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Due to an increasing amount of music being made available in digital form in the Internet, an automatic
organization of music is sought. The paper presents an approach to graphical representation of mood of
songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated
and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling.
A map is created in which music excerpts with similar mood are organized next to each other on the
two-dimensional display.
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1. Introduction

The motivation behind the presented study is that
the increasing amount of music available online causes
a growing need of new ways of organizing and searching
through music libraries. Mood of music is one of the
important cues that are used for music exploration.
Self-Organizing Maps (SOMs), a tool that is strongly
related to human perception, were used to map music
pieces into model of emotions. Authors of the presented
paper focused on finding audio parameters related to
mood of music and implemented SOMs to map music
excerpts described by a large feature vector into the
2-dimensional representation of emotions.
Musicologists indicate a few elements of a musical

piece – melody, rhythm, agogics, articulation, and dy-
namics – that are important in analysis and they form
foundations of music. Moreover, it may be said that
melody together with rhythm carry 90% of musical in-
formation. Rhythm is also an element of a piece deter-
mining musical style, which may be valuable in Music
Information Retrieval (MIR). The rhythmic structure
together with melody patterns retrieved from audio
signal carry information about the genre of a musical
piece, thus both are highly correlated. Moreover, mu-
sic can be defined in terms of descriptive characteristics
such as aesthetic experience, preference, mood or emo-
tions. Huron (2000) assumes that the four most use-

ful characteristics items are: style, emotion, genre, and
similarity. However, some music analysts argue that
style and genre are to some extent interchangeable ex-
pressions. It is also said that a long list of genres is
a result of artists’ interest to introduce new genres.
Moreover, classifications are often arbitrary and en-
compass sub-genres that belong to different styles or
genres. One of the features, which can be useful and
intuitive for music listeners, is “mood” (Casey et al.,
2008). Even if it seems to be the easiest way to de-
scribe music for people who are non-experts, it is very
difficult to find an exact correlation between physical
features and perceived impression.
It should be noted that music mood recognition

constitutes an important part of MIR. Automatic
genre/style and similarity classification within MIR
have been exploited quite thoroughly in recent years.
This is visible not only in the literature sources but also
in music services and applications (ISMIR conferences;
Cook, 2002; Kostek, Czyzewski, 2001; Kostek,
2013; 2014; Kostek, Kaczmarek, 2013; Mostafavi
et al., 2013; Papaodysseus et al., 2001; Rauber
et al., 2002a; Raś, Wieczorkowska, 2010; Rum-
sey, 2011; 2014; Tzanetakis, Cook, 2002; Wiec-
zorkowska et al., 2011; AMAZON, ITUNES, PAN-
DORA). Recently, music mood recognition becomes
a thorough subject of research studies and analyses
(Cruz et al., 2007; Drossos et al., 2015; Kim et al.,
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2010; Laurier et al., 2009; Markov, Matsu, 2014;
Lu et al., 2006; Panda, Paiva, 2011; Zentner et al.,
2008). This area of research studies is called Music
Emotion Recognition (MER) and aims at recognizing
emotions contained in audio signals (Panda, Paiva,
2011; Plewa, Kostek, 2013; Rauber, Frühwirth,
2001; Rauber et al., 2002a; 2002b; MUSICOVERY).
There are also approaches that involve advanced com-
putational methods, e.g. regression approach, Support
Vector Machines (SVM) or fuzzy logic (Lima et al.,
2012; Trochidis et al., 2011; Zentner et al., 2008)
which are used for automatic mood assigning. Results
achieved in the mentioned research projects do not ex-
haust the subject. First of all, an improvement in auto-
matic efficacy is sought (Lima et al., 2012; Zentner
et al., 2008) especially as the outcomes of the auto-
matic mood recognition are usually only slightly better
than 60–70%. Moreover, subjective studies, which con-
centrate on assigning appropriate labels corresponding
to music features are also needed to find relationship
between these descriptors and features derived objec-
tively. The interest towards this particular direction is
motivated by music networking services in which users
tend to listen to music pieces that reflect their emo-
tions.
Music Mood Recognition is based on the basic defi-

nitions of perception. Lewis defined qualia: “There are
recognizable qualitative characters of the given, which
may be repeated in different experiences, and are thus
a sort of universals; I call these qualia” (Lewis, 1929).
The discovery of the relationship between the mea-
surable content of the physical world and human per-
ception seems to be a fundamental problem in Music
Mood Recognition (Kostek, 2011). One of the conclu-
sions of the mood description research was that tempo
seems to be an essential feature determining mood of
music (Cruz et al., 2007), so this specific characteristic
should be taken into consideration. Since it is possible
to extract rhythm and tempo from music (Hevner,
1936) (or it is known if one has an access to the MIDI
notation), it is important to discover and verify how
significant the correlation between tempo and specific
mood descriptors is.
It is to remember that both subjective descrip-

