 and (8). Inserting Eqs. (7)2 and (8) into
(12)1 and (12)2 gives

A2n′z
(1)
2n′(kb, ka)−1

2
Cn′h

(1)
2n′(kb)

= δ0,n′ i̺0cv0
h
(1)
0 (kb)

h
(1) ′
0 (ka)

,

A2n′+1z
(1)
2n′+1(kb, ka)−

1

2
N2n′+1

∞∑

n=0

Cnh
(1)
2n (kb)

· P 2n,2n′+1 = 0,

(18)

A2n′z
(1) ′
2n′ (kb, ka) + N2n′

∞∑

n=0

A2n+1z
(1) ′
2n+1(kb, ka)

·P 2n′,2n+1 − Cn′h
(1) ′
2n′ (kb)

= δ0,n′ i̺0cv0
h
(1) ′
0 (kb)

h
(1) ′
0 (ka)

. (19)

Solving numerically the above system of algebraic
equations gives An and Cn.

3. Acoustic radiation impedance

The normalized time-averaged axisymmetric acous-
tic radiation impedance of a pulsating sphere of radius
a can be calculated using the Foldy’s formula (Foldy,
1949; Hasheminejad, Azarpeyvand, 2004; Thomp-
son Jr., 1973; 1976)

Ψ = Θ − iΞ =

π∫

0

p(a, θ)v∗r (a, θ) sin θ dθ

̺0c 〈|vr(a, θ)|2〉
, (20)

where Θ = ReΨ is the radiation resistance and Ξ =
−ImΨ is the reactance, ∗ is the conjugate value, and

〈
|vr(a, θ)|2

〉
=

1

S

∫

S

|vr(a, θ)|2 dS (21)

is the axisymmetric mean square vibration velocity on
the sphere.

3.1. Acoustically hard boundaries

Equation (20) can be rewritten as

Ψ = 2Ψ0 −
2i

(ka)2̺0cv0

A0

h
(1) ′
0 (ka)

, (22)
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assuming that v∗r (a, θ) ≡ v∗0 , since

p(a, θ) ≡ p1(a, θ) = − i̺0cv0
h
(1)
0 (ka)

h
(1) ′
0 (ka)

+
i

(ka)2

∞∑

n=0

An
Pn(cos θ)

h
(1) ′
n (ka)

, (23)

where

Ψ0 = i
h
(1)
0 (ka)

h
(1) ′
0 (ka)

=
(ka)2 − ika

1 + (ka)2
, (24)

is the acoustic radiation impedance of a pulsating semi-
sphere embedded in an infinitely extensive acoustically
hard screen and radiating acoustic waves into the half-
space (obviously, this is equivalent to the acoustic ra-
diation impedance of a pulsating sphere in free space,
cf. also Jones (1986); Skudrzyk, (1971)). The co-
efficients An are obtained by solving numerically the
system of algebraic equations in Eqs. (10) and using
Eqs. (11).
The acoustic radiation resistance can also be cal-

culated by integrating over an arbitrarily selected sur-
face of radius a 6 R 6 b as θ ranges from 0 to π using
the expression for the acoustic pressure p1 and its ra-
dial derivative. For this purpose, we use the formula
Θ1 = ReΨ1, where

Ψ1 =
R2

̺0c|v0|2a2

π∫

0

p1(R, θ)v
∗
1,r(R, θ) sin θ dθ (25)

and for the time harmonic vibrations

vr =
−i

k̺0c

∂p

∂r
. (26)

We use Eq. (8) and differentiate it with respect to
the radial variable r, obtaining

v∗1,r(R, θ) = − v∗0
h
(2) ′
0 (kr)

h
(2) ′
0 (ka)

+
i

̺0c

∞∑

n′=0

·A∗
n′z

(2) ′
n′ (kr, ka)Pn′(cos θ), (27)

where h(2) is the spherical Hankel function of the sec-
ond kind. We insert the above equation into (25), and
obtain

Ψ1 = 2i
R2

a2
h
(1)
0 (kR)h

(2) ′
0 (kR)

h
(1) ′
0 (ka)h

(2) ′
0 (ka)

