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Nowadays, the finite element method (FEM) – boundary element method (BEM) is used to predict
the performance of structural-acoustic problem, i.e. the frequency response analysis, modal analysis. The
accuracy of conventional FEM/BEM for structural-acoustic problems strongly depends on the size of
the mesh, element quality, etc. As element size gets greater and distortion gets severer, the deviation of
high frequency problem is also clear. In order to improve the accuracy of structural-acoustic problem,
a smoothed finite-element/boundary-element coupling procedure (SFEM/BEM) is extended to analyze
the structural-acoustic problem consisting of a shell structure interacting with the cavity in this paper,
in which the SFEM and boundary element method (BEM) models are used to simulate the structure
and the fluid, respectively. The governing equations of the structural-acoustic problems are established
by coupling the SFEM for the structure and the BEM for the fluid. The solutions of SFEM are often
found to be much more accurate than those of the FEM model. Based on its attractive features, it was
decided in the present work to extend SFEM further for use in structural-acoustic analysis by coupling it
with BEM, the present SFEM/BEM is implemented to predict the vehicle structure-acoustic frequency
response analysis, and two numerical experiments results show that the present method can provide
more accurate results compared with the standard FEM/BEM using the same mesh. It indicates that the
present SFEM/BEM can be widely applied to solving many engineering noise, vibration and harshness
(NVH) problems with more accurate solutions.

Keywords: smoothed finite element method (SFEM); FEM; BEM; structural-acoustic analysis.

1. Introduction

The interaction between the vibrating structure
and the acoustic fluid field can, in many engineering
noise, vibration and harshness (NVH) analyses, signif-
icantly affect the response of the structure and hence
needs to be taken into account properly. Numerical
analysis of shell structural-acoustic problem is a com-
plex task, involving the modeling of both the struc-
ture domain, the acoustic fluid domain, and the in-
teraction between these two domains, which requires
proper treatment of the sub-domains in which differ-
ent physical phenomena are involved, as well as suit-
able numerical modeling of wave propagation across
interfaces. Displacement is generally the primary vari-

able that can be used to describe structural behavior,
while, in the acoustic fluid domain, several different
primary variables for modeling the fluid field have been
proposed, e.g., displacement (Hamdi et al., 1978), po-
tential (Everstine, 1981;Morand, Ohayon, 1979),
pressure, and the combination of some of these vari-
ables (Bathe et al., 1995). In this paper, the acoustic
pressure in fluid coupled with the displacement in the
structure domain is adopted to describe the structural-
acoustic problems.
Numerous researchers have studied many differ-

ent numerical methods for use in solving structural-
acoustic problems. The finite element method (FEM)
is a favorable numerical approach for engineer-
ing problems, including structural-acoustic problems
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(Davidsson, 2004; Everstine, 1997). The well-
known problems of using fluid elements in the finite
element method (FEM) are the need for an approxi-
mate radiation boundary condition at the outer fluid
boundary, limitations on mesh size and type, and the
difficulty of generating the fluid mesh.
The boundary element method (BEM) has been

widely used to model fluids. It is an attractive techni-
que for the analysis of structural-acoustic problem sin-
ce only the surfaces need to be discretized In addition,
the BEM offers the advantage in the discretization
compared with the FEM. In order to take advantage
of both the FEM and the BEM, coupled finite element
method/boundary element method (FEM/BEM) ap-
proaches have been proposed (Everstine, Hender-
son, 1990; Jeans, Mathews, 1990; 1993). The cou-
pled finite element method/boundary element method
(FEM/BEM) is a conventional means of computing re-
sponses for fluid-structure interaction system (Kopuz,
1996; Tonga et al., 2007) and structural-acoustic
problem (Choi, 1997; Chen et al., 2000; Coyette,
1999). As is well known, the coupled FEM/BEM is
a conventional means of solving the structural-acoustic
problem.
The results of coupled FEM/BEM become quite in-