tors and features describing mood are multidimen-
sional, thus another important issue is presentation
of these dimensions. Thus one of the aims of this
paper is to automatically obtain a graphical repre-
sentation of mood of music. In this study we have
used the MDS (Multidimensional Scaling) analysis-
based graphical representation obtained in the previ-
ous phase of experiments (Plewa, Kostek, 2013). In
some related work one can see that the basis for cre-
ating similarity between songs is often acquired from
listening tests. Novello et al. proposed a web-based
listening experiment that assesses the perception of
inter-song similarity optimizing stimulus coverage and

time of experiments. The experiment used 78 song ex-
cerpts selected from 13 genres and involved 78 par-
ticipants. To discover the background of the partic-
ipants’ perceptual space they used Multidimensional
Scaling Analysis (MDS) and quadratic discriminant
analysis to search for axes that maximize the sepa-
ration of the excerpt classes (Novello et al., 2011).
However, collecting similarity data from listeners is
time consuming, and the MDS analysis – even though
often applied to analyze similarity – cannot be used
as the main similarity representation (Trochidis et
al., 2011). However, in the study of Trochidis and his
collaborators (2011) it was shown that the emotion
processing mechanism is quite similar for musicians
and non-musicians resulting in the same low-level spec-
tral and temporal features correlated with arousal and
high level contextual features correlated with valence
dimension.
The MDS technique was also used to unravel hid-

den relationships between the musical styles. The MDS
was calculated in this case based on two alternative
metrics, namely: the average mutual information and
the fractal dimension. The results reveal significant dif-
ferences in musical styles, demonstrating the feasibil-
ity of the proposed strategy and motivating further
development towards a dynamical analysis of musi-
cal sounds (Lima et al., 2012). However, such meth-
ods need well-defined data. Another way to use MDS
in music similarity analysis is item-to-item collabora-
tive filtering. This is based on the notion that peo-
ple who listen to song A, will also listen to song B.
Music space may also be evaluated by social tagging.
However, in such a case an assignment of tags should
be controlled in some way, otherwise the tags may
differ for a particular song. To identify relevant tags
one may use Principal Component Analysis (PCA),
especially when aiming at reducing the dimensional-
ity. However, an apparent way to transform automat-
ically a high-dimensional space to a few-dimensional
(even two-dimensions) representation is using Self-
Organizing Map (SOM). That is why another goal
of the presented work is attempt to organize music
dataset employing SOMs.
In this paper, first the previous stage of research

consisting in listening tests focused on assigning mood
to song excerpts is recalled. Then it is shown which
objectively derived parameters are behind the mood
model obtained in listening tests. Correlation between
MDS dimensions and mood parameters is calculated
and therefore a set of features strongly related to mood
is created. The main aim of this paper is however to
employ PCA technique to reduce the dimensionality
of music feature space and then to use it as an in-
put to SOM for visualizing a map of songs. Examples
of visualization of the obtained results are shown in
Sec. 5. Section 6 briefly recapitulates the results and
gives some concluding remarks.
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2. Mood of music

2.1. Music mood recognition

MER research studies have not determined any
main or right model of the music mood. Contrarily,
a great variety of mood models are constantly being
explored and devised in psychological and musicology
studies. Numerous studies on mood classification re-
veal different conceptual findings, however they led to
the conclusion that mood description can be assigned
to one of the following two approaches: dimensional or
cluster description.
The dimensional approach focuses on mood identi-

fication based on positioning it in the space of several
mood-dimensions. Particular dimensions represented
by axes are named correspondingly to human per-
ception of mood or emotions. Thayer created a two-
dimensional model Valence/Arousal (Thayer, 1989).
Axes divide the plane into quarters, which correspond
to the following moods: contentment (low arousal,
high valence), depression (low arousal, low valence),
anxious/frantic (high arousal, low valence) and ex-
uberance (high arousal, high valence). The authors of
this paper refer to this model in the study presented
here.
The categorical approach bases on the clusters of

mutually exclusive categories (Mirex, 2009; Hevner,
1936). For example Mirex is a set of adjectives or-
ganized in five clusters (categories), Hevner lists 67
adjectives grouped into eight mood clusters, in Schu-
bert’s model (Schubert, 2003) 46 affective adjectives
are combined into nine clusters according to their po-
sition on the two-dimensional Thayer’s model. Hier-
archical clusters allowing grouping individual songs
into sub-clusters or clusters into super-clusters are also
known.
Finding the right mood representation is the first

step towards the automation of mood recognition. To
describe a music piece with subjective tags related to
mood description, an expert needs about 20–30 min-
utes of work (Casey et al., 2008). For larger databases
it may result in an enormous workload. That is one of
general reasons for creating systems enabling to auto-
matically assign mood to music.