+
2

̺0c

R2

a2

[
A∗

0

v∗0
z
(2) ′
0 (kR, ka)

h
(1)
0 (kR)

h
(1) ′
0 (ka)

− A0

v0
z
(1)
0 (kR, ka)

h
(2) ′
0 (kR)

h
(2) ′
0 (ka)

]
+

2i

(̺0c)2|v0|2
R2

a2

·
∞∑

n=0

AnA
∗
n

Nn
z(1)n (kR, ka)z(2) ′n (kR, ka). (28)

The acoustic radiation resistance can also be ob-
tained by calculating the integral over the surface of
a semi-sphere of radius R > b as θ goes from 0 to π/2
using the acoustic pressure p2 and its radial derivative.
For this purpose, we use the equation Θ2 = ReΨ2,
where

Ψ2 =
R2

̺0c|v0|2a2

π/2∫

0

p2(R, θ)v
∗
2,r(R, θ) sin θ dθ. (29)

We use Eq. (7)2, differentiate it with respect to r, and
obtain

v∗2,r(R, θ) =
i

c̺0

∞∑

n′=0

C∗
n′h

(2) ′
2n′ (kR)P2n′(cos θ). (30)

We insert this equation into Eq. (25) and use the or-
thogonality in Eq. (38)2, and obtain

Ψ2 =
i

(̺0c)2|v0|2
R2

a2

∞∑

n=0

CnC
∗
n

N2n
h
(1)
2n (kR)h

(2) ′
2n (kR) (31)

and the values of the coefficients Cn are obtained by
solving numerically the system of algebraic equations
in Eqs. (10).

3.2. Acoustically soft boundaries

In the case of acoustically soft boundaries
(cf. Fig. 2b), we use Eqs. (20)–(28) in a similar way
as in the previous case. The main difference is that the
values of the unknown coefficients An and Cn are ob-
tained by solving numerically the system of equations
in Eqs. (14) and (15) instead of (10) and (11). Next,
we differentiate Eq. (7b) with respect to r, obtaining

v∗2,r(R, θ) =
i

̺0c

∞∑

n′=0

C∗
n′h

(2) ′
2n′+1(kR)P2n′+1(cos θ) (32)

and use Eq. (29). Then the acoustic radiation resis-
tance assumes the form ReΨ2, where

Ψ2 =
i

(̺0c)2|v0|2
R2

a2

∞∑

n=0

CnC
∗
n

N2n+1

·h(1)2n+1(kR)h
(2) ′
2n+1(kR). (33)

3.3. Acoustically hard-soft boundaries

In the case of acoustically hard-soft boundaries (cf.
Fig. 2c), we use Eqs. (20)–(29) and (33) similarly to
the previous cases. The main difference is that the val-
ues of the unknown coefficients An and Cn are ob-
tained by solving numerically the system of equations
in Eqs. (16) and (17) instead of (10) and (11).
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3.4. Acoustically soft-hard boundaries

In the case of acoustically soft-hard boundaries (cf.
Fig. 2d), we use Eqs. (20)–(29) and (31) similarly to
the previous cases. The main difference is that the val-
ues of the unknown coefficients An and Cn are ob-
tained by solving numerically the system of equations
in Eqs. (18) and (19) instead of (10) and (11).

4. Illustration of the theory

The following parameter values have been selected
arbitrarily for numerical analysis. The rest density
of water is ̺0 = 997 kg/m3. The speed of sound
is c = 1497 m/s. The radius of the pulsating rigid
sphere is a = 0.01 m, its vibration velocity ampli-
tude is v0 = 10−8 m/s, and the radius of the cavity
is b = 0.02 m (if not stated differently). Also the angu-
lar frequency ω (in rad/s) has been used in the entire
theoretical analysis, while the frequency f (in Hz) is
used in the numerical analysis for practical reasons,
where both quantities are related by the scaling fac-
tor 2π, i.e. ω = 2πf . The normalized acoustic radia-
tion impedance according to Eq. (22) is presented in
Fig. 3 for the four considered boundary configurations.
The radiation resistance and reactance show significant
similarities for identical boundary conditions satisfied

a) Resistance Θ

b) Reactance Ξ

Fig. 3. Normalized acoustic impedance Ψ = Θ−iΞ of radia-
tion and b/a = 2.0: a) resistance; b) reactance. Key of lines
used for different boundaries: solid – hard-hard; dashed –
soft-soft; dotted – hard-soft; dot-dashed – soft-hard.