accurate because of the “overly-stiff” property of FEM
(Liu et al., 2007b). Therefore, the coupled FEM/BEM
models also possess the “overly-stiff” property due to
the use of FEM model. The smoothed finite-element
method (SFEM) (Liu et al., 2007a;Wang et al., 2015;
Li et al., 2014; He et al., 2011; 2013) was recently pro-
posed by incorporation of the gradient smoothing tech-
nique with the standard finite element techniques. The
primary variable and its gradient solutions of SFEM
are often found to be much more accurate than those
of the FEM model using quadrilateral meshes. Owning
to the “properly-stiff” property of SFEM model, it was
decided in the present work to extend SFEM further
for use in structural-acoustic analysis by coupling it
with BEM. Thus, the authors have formulated a cou-
pled SFEM/BEM for addressing problems associated
with structural-acoustic coupled systems that are de-
scribed by the displacement in the structural domain
coupled with the acoustic pressure in the fluid domain.
Exclusion of the cell-based gradient smoothing opera-
tion was done on the shell element in SFEM, and the
formulations of SFEM/BEM are very general and ap-
plicable to structural-acoustic problems. According to
the previous research it is natural to expect that the
SFEM/BEM will obtain more accurate results than
FEM/BEM for structure-acoustic problems, even for
the vehicle structure-acoustic coupled problems. The
numerical results shown that the present method can
be well applied to solving vehicle acoustic model with
more accurate solutions. The investigation indicates
the proposed method has great potential in the prac-
tical analysis of NVH problems.

2. Smoothed finite-element formulation

Consider a structural domain Ωs coupled with
a fluid domain Ωf , as shown in Fig. 1. The fluid is en-
closed by a flexible structure Ωs, together with a rigid
boundary Γb and an interface boundary Γa.

Fig. 1. Shell structure of domain Ωs coupled with acoustic
fluid of domain Ωf .

2.1. Formulations for the shell

In this section, the basic equations of shell the-
ory are presented. Based on the first-order, shear-
deformation theory, the displacements can be ex-
pressed as follows:

u(x, y, z) = u0(x, y) + zθx(x, y),

v(x, y, z) = v0(x, y) + zθy(x, y), (1)

w(x, y, z) = w0(x, y),

where u0, v0, and w0 are the displacements of the mid-
plane of the shell in the x, y, and z directions; θx and
θy are the rotations of the mid-plane around the x-axis
and y-axis, respectively, as shown in Fig. 2.

Fig. 2. Quadrilateral shell element.
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The strain vector ε can be written in terms of the
mid-plane deformations, which gives:

ε = {εxx, εyy, γxy, γxz, γyz}T

=

{
εm

0

}
+

{
zεb
0

}
+

{
0

εs

}
, (2)

where εm is the membrane strain, εb is the bending
strain, and εs is the shear strain.
They can be given by:

εm =




∂u0
∂x

∂v0
∂y

∂u0
∂y

+
∂v0
∂x




, εb =




∂θx
∂x

∂θy
∂y

∂θx
∂y

+
∂θy
∂x




,

εs =




∂w0

∂x
+ θx

∂w0

∂y
+ θy


.

(3)

Applying the principle of virtual work (PVW), the
weak form of the dynamic variation equation can then
be written as:
∫

Ω

δεTmDmεm dΩ +

∫

Ω

δεTb Dbεb dΩ

+

∫

Ω

δεTsDsεs dΩ +

∫

Ω

δuTmü dΩ

−
∫

Ω

δuTf dΩ = 0 (4)

in which, f is the distributed load applied on the shell.
m = diag{m1 m2 m3 m4} is the matrix containing
the mass density ρs and thickness l with the form of

mI = diag{ρsl ρsl ρsl ρsl
3/12 ρsl

3/12 0},

I = 1, 2, 3, 4.
(5)