2.2. Multidimensional scaling experiment

The MDS technique was used to unravel hid-
den relationships between mood of different pieces
of music. Multidimensional scaling (MDS) was orig-
inated in the area of psychology. It takes a pair-
wise set of distances and forms an m-dimensional
map. The key problem raised in this field is to rec-
ognize “underlying dimensions” that would explain
similarities or dissimilarities observed by subjects. In
the study of Borg and Groenen (2007) the au-
thors stated that MDS application in psychology is

often based on direct similarity judgments by the sub-
jects. Noteworthy is that similarity may concern di-
verse subjects. MDS applied to psychological data en-
ables discovering dimensions that would in a meaning-
ful way explain rules of the perception. This method
requires data, which contain direct similarity judg-
ments by respondents. Reconstruction of distances be-
tween objects by placing objects in the multidimen-
sional configuration is essential for the MDS con-
cept. One may simply assume Euclidean metric for
this purpose. The Euclidean distance dij between
points i and j in m-dimensional space X is calculated
from:

dij =

√√√√
m∑

a=1

(xia − xja)2, (1)

where a is the number of the element (from 1 to m).
MDS enables to find function f , which maps the

proximities pij – similarities obtained from subjects-
into corresponding distances dij in the MDS space X:

f(pij) = dij(X). (2)

Since (depending on the data) the exact representa-
tion does not always exist, there is a need to de-
fine a value, which reflects the goodness of represen-
tations or the desired precision (error) of the map.
To build an optimum representation, the Multidimen-
sional Scaling algorithm minimizes a criterion called
Stress or Kruskal’s normalized Stress-1 criterion is ob-
served:

Stress-1 =

∑
(i,j)

[f(pij)− dij(X)]

∑
d2ij(X)

. (3)

The closer the stress is to zero, the better the repre-
sentation.
Multidimensional Scaling was used in various appli-

cations related to sound and music. Trochidis et al.
(2011) applied MDS to analyze similarity within the
wide area of western music. Wagenaars et al. used
Multidimensional Scaling test to determine optimum
values of compression in music (Wagenaars et al.,
1986), while Małecki (2013) found three dimensions
that determine perception of similarity between acous-
tics of different rooms. MDS was also applied to emo-
tional responses to music (Bigand et al., 2005). Bi-
gand et al. (2005) stated that the 3-dimensional space
is needed to provide a good representation of emotions,
with arousal and emotional valence as the primary di-
mensions. There are quite a few differences between
Bigand’s et al. research and results presented in this
work therefore conclusions derived from both studies
may be different.
In the previous study of the authors the MDS ex-

periment was conducted to collect the similarity data
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Table 1. List of the music tracks used in the MDS experiment (marked in grey). All of the 15 songs are mapped
using SOM representation.

No Genre Artist Album Title

1 Jazz Kenny G Paradise Malibu Dreams

2 R&B Central Line The Funk Essentials 1222
Collection And More

Walking Into Sunshine

3 Pop The Clash Combat Rock Should I Stay
Or Should I Go

4 Pop Tom Jones Reloaded: Greatest Hits Kiss

5 Alternative Rock Pearl Jam Ten (Legacy Edition) Black (Remasered 2008)

6 Pop Sting Fields Of Gold
– The Best Of Sting 1984–1994

Fields Of Gold

7 Rock Aerosmith Big Ones Rag Doll

8 Classical Sir Landon Ronald
The Elgar Edition:

The Complete Electrical Recordings
of Sir Edward Elgar

Coronation March Op:
65 (1993 Digital Remaster)

9 Alternative Rock Hey Champ Star Cold Dust Girl

10 Pop Jennifer Lopez Love (Deluxe Version) Charge Me Up

11 Pop Erykah Badu Live Tyrone (Extended Version)

12 Rock Faith No More This Is It:
The Best of Faith No More

Epic

13 Alternative Rock Green Day 21 Guns EP 21 Guns (Album Version)

14 Jazz Eliane Elias Light My Fire My Cherie Amour

15 Hard Rock & Metal Slayer Seasons In The Abyss War Ensemble

for the MDS analysis (Plewa, Kostek, 2013). The
set of the music tracks used in the experiment is listed
in Table 1. Songs for MDS were chosen from the set
that was previously evaluated by listeners in the lis-
tening test. The MDS set was constructed to contain
songs with very similar and very different mood of mu-
sic and is marked in grey in Table 1.
Similarity data obtained from the MDS experiment