at the cavity surface. For example, if the surface is
acoustically hard, then the corresponding curves al-
most overlap each other for both screens – acoustically
hard and soft, with the exception of the lowest fre-
quencies, i.e. below about 100 kHz. The acoustic re-
sistance show clear resonance maxima for frequencies
strongly depending on the boundary conditions sat-
isfied at the cavity surface. For example one of the
maxima occurs at 226.8 kHz for the acoustically hard
cavity, whereas it is at 265.0 kHz for the soft cavity. It
is obvious that the radiation efficiency of a vibrating
system will achieve its maxima for these frequencies,
whereas the acoustic radiation reactance tends to ±∞
(which is characteristic for resonators). In contrast, in
the case with no annular spherical cavity, when only
the semi-sphere vibrates, resonance maxima do not oc-
cur, and the corresponding curves are relatively flat (cf.
Eq. (24) and Jones (1986); Skudrzyk (1971)). The
acoustic radiation resistance can be calculated by inte-
grating the normal component of the sound intensity
p~v∗ over an arbitrarily selected surface enclosing the
vibrating source. Therefore, the two further formulas
in Eqs. (28) and (31) have been obtained for the nor-
malized radiation resistance by taking their real parts.
Additionally, if we integrate the normal component of
the sound intensity over the semi-sphere of radius r = b
(connecting the subregionsΩ1 and Ω2), then we obtain
the two complex values on the basis of the two different
formulas mentioned above, which should be equal. By
taking their relative percentage difference, we obtain
a measure of the approximation error of the acoustic
radiation impedance. This difference does not exceed
10−10% over the entire considered frequency interval.
This numerical accuracy has been achieved by using
the 2N initial terms in Eq. (8) and N in Eqs. (7b)
and (13). The number

N(f) = N1 + Round
[
(N2 −N1)

f − f1
f2 − f1

]
(34)

has been calculated as the function of frequency f ,
where the following values have been selected arbitrar-
ily f1 = 0 kHz, f2 = 300 kHz, N1 = 40 and N2 = 100,
and Round is the nearest integer. The same numbers of
terms were used in all further numerical calculations,
achieving a similar accuracy. It is worth noticing that
with the order of the spherical Bessel and Hankel func-
tions reaches values of 200, which can be considered
as large. Therefore, the use of the Debye’s asymptotic
formulas is justified. For an advanced analysis of the
use of these asymptotic formulas for the truncation of
series expressions for the diffraction integrals see, e.g.
Van Haver and Janssen (2014).
The spatial far-field distribution of the sound pres-

sure level (SPL in dB, Ref. 1 µPa) is presented in
Fig. 4 at a distance of R = 100 m from the pulsating
sphere’s centre, i.e. in the far field. The graphs have
been prepared for two different frequencies: 226.8 kHz
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a)

b)

Fig. 4. Sound pressure level (SPL in dB,
Ref. 1 µPa) in the far field for R = 100 m
for v0 = 10 nm/s and b/a = 2.0: a) at reso-
nance; b) no resonance. Key of lines used for
boundaries and frequency: a) solid – hard-hard
at 226.8 kHz, dashed – soft-soft at 265.0 kHz,
dotted – hard-soft at 226.8 kHz, dot-dashed –
soft-hard at 265.0 kHz; b) solid – hard-hard
at 265.0 kHz, dashed – soft-soft at 226.8 kHz,
dotted – hard-soft at 265.0 kHz, dot-dashed –

soft-hard at 226.8 kHz.