The field variable u, the membrane stiffness consti-
tutive coefficients Dm, the bending stiffness constitu-
tive coefficientsDb, and the shear stiffness constitutive
coefficients Ds can be expressed as:

u(x) =

Np∑

I=1

NI(x)dI , δu(x) =

Np∑

I=1

NI(x)δdI ,

εm =

Np∑

I=1

BmIdI , εb =

Np∑

I=1

BbIdI ,

εs =

Np∑

I=1

BsIdI , ü(x) =

Np∑

I=1

NI(x)d̈I ,

(6)

Dm =
El

(1 − ν)2




1 ν 0

ν 1 0

0 0
1− ν

2


,

Db =
El3

12(1− v2)




1 v 0

v 1 0

0 0
1− v

2


, (7)

Ds =
Elk

2(1 + v)



1 0

0 1


,

where E is Young’s modulus, v is Poisson’s ratio, and
k is the shear correction factor, Np is the number of
nodes in the element, dI = [uI , vI , wI , θxI , θyI ]

T is the
generalized nodal displacement at node I, and NI(x)
is the shape functions defined as:

NI(x)=diag(NI(x), NI(x), NI(x), NI(x), NI(x)), (8)

where NI(x) is the shape function associated to node I
andBmI ,BbI andBsI are the strain matrix defined as:

BmI =




NI,x 0 0 0 0

0 NI,y 0 0 0

NI,y NI,x 0 0 0


,

BbI =




0 0 0 NI,x 0

0 0 0 0 NI,y

0 0 0 NI,y NI,x


, (9)

BsI =

[
0 0 NI,x NI 0

0 0 NI,y 0 NI

]
.

Substituting Eq. (6) into Eq. (4) yields:

Ku−Mü = Fs, (10)

where the smoothed stiffness matrix K can be ex-
pressed as:

K = Km +Kb +Ks

=

∫

Ω

BT
mDmBm+

∫

Ω

BT
b DbBb+

∫

Ω

BT
sDsBs. (11)

Mass matrixM can be written as:

M =

∫

Ω

NTmNdΩ. (12)

The force vector Fs is:

Fs =

∫

Ω

NTf dΩ. (13)
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Considering harmonic forced excitations one can
substitute u = Uejωt into Eq. (10), where j =

√
−1

and t is the time. The forced frequency response anal-
ysis equation can be written as:

(K− ω2M)U = Fs. (14)

It is obvious that the smoothed membrane and
bending strain matrix integration can be solved more
easily and efficiently.

2.2. Cell-based strain smoothing operation

for the shell element

In this sub-section, the cell-based smoothing tech-
nique for the shell element is formulated. The shell
domain is discretized into Ne quadrilateral elements
with Nd nodes in the standard FEM. Each element do-
main Ω is divided into SC smoothing cells, such that
Ω1∪Ω2∪ ...ΩSC = Ω and Ω1∩Ω2∩ ...ΩSC = ∅. These
smoothing cells are shown in Fig. 3. Figure 3 illustrates
different smoothing cells for SC = 1, 2, 3, and 4 corre-
sponding to 1st smoothing cells, 2nd smoothing cells,
3rd smoothing cells, and 4th smoothing cells methods.
The membrane and bending are smoothed over each
smoothing cells. The values of the shape functions are
indicated at the corner nodes in Fig. 3 in the format
(N1, N2, N3, N4). The values of the shape functions at
the integration nodes are determined based on the lin-

Fig. 3. Division of a quadrilateral element into smoothing cells (SC) and the value of the shape
function along the boundaries of cells.

ear interpolation of shape functions along boundaries
of the element or the smoothing cells.
Applying the smoothing operation on the bending

and membrane strain of the shell, the compatible bend-
ing and membrane strain in the C-th smoothing do-
main can be calculated using:

εbc =

∫

Ωc

εb(x)H(x)dΩ,

εmc(x) =

∫

ΩC

εm(x)H(x)dΩ,

(15)

where H(x) is a given smoothing function that satisfies
at least unity property

∫

ΩC

H(x) = 1. (16)