were averaged. The MDS (1D) data representation was
constructed in MATLAB using Kruskal’s normalized
Stress-1 criterion. Stress-1 factor reached 0.01. All of
the 15 songs from Table 1 are mapped onto SOM visu-
alization map in further analysis. The obtained MDS
map is presented in Fig. 1.
Dimensions achieved from the MDS analysis cor-

respond to DIMENSIONS with corresponding labels
“Calm” and “Joyful”. This can lead to the conclusion
that Thayer’s model is appropriate for describing mood
of music. One of the axes (Dimension 1) can be inter-
preted as Valence (“Joyful”, positive or negative con-
tent) and the Dimension 2 as Arousal (“Calm”, ener-
getic content). These results are coherent with studies
that applied Thayer’s model to mood in music (Kim
et al. 2008; 2010; Lu et al., 2006; Plewa, Kostek,
2013; Schmidt, Kim, 2010; Thayer, 1989).

Fig. 1. MDS representation based on direct similarity
judgments.

3. Self-organizing maps

Self-Organizing Map is an unsupervised neural net-
work that can be used to organize objects with unclear
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relations between each other into map-type represen-
tation. The topological relations between objects are
preserved as detailed as possible. These properties have
led to implementation of SOMs in experiments related
to mood of music. SOMs are strongly related to hu-
man perception, which is adequate for music cognition.
Specifics of the task match assumptions and approach
of the method are briefly described in the following
Section.

3.1. Basics of Self-Organized Maps

Mathematically, SOM (Self-Organizing Map) is de-
fined as an unsupervised neural network providing
a mapping from a high-dimensional space to a few-
dimensional (in most of cases two-dimensional K×L)
representation (Rojas, 1996; Ultsch, 2003). SOM
consists of the 2-dimensional grid of neurons, with
a weight vector related to each unit. SOM is forced
by vector x1, x2, . . ., and activation y1, y2, . . . , ym for
each neuron unit for the presented object is calcu-
lated (Fig. 2). This type of networks was introduced
by Kohonen (1982; 1984; Kohonen, Honkela,
2007).

Fig. 2. Schema of the SOM network.

The Euclidean distance d between weight vector of
the unit and input is commonly used as the activation
function. The weight vector of the unit that achieved
the highest activation is selected as a “winner” and is
recalculated to resemble as close as possible the pre-
sented input vector. Moreover, the weight vectors of
units in the neighborhood of the winner are modified
accordingly, but not as strong as the “winner” (MAT-
LAB; Rauber, Frühwirth, 2001; Rauber et al.,
2002a). The winning neuron a is selected from the
K × L network consisting of i elements, according to
the following relation:

d
(
x,w(a)

)
= min

1≤m≤K×L
d
(
x,w(m)

)
, (4)

where d is a measure of distance between n-
dimensional vector x and the weights vector w of the
output vector in K× L space, w(m) is a weight corre-
sponding to neuron with index m. This rule is called

Winner Takes All (WTA) and refers to hard compe-
tition, where only unit with the highest activation is
trained. SOM is forced by n-dimensional signal x(j),
where j is iteration in the learning process (index of
the element in the learning sequence). The winning
unit a, where a indicates the index of the neuron, is
updated according to the rule:

w
(a)(j+1)
i = w

(a)(j)
i + η(j)

[(
x
(j)
i − w

(a)(j)
i

)]
(5)

i indicates the index of the element (of the n-
dimensional input vector), η(j) is speed of learning in
j-th step and belongs to [0,1], w(a)(j) is weight of neu-
ron a in j-th step of the learning.
Winner Takes Most (WTM) concept implies solu-

tion that the weight vectors of units which number
m belong to the neighborhood Na of the winner a are
modified accordingly, but not as strong as the “winner”
(MATLAB; Rauber, Frühwirth, 2001; Rauber,
2002a; Tadeusiewicz, 1993).

∀
m∈Na

w
(m)(j+1)
i = w

(m)(j)
i

+ η(j)h
[
x(j) − w

(m)(j)
i

]
, (6)

where Na is a set of units adjacent of the winning unit
a, and h is the neighborhood function of neuron a.
Neighborhood function can vary from simple to com-
plex functions. Both speed of learning η and neighbor-
hood function h are changing during learning process
and monotonically decrease to avoid compensation at
the final stage of the learning process.
The topology of the output layer and can be ar-

ranged on i.e. a rectangular, hexagonal or random lat-
tice (Fig. 3). That determines the number of connec-
tions of a single neuron. Useful extensions include using
toroid grids where opposite edges are connected.
In brief, SOM training may be described according

to two main rules:

• Competitive learning: the prototype vector most
similar to the data vector is modified so that it is
even more similar to it. This way the map learns
the position of the data cloud.

• Cooperative learning: not only the most similar
prototype vector, but also its neighbors on the
map are moved towards the data vector.