and 265.0 kHz, and for the four different boundary
configurations presented in Fig. 2. These frequencies
have been selected to present the cases of resonance
in Fig. 4a and out of resonance in Fig. 4b. The first
frequency is that of the acoustically hard cavity, and
the second is that of the soft cavity. It is necessary
to explain here that the same frequency 226.8 kHz has
been selected for one boundary configuration in reso-
nance as well as for the other one in out of resonance.
This if due to a simple fact that this frequency im-
plies the resonance when the surface of the cavity is
hard, and is out of resonance when the surface is soft.
A similar situation occurs for the frequency 265.0 kHz,
but with reversed boundary condition on the surface
of the cavity. Also, when the resonator is in the reso-
nance the frequency must be selected very accurately

(see very narrow maxima for the radiation impedance
around resonance in Fig. 3a), and there is no such need
in out of resonance. The SPL assumes much greater
values in resonance compared to the values at out of
resonance. The average SPL in Fig. 4a is about 25 dB
and about 7 dB in (4b), which gives the difference of
about 18 dB. The SPL increases up to about 38 dB in
resonance when the deflection angle from the main di-
rection tends to zero (θ → 0). This gives an increase of
more than 10 dB in the main direction compared to the
other directions. The effect is strongest for the hard-
hard boundaries. A very narrow sound beam is formed
for the deflection angles smaller than about 5 degrees.
In contrary, in out of resonance the SPL does not ex-
ceed 12 dB for all boundary configurations and for all
directions.
The near-field spatial distribution of the sound

pressure level is presented in Figs. 5 and 6 for dis-
tances from the pulsating sphere ranging from 1 cm to
6 cm. The observations are similar to the conclusions
obtained from the analysis of Fig. 4. A considerable
growth in the sound pressure level in the main direction
can be observed for the resonance frequencies and the
four different boundary configurations (cf. Fig. 5). In
contrast, the acoustic field is scattered in all direction
for other frequencies (cf. Fig. 6). It is worth noting that
the acoustic pressure tends to zero in a narrow layer
directly adjoining all the acoustically soft boundaries.
For example, they are the soft surfaces of the cavity
and flat screen in Fig. 5b whereas it is only the cavity
surface in Fig. 5d.
The pulsating sphere submerged in water forms

a resonator together with the semi-spherical cavity.
A question arises: what is the effect of the quotient
of the radii of the cavity and the sphere on the radi-
ated acoustic field? Figure 7 presents a schematic view
of the resonator for three different values of this quo-
tient. All the numerical results presented herein apply
to the geometry presented in Fig. 7b. Therefore the dif-
ferences will now be discussed for the resonator geome-
tries presented in Figs. 7a and 7c. As mentioned before,
the boundary conditions satisfied in the cavity have the
most significant effect on the sound field. Therefore,
further analysis will be limited to two boundary con-
figurations: the hard-hard and soft-soft boundary con-
figurations. The acoustic radiation impedance is pre-
sented in Fig. 8 for the three different geometry config-
urations of the resonator presented in Fig. 7. It can be
seen that the first resonance frequency differs slightly
for the three geometries, and is equal to about 15 kHz
for the hard-hard boundaries. However, the differences
are much more significant for the second resonance fre-
quency, which is about 155 kHz for b/a = 1.5, 80 kHz
for b/a = 2.0 (see Fig. 3), and 55 kHz for b/a = 2.5.
The differences are even greater for all the higher reso-
nance frequencies. The situation is similar for the soft-
soft boundaries, with the difference that now even for
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a) b)

c) d)

Fig. 5. Sound pressure level in resonance (SPL in dB, Ref. 1 µPa) for four different
boundary configurations, v0 = 10 nm/s and b/a = 2.0.

a) b)

c) d)

Fig. 6. Sound pressure level outside resonance (SPL in dB, Ref. 1 µPa) for four different
boundary configurations, v0 = 10 nm/s and b/a = 2.0.
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a) b/a = 1.5

b) b/a = 2.0

c) b/a = 2.5

Fig. 7. Three different ratios of cavity
and sphere b/a.

a) Resistance Θ (hard-hard)

b) Resistane Θ (soft-soft)

Fig. 8. Normalized acoustic resistance Θ of radiation for the
two different boundary configurations. Key of lines used for
different values of cavity geometry parameter b/a: solid –