In this paper, we use the constant smoothing func-
tion defined as

H(x) =

{
1/AC x ∈ ΩC ,

0 x /∈ ΩC ,
(17)

where AC =

∫

ΩC

dΩ is the area of C-th smoothing

domain.
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Substituting Eqs. (6), (8) and (17) into Eq. (15)
and applying a divergence theorem, one can get the
smoothed membrane strain:

εmC(x) =
1

AC

∫

ΩC

∇suh(x)dΩC

=
1

AC

∫

ΓC

nCu
h(x)dΓC =

Np∑

I=1

B
C

mI(x)dI , (18)

where Γc is the boundary of the smoothed cell, nC is
the outward normal vector matrix on the boundary Γc,
and ∇s is a differential operator matrix defined as

∇s =




∂

∂x
0 0 0 0

0
∂

∂y
0 0 0

∂

∂y

∂

∂x
0 0 0




(19)

and the B
C

mI(x) is the smoothed membrane strain ma-
trix defined as:

B
c

mI(x)=
1

AC

∫

ΓC



NInx 0 0 0 0

0 NIny 0 0 0

NIny NInx 0 0 0


dΓ. (20)

Similarly, the smoothed bending strain εhbC over the
domain can be expressed as:

εbC(x) =

Np∑

I=1

B
C

bI(x)dI , (21)

where B
c

bI(x) can be written as:

B
C

bI(x)=
1

AC

∫

ΓC




0 0 0 NInx 0

0 0 0 0 NIny

0 0 0 NIny NInx


dΓ. (22)

The smoothed membrane and bending strains lead to
high flexibility such as arbitrary polygonal elements,
and a slight reduction in computational cost.
Simultaneously, we use independent interpolation

fields in the natural coordinate system for the approx-
imation of the shear strains (Fredrik, 2001), and
the 2× 2 Gauss quadrature is still utilized, like in
(Fredrik, 2001).
Finally, the smoothed stiffness matrix K can be

expressed as:

K = K
m
+K

b
+Ks =

SC∑

C=1

(B
C

mI)
TDmB

C

mIAC

+

SC∑

C=1

(B
C

bI)
TDbB

C

bIAC

+

2∑

i=1

2∑

j=1

wiwj(Bs)
TDsBs |J| dξ dη. (23)

According to Eq. (2), after the smoothing opera-
tion was implemented on the smoothed domains of the
shell, the smoothed strains vector, ε, can be written as:

ε =

{
εm

0

}
+

{
zεb
0

}
+

{
0

εs

}
. (24)

3. Formulations of the fluid sub-domain

In the (acoustic) fluid sub-domain, the governing
equation for the linear acoustic problems known as the
Helmholtz equation is given by

∇2p+ k2p = 0 with k = ω/c, (25)

where ∇2 denotes the Laplace operator, and the wave
number k is determined by the ratio between the an-
gular frequency ω and the speed of sound c, p(x, t) =
p(x) · ejωt. The acoustic boundary conditions include
the rigid wall condition can be expressed as follows:

∂p

∂n
= 0 on Γf , (26)

where the n is the exterior unit normal vector of the
acoustic fluid. At the interface of the fluid and the
structure, the momentum balance require that

∂p

∂n
= ρω2un on Ωsf , (27)

where ρ is the density of medium and the normal dis-
placement component of the acoustic fluid at the in-
terface, and the symbol Ωsf denotes interface between
the acoustic fluid and structure. The subscript “sf ”
stands for the interface.
The boundary integral equation for acoustic prob-

lems can be used for the interior and exterior problems.
The weak form of the Helmholtz equation can be ob-
tained using a weighted residuals approach with the
following fundamental solution as the weight function:

G = e−ikr/r, (28)

where r =
∣∣Q− P

∣∣, P is a collocation point and Q is
a source point.
Using Green’s second identity theorem, the