The learning process can vary, depending on the
architecture of the network, default weight values and
a training set. The topology of the output layer can be
arranged on i.e. a rectangular, hexagonal or random
lattice. That determines the number of connections of
a single neuron. Interpretation of the SOM results can-
not be assumed a priori. Meaning of the particular ar-
eas of the map can be specified after the analysis of
individual cases.
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a)

b)

c)

Fig. 3. Examples of Self-organizing Map topologies: a) rect-
angular, b) hexagonal, c) random. Circles represent neurons
and blue lines represent connections between units.

3.2. Self-Organized Maps applied to music

SOMs are strongly related to human perception
and are dedicated to complicated tasks, where rules
may not be clear, i.e. cluster analysis, creation of mod-
els and mapping features. This approach seems to be
also natural for music cognition. Thus Self-Organizing
Maps are used to organize library systems as well as
music libraries (Pampalk, 2001;Pampalk et al., 2002;
Rauber, Frühwirth, 2001), also while taking into
account music genre (Rauber, 2002a). Furthermore,
SOMs help to understand various problems related to
sound and music perception. The aim of the work of
Palomäki’s and his collaborators (Palomäki et al.,
1999) was to simulate human perception of spatial
sound. He applied self-organizing maps to the evalua-
tion of spatial discrimination of real and virtual sound
sources. SOM was trained with localization cues com-
puted using a binaural model. Tuzman (2001) cre-
ated a system for reduction of impulsive noises based
on SOM. Barbedo et al. (2005) proposed a Cogni-
tive Model for Objective Assessment of Audio Qual-
ity. Their system maps previously extracted parame-
ters into an estimate of the subjective quality. Very
common application of SOMs in Music Information
Retrieval is to create a 2-dimensional representation
either of music set, music database or particular sam-
ples.
Rauber and Frühwirth (2001) from Vienna

University of Technology proposed a SOM-enhanced
JukeBox (SOMeJB) system (Frühwirth, 2001;
Frühwirth, Rauber, 2001) to organize their mu-
sic database analogically to the text library. The clas-
sification is mostly content- and genre-based. A sys-
tem that automatically organizes any music collec-
tion according to music similarity was presented by
Rauber et al. (2002a). The system introduced con-
sisted of 2-dimensional SOM representation that could
be generated for any music set. More complex vari-
ation involved Growing Hierarchical Self-Organizing
Maps (GHSOM) with a 3-layer architecture (Rauber
et al., 2002b). GHSOM was fed with 1200 psychoacous-
tic loudness and rhythm descriptors. It is worth notice
that the organization does not follow clean “concep-
tual” genre styles but rather reflects the overall sound
similarity.
All of the various examples listed above show that

Self-Organizing maps can be a very useful tool within
the area of Music Information Retrieval, thus the
attempts of SOM implementation to MER are well
founded.

4. Feature extraction

Parameters extracted from audio signal play a role
of the “objective” descriptors of music. The task of
the researcher is to determine relation between mu-
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sical features or characteristics and particular sets of
parameters. Within the area of music cognition, the
choice of the parameters can be based on the analysis
that explores the connection between listening tests
and values of the parameters. Using too many param-
eters not related to particular characteristic, i.e. mood
of music, can cause the situation where relevant param-
eters are covered under “the noise” of unrelated ones.
Therefore a selection of parameters to be included in
the feature vector was performed.

4.1. Input set of parameters

The starting point of the feature vector (FV) con-
tent creation for the purpose of automatic mood recog-
nition was examination of previous studies performed
in MIR by the authors and their collaborators. Re-
sulted from them was FV applied to two databases,
namely ISMIS (Kostek et al. 2011) and SYNAT
(Hoffmann, Kostek, 2014; Kostek, Kaczmarek,
2013; Kostek et al., 2013; Plewa, Kostek, 2013,
Rosner et al., 2014), thus its content may be treated
as very thoroughly analyzed. Moreover, the same FV
was used in the ISMIS’2011 conference in music com-
petition (Kostek et al. 2011), in which more than
100 teams participated, thus it may also be treated as
a kind of benchmarking. ISMIS is a database of ap-
prox. 1300 music excerpts of high quality audio ex-

Table 2. The list of parameters within the SYNAT music database.