1.5; dashed – 2.5 (for b/a = 2.0 see Fig. 3).

the first resonance frequency the differences are signif-
icant, since it is about 90 kHz for b/a = 1.5, 50 kHz for
b/a = 2.0 (see Fig. 3), and 40 kHz for b/a = 2.5. The

eigenfrequencies of a circular spherical cavity were in-
vestigated by Ferris (1952), Flanagan (1965), and
Russell (20010). They applied the boundary condi-
tions to the general solution for the acoustic potential
inside the cavity. A similar approach can be used to
determine the eigenfrequencies of an annular spherical
cavity. The frequency equations for hard and soft sur-
faces of radius b of the cavity (surface of the sphere of
radius a is hard in both cases) can be obtained easily
by applying the boundary conditions ∂p/∂r|r=a = 0,
and ∂p/∂r|r=b = 0 and p|r=b = 0, respectively, to the
general eigenfunction given by Morse (1948)

Ãnjn(kr) + B̃nyn(kr) (35)

and achieving the frequency equations

j′n(β)y
′
n(sβ)− j′n(sβ)y

′
n(β) = 0,

j′n(β)yn(sβ)− jn(sβ)y
′
n(β) = 0,

(36)

respectively, where s = b/a is the geometric factor
of the cavity, and β = ka is the eigenvalue. The
initial eigenfrequencies are presented in Table 1.
Determining the constants Ãn and B̃n is necessary
to determine the acoustic potential within the cavity,
but neither for obtaining the frequency equations nor
eigenfrequencies. The relation between the eigenvalue
and the eigenfrequency is fn

ℓ = βn
ℓ c/2πa, where

n = 0, 1, 2, . . . ,∞ is the order of the spherical func-
tions and ℓ = 1, 2, 3, . . . ,∞ is the number of the
successive eigenfrequency. Bearing in mind that these
eigenfrequencies apply to the full cavity, i.e. when the
boundary conditions are satisfied for 0 6 θ 6 π, we
can try to assign them to the resonance frequencies of
the semi-spherical cavity considered herein. It can be
noticed that the resonance frequency 226.8 kHz falls
between the eigenfrequencies f0

4 and f
1
4 (obtained from

Eq. (36)1) for the hard surface of radius b of the cavity
and for b/a = 2.0, while the very frequency results
from the superposition of the eigenfunctions (35) and
is controlled by the constants Ãn and B̃n. For the soft
surface of radius b of the cavity and for b/a = 2.0, the
resonance frequency 265.0 kHz falls also between the
eigenfrequencies f0

4 and f
1
4 (obtained from Eq. (36)2).

The lowest resonance frequency falls alway between
the eigenfrequencies f0

1 and f1
1 in the presented

study. It can be noted that the lowest and the
successive eigenfrequencies increases when the ratio
b/a decreases. The effect of the resonator geometry on
the resonance frequencies is significant (cf. Table 1).
Additional evidence for this conclusion can be found in
Figs. 9 and 10. The far-field sound pressure level is pre-
sented in Fig. 9. The frequencies have been selected for
resonance when the cavity geometry parameter b/ais
equal to 2.0, as in Fig. 4a, i.e. 226.8 kHz for the hard
cavity and 265.0 kHz for the soft one. However, the pa-
rameter is changed in Fig. 9 and assumes the values of
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Table 1. The initial eigenfrequencies fn
ℓ (in kHz) of a annular spherical cavity of a fixed inner radius a = 1 cm

and the outer cavity surface of radius b = sa being hard or soft (b.c – boundary conditions).