Helmholtz equation in Eq. (25) can be transformed
into a boundary integral equation, which relates the
volume integral over the domain V to the surface in-
tegral on the boundary S, and, using the standard
boundary element procedure, we can get the bound-
ary integral equation:

C(P )p(P ) =

∫

S

(
∂p

∂n
G− p

∂G

∂n

)
dS, (29)

where n is the outward normal at point Q;C(P ) is a co-
efficient, which depends on the position of the point P .
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The value of C(P ) is calculated by a more general ex-
pression defined as:

C(P ) =





1 P ∈ V ,

4π · sign+
∫

S

∂G0

∂n
dS P ∈ S,

0 P /∈ S, V ,

(30)

where G0 = 1/r. By taking into account the Neumann
boundary condition given by Eq. (27) about the rela-
tion between the normal derivative of the sound pres-
sure and velocity, then Eq. (29) becomes

C(P )p(P ) =

∫

S

(
ρω2unG+ p

∂G

∂n

)
dS, (31)

p and un will vary along the boundary and can be
approximated by a simple function; hence they can be
expressed as a function of their nodal values.

p =

m∑

j=1

Njpj = Nfp,

un =

m∑

j=1

Njunj = Nfun,

(32)

where pj and unj are the nodal values of acoustic pres-
sure and particle normal velocity at node j, respec-
tively, m is the number of nodes on each surface el-
ement and Nf are the shape functions. Assume that
the boundary of the domain is discretized intoN isopa-
rameteric, quadrilateral elements with M nodes.
We then place the point P at each of nodal points

on the boundary successively which is known as “col-
location”. For each collocation point P , we substitute
Eq. (32) into Eq. (31) and perform the integration
over the entire surface, which is actually done on an
element-by-element basis. A set of simultaneous lin-
ear equation can be obtained when point P is chosen
to be all the nodal points on the boundary and the
discretized form can be expressed as (Nehete et al.,
2015; Fredrik, 2001):

Ciδijpi =

N∑

j=1

Ĝij
∂p

∂n
−

N∑

j=1

Ĥijpi. (33)

Combining the constant term C with Ĥ matrix,
Eq. (33) can be expressed in matrix form as:

HP = G
∂p

∂n
, (34)

where

H =

N∑

j=1

Ciδij + Ĥij , δij =

{
1 i = j,
0 i 6= j,

G =

N∑

j=1

Gij , Ĥij =

∫

Si

∂p

∂n
ds, Gij =

∫

Si

p ds

(35)

and Sj is the surface of element j on the boundary.
Combining Eqs. (26), (27) and (34), we can get:

HP = −ρfω2Gun, (36)

where ρf is the fluid density.

4. Coupling of SFEM/BEM

for structure-acoustic coupled analysis

The general formulation of fluid-structure interac-
tion presented in this section is based on the formu-
lations for the shell and for acoustic fluid. During the
interaction, the fluid particle and the structure move
together in the normal direction of the boundary, and
the interface boundary condition can be written as:

usn = ufn, (37)

where n is the normal vector along the fluid boundary,
us is the displacement of the shell at the interface,
and uf is the displacement of the fluid contacting the
shell. At the interface, the continuity in pressure can
be expressed as follows:

ps |n = −pf , (38)

where the subscript “f” stands for boundary element
nodes of the fluid and subscript “s” stands for shell
element nodes of the structure at the fluid-structure
interface; ps |n stands for the normal pressure of shell
element nodes at the interface; pf stands for the pres-
sure of the fluid at the interface. Note that the normal
on the interface on the shell ns is opposite the nor-
mal on the fluid nf , that is:

n = ns = −nf . (39)

Under the equilibrium conditions (27), the motion
Eq. (14) can be given in the frequency domain:

(K− ω2M)U = Fs + Ff , (40)

where Ff is the fluid force load on the structure bound-
ary Ωsf and can be expressed as:

Ff = −
∫

Ωsf

NTpfn dS. (41)

By introducing the spatial coupling matrix L:

L =
∑

e

∫

se

NTnNB ds, (42)

where NB is the interpolation function for a four-node
quadrilateral BEM element. Then, Eq. (40) can be ex-
pressed as:

(K− ω2M)U+ LPf = Fs. (43)
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Considering the boundary conditions of the fluid
domain, the BEM model is divided into two parts,
a and b, as shown in Fig. 4.