No. Parameter Abbreviation

1 Temporal Centroid TC

2 Spectral Centroid SC

3 Spectral Centroid variance SCV

4–32 Audio Spectrum Envelope for particular bands ASE (1–29)

33 ASE average for all bands ASE M

34–62 ASE variance values for particular bands ASE V (1–29)

63 averaged ASE variance ASE MV

64 average Audio Spectrum Centroid ASC

65 variance of Audio Spectrum Centroid ASC V

66 average Audio Spectrum Spread ASS

67 variance Audio Spectrum Spread ASS V

68–87 Spectral Flatness Measure for particular bands SFM (1–20)

88 SFM average value SFM M

89–108 Spectral Flatness Measure variance for particular bands SFM V (1–20)

109 averaged SFM variance SFM V

110–129 Mel-Frequency Cepstral Coefficients for particular bands MFCC (1–20)

130–149 MFCC variance for particular bands MFCCV (1–20)

150 number of samples exceeding RMS THR 1RMS TOT

151 number of samples exceeding 2×RMS THR 2RMS TOT

152 number of samples exceeding 3×RMS THR 3RMS TOT

153 mean value of samples exceeding RMS, averaged for 10 frames THR 1RMS 10FR MEAN

cerpts, collected and divided into six music genres.
On the other hand, the SYNAT database is a col-
lection of 52532 pieces of music described with a set
of descriptors obtained through the analysis of mp3-
quality recordings. For the SYNAT database, the anal-
ysis band is limited to 8kHz. The database stores 173-
feature vectors, which in majority are the MPEG-7
standard parameters (109). The vector has addition-
ally been supplemented with 20 Mel-Frequency Cep-
stral Coefficients (MFCC), 20 MFCC variances and
24 time-related ‘dedicated’ parameters. The SYNAT
database was realized by the Gdansk University of
Technology (GUT) (Hoffmann, Kostek, 2014) and
music was collected from the Internet. The vector in-
cludes parameters associated with the MPEG-7 stan-
dard, melcepstral (MFCC) parameters and is supple-
mented by the so-called dedicated parameters which
refer to temporal characteristic of the analyzed mu-
sic excerpt. Full list of parameters was shown in the
earlier study (Kostek et al., 2013). Since MPEG-7
features and MFCC are commonly adopted in rich lit-
erature on this subject, thus they are not presented
here in detail. The list of parameters includes: Spec-
tral Flatness Measure (SFM), Spread Spectrum Audio,
Audio Spectrum Envelope (ASE), Spectral Centroid,
Temporal Centroid, Root Mean Square (RMS)-related
parameters, etc.; their names along with abbreviations
are included in Table 2.



520 Archives of Acoustics – Volume 40, Number 4, 2015

Table 2. [Cont.]

No. Parameter Abbreviation

154 variance value of samples exceeding RMS, averaged for 10 frames THR 1RMS 10FR VAR

155 mean value of samples exceeding 2×RMS, averaged for 10 frames THR 2RMS 10FR MEAN

156 variance value of samples exceeding 2×RMS, averaged for 10 frames THR 2RMS 10FR VAR

157 mean value of samples exceeding 3×RMS, averaged for 10 frames THR 3RMS 10FR MEAN

158 variance value of samples exceeding 3×RMS, averaged for 10 frames THR 3RMS 10FR VAR

159 peak to RMS ratio PEAK RMS TOT

160 mean value of the peak to RMS ratio calculated in 10 subframes PEAK RMS10FR MEAN

161 variance of the peak to RMS ratio calculated in 10 subframes PEAK RMS10FR VAR

162 Zero Crossing Rate ZCR

163 RMS Threshold Crossing Rate 1RMS TCD

164 2×RMS Threshold Crossing Rate 2RMS TCD

165 3×RMS Threshold Crossing Rate 3RMS TCD

166 Zero Crossing Rate averaged for 10 frames ZCR 10FR MEAN

167 Zero Crossing Rate variance for 10 frames ZCR 10FR VAR

168 RMS Threshold Crossing Rate averaged for 10 frames 1RMS TCD 10FR MEAN

169 RMS Threshold Crossing Rate variance for 10 frames 1RMS TCD 10FR VAR

170 2×RMS Threshold Crossing Rate averaged for 10 frames 2RMS TCD 10FR MEAN

171 2×RMS Threshold Crossing Rate variance for 10 frames 2RMS TCD 10FR VAR

172 3×RMS Threshold Crossing Rate averaged for 10 frames 3RMS TCD 10FR MEAN

173 3×RMS Threshold Crossing Rate variance for 10 frames 3RMS TCD 10FR VAR

To start with the whole parameter set has been
taken into consideration but the data analysis leads to
a conclusion that only some of them might be use-
ful for mood recognition. To determine parameters,
which are the most significant to mood description, the
correlation analysis was applied. Correlation between
MDS dimensions and mood parameters was calculated
and therefore a set of features related to mood was
created. Significance of correlation was determined ac-
cording to t-student (with significance equal to 0.025

Table 3. Set of parameters used for Dimension 1 (related to “Calm” according to MDS experiment and Dimension 2
(related to “Joyful” according to MDS experiment (Plewa, Kostek, 2013)) description. Denotations are the same
as in Table 2. Additionally. MEAN, V and FR correspond to the parameter mean, variance values and the number

of frames of analysis.