b.c. s n ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7

hard 1.5 0 0.000 152.145 300.653 449.939 599.431 749.005 898.621
hard 1.5 1 26.755 154.748 301.929 450.786 600.064 749.511 899.043
soft 1.5 0 87.516 229.480 377.255 526.106 675.330 824.726 974.215
soft 1.5 1 92.323 231.172 378.269 526.830 675.893 825.186 974.604
hard 2.0 0 0.000 78.291 151.546 225.799 300.342 375.005 449.730
hard 2.0 1 21.923 82.335 153.499 227.081 301.298 375.768 450.365
soft 2.0 0 48.336 117.059 190.096 264.118 338.499 413.048 487.688
soft 2.0 1 54.915 119.638 191.630 265.209 339.345 413.739 488.273
hard 2.5 0 0.000 53.741 101.966 151.183 200.723 250.403 300.154
hard 2.5 1 18.398 58.648 104.370 152.746 201.881 251.324 300.919
soft 2.5 0 34.541 79.476 127.680 176.778 226.217 275.819 375.257
soft 2.5 1 41.663 82.637 129.552 178.100 227.239 276.652 375.866

Fig. 9. Sound pressure level (SPL in dB, Ref. 1 µPa) in
the far field for R = 100 m for v0 = 10 nm/s. Key of
lines used for different boundaries, frequencies, and val-
ues of cavity geometry parameter: solid – hard-hard at
226.8 kHz, b/a = 1.5; dashed – hard-hard at 226.8 kHz,
b/a = 2.5; dotted – soft-soft at 265.0 kHz, b/a = 1.5;
dot-dashed – soft-soft at 265.0 kHz, b/a = 2.5.

a) c)

b) d)

Fig. 10. Sound pressure level in resonance (SPL in dB, Ref. 1 µPa) for v0 = 10 nm/s and b/a = 1.5 and 2.5. The graphs
for sound pressure level in resonance and for the same boundaries and b/a = 2.0 are presented earlier in Figs. 5a and 5b.
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1.5 and 2.5, and the fluid vibrating in the cavity is out
resonance (cf. Fig. 8). Consequently, the SPL assumes
values smaller than 15 dB in the main direction and
smaller than 8 dB in all the other directions. Figure 10
is a completion of Figs. 5a and 5b for b/a equal to 1.5
and 2.5. The SPL values are about by 25 dB smaller
than in resonance in Fig. 5, and do not exceed 100 dB
in any of the near-fields.

5. Concluding remarks

A rigorous analysis of the acoustic radiation
impedance of the resonator submerged in water en-
abled determining the resonance frequencies. Conse-
quently, we obtain a highly effective source of a very
narrow acoustic beam for these frequencies. It has been
found that the quotient of the radii of the cavity and
the pulsating sphere has a significant effect, especially
on the higher-order resonance frequencies. The method
presented enables determining the acoustic near- and
far-field. The formulas for the acoustic pressure and
acoustic radiation impedance contain series of high nu-
merical accuracy and efficiency, which has been exam-
ined empirically. The results presented herein proba-
bly can be useful for designing highly efficient hydro-
acoustic transducers. This is, however, a subject for
a further experimental analysis.

Appendix. A useful formula

The following relation can be useful (cf.
Abramowitz and Stegun (1972, Eqs. 8.6.1 and
8.6.3) assuming µ = 0 and ν = 2n + 2 and 2n + 1,
respectively)

d
dθ
P2n+1(cos θ)

∣∣∣∣
θ=π/2

= (2n+2)P2n+2(0)

= 2(−1)n+1 Γ (n+3/2)√
π Γ (n+1)

, (37)

where n = 0, 1, 2, . . ., P2n+1(0) = 0, and P0(cos θ) = 1.
The orthogonality of the Legendre polynomials can

be presented as (Abramowitz and Stegun (1972,
p. 338, Eqs. 8.14.10 and 8.14.13) and Gradshteyn
and Ryzhik (2007, p. 769, Eq. 7.113.1)

π∫

0

Pn(cos θ)Pn′ (cos θ) sin θ dθ =
2

Nn
δnn′ ,

π/2∫

0

P2n(cos θ)P2n′ (cos θ) sin θ dθ =
1

N2n
δnn′ ,

π/2∫

0

P2n(cos θ)P2n′+1(cos θ) sin θ dθ = P 2n,2n′+1

(38)

for m,n, n′ = 0, 1, 2, . . ., where

Nν = 2ν + 1,

P 2n,2n′+1 =
(−4)−n−n′−1(2n)!(2n′ + 1)!

(n−n′−1/2)(n+n′+1)(n!)2(n′!)2
.
(39)
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