Fig. 4. The SFEM shells coupled with boundary elements.

The boundary node pressure values p are sorted
into two groups, pa and pb, depending on the boundary
upon which they act. The node normal displacement
un is divided into two parts, ua and ub. Then, Eq. (33)
can be rewritten as:[

H11 H12

H21 H22

][
pa
pb

]
= −ρfω2

[
G11 G12

G21 G22

][
ua
ub

]
(44)

and we can get:

∂p

∂n
= ρfω

2un = ρfω
2uana,

∂p

∂n
= ρfω

2un = ρfω
2ubnb,

(45)

where na and nb are the outward surface normal vec-
tors on the fluid boundaries Γa and Γb, respectively.
Combining the structural SFEM model with the

acoustic BEM model yields the coupled SFEM/BEM
model:



K− ω2M L 0

ρfω
2G11na H11 H12

ρfω
2G21na H12 H22







U

pa

pb


 =




F

Fa

Fb


, (46)

where

Fa = −ρfω2G12nbub, Fb = −ρfω2G22nbub. (47)

5. Application examples

In this section, there are two examples of fluid-
structure interaction problems used to verify the
present SFEM-BEM formulation. We tested the com-
puter program developed based on the proposed for-
mulations. SYSNOISE software was used as a reference
in order to validate the numerical model that couples
the finite-element method (FEM) with the boundary
element method (BEM). Some conclusions were ob-
tained by comparing the reference data with the nu-
merical results.

5.1. Box structural-acoustic problem

Considering a box cavity surrounded by five rigid
surfaces and one elastic surface. The dimensions of
this box cavity are 0.4× 0.4× 0.4 m. The box cav-
ity is filled with a fluid which is attached to a flex-
ible flat shell. The fluid is air with material proper-
ties of ρs = 1.225 kg/m3, c = 343 m/s. The flexi-
ble shell made of steel (ρs = 7800 kg/m3, υ = 0.3,
and E = 30 GPa) is on the bottom of the box cavity.
The thickness of this flexible shell is 0.001 m, and ex-
hibits simply supported boundary conditions, excited
by a point time harmonic force loading at the center
of the panel. The box cavity walls, including the rigid
wall and the flexible wall, are modeled with bound-
ary elements. The fluid-structure interaction model, as
described in (Wang et al., 2015) is shown in Fig. 5.
In this numerical example, the structure and the fluid
domain boundary are meshed with quadrilateral ele-
ments, and the damping is neglected. To study the per-
formance of the SFEM for the two-dimensional (2D)
structural flat shell, the natural eigenfrequencies anal-
yses for the 2D flexible shell were investigated first.
The shell was discretized into 81 nodes and 64 quadri-
lateral elements with an average mesh size of 0.05 m.
Table 1 lists the first fifteen non-rigid eigenfrequen-
cies of the flat shell obtained from SFEM. To compare
with the FEM, the flexible shell modeled with the shell
element using the same nodes and elements was com-
puted by the FEM code, and the FEM numerical so-
lutions of 15 non-rigid eigenfrequencies are listed in
Table 1. As the FEM/BEM can provide appropriate
result when the mesh size is sufficiently small, the ref-
erence result obtained using FEM in SYSNOISE with
a very fine quadrilateral mesh (1681 nodes and 1600
elements) is also employed to make a comparison, and
the result is also provided in the table. Table 1 shows
that 1) the eigenfrequencies computed using FEM were
all larger than the reference solution and 2) the devia-
tion of eigenfrequencies between the FEM solution and

Fig. 5. Box cavity with one flexible wall.
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Table 1. Eigenfrequencies of flat shell obtained using SFEM and FEM.