No.
Dimension 1

No.
Dimension 2

Parameter Corr. Parameter Corr.

1 ASE15 0.92 1 ASC 0.82

2 ZCR 0.92 2 MFCCV4 0.76

3 ZCR 10FR MEAN 0.92 3 SC 0.75

4 ASE29 0.91 4 MFCCV7 0.69

5 ASE28 0.90 5 MFCC5 0.65

6 SFMV1 0.89 6 MFCC10 0.63

7 SFM15 0.89 7 MFCCV6 0.63

8–69 . . . . . . 8 ASE1 0.63

79 ASEV23 0.63 9 MFCCV8 0.62

(t.975)). Finally the feature vector describing mood of
music consisted of 79 parameters correlated with Di-
mension 1 and 9 correlated with Dimension 2, listed
in Table 3. Correlation reached up to 0.92 for Dimen-
sion 1 and 0.82 for Dimension 2. Due to the length
of the feature vector correlated with Dimension 1,
only beginning and the end of the sequence is listed.
Remaining parameters numbered from 8 to −69 in-
clude mainly ASE-, SFM- and RMS-based parame-
ters.
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4.2. Principal component analysis

Two sets of chosen parameters related to mood of
music consisted of parameters that were strongly cor-
related to particular dimensions representing mood of
music are considered. Principal Component Analysis
was applied to achieve possible most orthogonal di-
mensions (Smith, 2002) and reduce redundant data.
PCA is defined as an orthogonal linear transforma-

tion that transforms the data to a new coordinate sys-
tem (Jolliffe, 2002). The new variables, called the
principal components, are defined as linear functions
of the original variables and are meant to be new, or-
thogonal dimensions (Smith, 2002). Components can-
not be directly interpreted, although their loading by
specific features can be estimated. If the first few prin-
cipal components account for a large percentage of the
information included in data, they can be used to sim-
plify subsequent analyses (Jolliffe, 2002). It is worth
noting that Principal Components Analysis is included
in various software such as XLStat (2015), SIMKA-P
(UMETRIX, 2015), MATLAB (2015) and is commonly
used as a tool for data reduction, also in area of music
technology, where large sets of data are very frequently
encountered.
Małecki (Małecki, 2013) applied Principal Com-

ponent Analysis to reduce features describing acoustics
of the sacral objects. Kaminsky (1995), using PCA,
reduced 80 elements vector to 3 components (covering
88.8% of total variation) for the purpose of Nearest
Neighbor (kNN) and Artificial Neural Network (ANN)
classification of musical instrument sounds.
Principal Components Analysis was applied to two

sets: one consisting of 79 parameters related to Di-
mension 1 and the second consisting of 9 parameters
related to Dimension 2. All of the PCA calculations
were performed using MATLAB (2015). The following
results were received from the Principal Components
Analysis:
• For Dimension 1 (“Calm”) 7 components are suf-
ficient to contain 99% of information,

• For Dimension 2 (“Joyful”) 6 components are suf-
ficient to contain 99% of information.

As a result vector describing Dimension 1 was short-
ened to 7 components and Dimension 2 to 6 compo-
nents.

5. Results

The correlation between subjective mood descrip-
tion and parameters reached up to 0.92 for Dimension 1
and 0.82 for Dimension 2. Components achieved from
PCA were treated as the SOM input (7 components
for Dimension 1 and 6 for Dimension 2).
SOM analyses were performed for various topogra-

phies and sizes of the neural network. For a 2-
dimensional SOM (2D SOM) representation, the best

results were achieved for the grid topology with net-
work dimensions of 5× 5. In this case, the feature vec-
tor consisting of 13 elements describing both dimen-
sion, Calm and Joyful, was used. These settings en-
abled to achieve quite good representation in one of
the dimensions, but did not succeed in another. An
example of 2D SOM representation is shown in Fig. 4.
Songs are placed on neurons with the highest activa-
tion.

Fig. 4. An example of 2D SOM representation of 15-element
music set. Numbers represent particular songs, listed ac-
cording to Table 1. Studies of the particular cases allow
observing quite good results in one of the dimensions.