Mode number SFEM freq. [Hz] Error [%] FEM freq. [Hz] Error [%] Reference freq. [Hz]

1 59.3433 4.96 62.2131 10.03 56.5394

2 119.7178 3.10 126.7201 9.13 116.1183

3 120.9435 3.43 126.7201 8.37 116.9321

4 150.4299 3.14 157.9926 8.32 145.8554

5 286.6578 5.74 294.4624 8.62 271.0963

6 291.5923 3.50 304.2299 7.99 281.7274

7 360.1008 5.27 380.8492 11.34 342.0635

8 363.6481 5.85 380.8492 10.86 343.5464

9 492.4435 5.39 522.1091 11.74 467.2582

10 542.0775 4.65 561.488 8.40 517.9904

11 539.0406 4.06 561.488 8.39 518.0246

12 689.7948 9.97 748.5495 19.33 627.2757

13 840.5132 8.46 873.8227 12.76 774.9457

14 881.8973 13.4 910.3988 17.07 777.6849

15 889.8116 13.87 923.2459 18.14 781.4614

the reference became larger as the eigenfrequencies in-
creased. However, the eigenfrequencies obtained from
the SFEM were closer in magnitude to the reference
than those from the FEM solutions.
To study the performance of the coupled

SFEM/BEM for fluid-structure interaction analysis,
the forced frequency response analysis for the cou-
pled cavity is then investigated using present cou-
pled SFEM/BEM and the coupled FEM/BEM. A unit
load is applied at the center of flat shell, and the
acoustic response is measured at the field points 1
and 2. These field points were located in the fluid
domain, just above the centre of the vibrating panel
at distances of 0.1 m and 0.05 m, respectively. The
frequencies ranging from 50 to 150 Hz are adopted

Fig. 6. The acoustic pressure frequency responses of field point 1.

to investigate these two formulations. The frequency
responses obtained using coupled SFEM/BEM and
coupled FEM/BEM are plotted in Figs. 6 and 7,
respectively. Since there was no analytical result
for this coupled system, the reference responses ob-
tained using coupled FEM/BEM with very fine
mesh(quadrilateral mesh of 1681 nodes for the flat
shell and quadrilateral mesh of 6724 nodes for cav-
ity wall) in SYSNOISE are also presented in these
figures. Figures 6 and 7 show that the results ob-
tained from the coupled SFEM/BEM are in good
agreement with the reference results at these fre-
quencies; while the deviations between the coupled
FEM/BEM and the reference all increased as fre-
quency increased.
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Fig. 7. The acoustic pressure frequency responses of field point 2.

5.2. Automobile passenger compartment

with flexible floor panel

In many engineering situations, such as a vehicle
passenger compartment, noise and vibration problems
generated by fluid-structure interaction are often en-
countered. The interior noise level of such an enclo-
sure is directly affected by the coupling between the
flexible structure and an acoustic cavity. In this sub-
section, a simple model of coupled vehicle passenger
compartment system, which is shown in Fig. 8, is used
to investigate the performance of coupled SFEM/BEM
and coupled FEM/BEM. Since the chassis is the major
source of structural vibration and induces noise in the
vehicle compartment, the coupling between the floor
panel and the passenger compartment cavity is of great
concern in reducing the noise level. The material of
the shell and the acoustic fluid are the same as Sub-
sec. 5.1. The floor panel was modeled as shell structure
with all corners fixed, damping neglected, the vehicle
passenger compartment was modeled with boundary
elements, the floor panel was meshed with 60 quadri-
lateral elements, and the fluid domain boundary was
meshed 236 quadrilateral elements.

Fig. 8. Structural domain for the floor panel couples
with the acoustical fluid domain.

Similar to the first example, the eigenfrequencies of
the vehicle floor panel system were investigated using

the SFEM, and the first 10 eigenfrequencies are listed
in Table 2. For comparison, the results obtained from
FEM with the same mesh are also provided in Table 2.
In order to make a comparison, the reference results
obtained using the coupled FEM in SYSNOISE with
a fine mesh (quadrilateral mesh of 961nodes for the
floor panel and boundary quadrilateral element of 8794
nodes for air cavity) is also employed and presented in
Table 2. Table 2 shows that the errors of the eigenfre-
quencies of the floor panel using SFEM were smaller
than the errors obtained from the FEM. These results
validate that the cell-based strain-smoothing technique
provides more accurate stiffness to the floor panel
system, and therefore gives better results than FEM.
The forced frequency response for the coupled vehi-

cle passenger compartment was also evaluated. A unit
load was applied at the centre of the floor panel, and
the responses were measured at the driver’s seat point,
in the vehicle passenger compartment of acoustic fluid.
Frequencies ranging from 50 Hz to 150 Hz, which are of
great concern in developing a vehicle, were used to in-
vestigate the formulation of the coupled SFEM/BEM.
The frequency responses of the driver’s seat point us-
ing coupled SFEM/BEM and coupled FEM/FEM are
plotted in Fig. 9, respectively. For comparison, the ref-
erence results obtained from coupled FEM/BEM in
SYSNOISE with a fine mesh (quadrilateral mesh of 961
nodes for the floor panel and boundary quadrilateral
element of 8794 nodes for air cavity) are also presented
in these figures. As depicted in these figures, the results
obtained from the coupled SFEM/BEM are in good
agreement with the reference results at these frequen-
cies, while there were significant deviations between
the results obtained from coupled FEM/BEM and
the reference results. The figure shows that the new
method, i.e., coupled SFEM/BEM, can provide more
accurate results than the corresponding FEM/BEM
approach when used to solve industrial problems.
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Table 2. Eigenfrequencies of floor panel obtained using SFEM and FEM.

Mode number SFEM freq. [Hz] Error [%] FEM freq. [Hz] Error [%] Reference freq. [Hz]

1 61.8096 1.147 64.5890 5.69 61.1089

2 145.0382 1.16 149.9892 4.61 143.3753

3 189.9805 4.06 197.5483 8.21 182.5671

4 318.189 5.53 328.2552 8.87 301.5048

5 388.3815 5.20 402.7127 9.09 369.1714

6 466.986 4.90 482.8012 8.45 445.1803

7 561.6589 4.14 577.6732 7.11 539.3091

8 686.9562 2.60 700.8135 4.69 669.5538

9 821.6792 7.04 850.6059 10.81 767.6232

10 985.4656 1.58 1003.5961 3.45 970.1321

Fig. 9. The acoustic pressure frequency responses of the driver’s seat point.

6. Conclusions

This paper presents novel numerical technique
called SFEM/BEM to predict the structure-acoustic
coupled problems, especially for shell structure-
acoustic coupled system. Some application examples
are investigated in detail to study the panel eigen-
modes and structure-acoustic coupled responses. The
following conclusion can be derived.

1. The SFEM/BEM can well predict the shell-like
structure performance, such as the eigenmodes,
structure-acoustic coupled frequency responses.
The results of the present method even can obtain
higher accuracy than those of FEM/BEM method
with the same coarse mesh. It indicates that the
present method can be widely applied to solving
structure-acoustic coupled problems without in-
creasing much more computational time and de-
creasing the pre-processing time.

2. For the practical acoustic problems with com-
plicated domains and boundary conditions, the
SFEM/BEM obtains approximate accurate re-
sults with the coarse mesh. Due to the low de-
mand of mesh density for pre-processing, the cou-
pled SFEM/BEM can be widely applied to solving
the vehicle structure-acoustics coupled problems.

3. In present work, the SFEM/BEM can only deal
with the shell-like structure problems, but can-
not solve the 3-dimensions solid structure prob-
lems. So the further researches are needed in fu-
ture work.
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