Due to not satisfying results of 2D representations
and promising trends according to one of the dimen-
sions, two separate 1-dimensional SOM networks were
constructed. Two vectors were created: one related to
Dimension 1 (7 PCA components) and one to Dimen-
sion 2 (6 components). This allowed achieving a good
representation for Dimension 1 (“Calm”), shown in
Fig. 5. Only song labeled with no. “14” (marked in the
picture with the oval) was not assigned correctly. Lo-
cation on the “Calm” axis is not accurate. The other
elements are placed properly and their positions are
coherent with the MDS-based results. Song no. 15 is
evaluated as “the least calm” and that is coherent with
the subjective evaluation as well as music genre (Hard
Rock & Metal).
Contrarily, representation of Dimension 2 (“Joy-

ful”) is less accurate but also contains correct assign-
ments and is presented in Fig. 6. Wrongly placed songs
(nos. 1, 6 and 9) are marked in the picture with ovals.
Songs nos. 1 and 6 were evaluated as very similar in
terms of mood, what was properly recognized by both
2D SOM and SOM related to Dimension 2. It is worth
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Fig. 5. SOM representation of 10-elements music set for Di-
mension 1 (“Calm”). Numbers represent particular songs,
listed accordingly to Table 1. Song labeled with no. “14” is

marked due to the inaccurate location.

Fig. 6. SOM representation of 10-elements music set for Di-
mension 2 (“Joyful”). Numbers represent particular songs,
listed accordingly to Table 1. Songs located improperly are

marked with ovals.

noting that relation between these three songs was
properly assigned by 2D SOM.
Even though the accuracy for Dimension 1 is

around 90% and for Dimension 2 around 70%, it is
much higher than for the 2D representation. At the
same time 2D SOM achieved better results for some
relations between songs (i.e. nos. 1,6 and 9). Finally
the approach for two separate SOMs was chosen be-
cause it seems to be more appropriate for this task.
In addition, a question arises whether it is possi-

ble to compare results obtained based on unsupervised
(SOM) and classification based on a supervised tech-
nique, i.e. Artificial Neural Networks (ANN). For this

purpose a larger set of music consisting of 150 songs
was used. Mood of music excerpts was described by
the listeners who used a web-based survey. Since the
results of the listening experiment are not the main
focus of the presented study, they are recalled only
as a reference point for automatic classification. The
ANN-based classification was performed using nntool
within the Matlab environment (MATLAB). A feed-
forward ANN with one hidden layer was trained to
classify music excerpts into 4 quadrants of Thayer’s
VA plane (described in Sec. 2). Feature vectors derived
from the SYNAT music database were fed to the input
of ANN. Different configurations of ANN were tested
and but the best results were obtained for a network
with 15 neurons in the hidden layer. Higher accuracy
was achieved for two separate networks – one dedicated
to each dimension (i.e. Valence and Arousal), due to
utilizing one network with 4 outputs. Overall, results of
76% accuracy for Valence and 83% for Arousal were ob-
tained. Even though this outcome quantitatively shows
how similar the results are, qualitative interpretation
differs. ANN classifies into 4 classes (quadrants of VA
plane), while SOM results indicate position on the VA
plane more precisely.
It is worth noticing that songs nos. 6 and 9 were

misclassified in the process of the ANN-based classi-
fication, which was also the case for SOM (Fig. 6).
However, listeners and experts evaluated both songs
quite confidently, which was also seen in the standard
deviation results that were even lower than for other
music pieces. This can lead to the conclusion that some
very significant (and specifically music piece-related)
features may be missing in the FV.

6. Conclusions

Although high correlation was obtained between
subjective labeling of mood and objective descriptors
in the carried out experiments, it is arguable whether
assigning emotion label is sufficient to describe mood
of music, and secondly whether this may be treated as
ground truth in music mood recognition. This is be-
cause one’s emotions caused by music may easily be
mixed with mood intentionally ascribed to a piece of
music by a musician.
Principal Component Analysis was very suitable

for selecting variables that contain significant informa-
tion, which resulted in dimension reduction of data.
Moreover, the data pre-processing stage is appropriate
for SOM analyses. It may also be observed that two
separate SOMs, each dedicated to particular dimen-
sion, are more efficient than 2D representation.
Distribution of objects on the SOM representation

is coherent with the MDS visualization. In all of cases,
dimension related to “Calm” is easier to describe and
determine than dimension related to “Joyful”. This de-
scriptor is much more subjective and probably some
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more complex rules have to be defined to determine
the distribution of songs along this dimension. Over-
all, achieved results can lead to a conclusion that SOM
is a powerful tool to visualize music dataset basing on
mood of music distribution.
The ANN-based classification was tested on a big-

ger music set but some songs were misclassified by
both methods (ANN and SOM). Accuracy of the ANN-
based classification reached up to 76% for Valence and
83% for Arousal, but it refers only to quadrants of VA
plane. Contrarily, SOM results can return Valence and
Arousal values more precisely but are more difficult to
interpret.
The SOM-based approach to Music Mood Recogni-

tion will be developed on a larger music set. Since the
chosen topology and number of neurons in SOMs are
dependent on the size of the dataset, different SOM
configurations will further be tested.
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