
ARCHIVES OF ACOUSTICS

Vol. 42, No. 2, pp. 223–233 (2017)

Copyright c© 2017 by PAN – IPPT

DOI: 10.1515/aoa-2017-0025

Music Performers Classification by Using Multifractal Features:
A Case Study

Natasa RELJIN(1), David POKRAJAC(2)

(1)University of Connecticut
260 Glenbrook Road, Unit 3247, Storrs, CT 06269, USA; e-mail: natasa.reljin@gmail.com

(2)Delaware State University
1200 North DuPont Hwy, Dover, DE 19901, USA

(received September 27, 2015; accepted February 28, 2017)

In this paper, we investigated the possibility to classify different performers playing the same melodies
at the same manner being subjectively quite similar and very difficult to distinguish even for musically
skilled persons. For resolving this problem we propose the use of multifractal (MF) analysis, which is
proven as an efficient method for describing and quantifying complex natural structures, phenomena or
signals. We found experimentally that parameters associated to some characteristic points within the MF
spectrum can be used as music descriptors, thus permitting accurate discrimination of music performers.
Our approach is tested on the dataset containing the same songs performed by music group ABBA and by
actors in the movieMamma Mia. As a classifier we used the support vector machines and the classification
performance was evaluated by using the four-fold cross-validation. The results of proposed method were
compared with those obtained using mel-frequency cepstral coefficients (MFCCs) as descriptors. For the
considered two-class problem, the overall accuracy and F-measure higher than 98% are obtained with
the MF descriptors, which was considerably better than by using the MFCC descriptors when the best
results were less than 77%.

Keywords: music classification; multifractal analysis; support vector machines; cross-validation; mel-
frequency cepstral coefficients.

Notations

F – first point in multifractal spectrum,
FM – first point and point of maximum in multifractal

spectrum,
FML – first point, point of maximum and last point in multi-

fractal spectrum,
FN – false negative,
FP – false positive,
FV – feature vector,
L – last point in multifractal spectrum,
M – point of maximum in multifractal spectrum,
ML – point of maximum and last point in multifractal

spectrum,
MF – multifractal,

MFCC – mel-frequency cepstral coefficients,
OA – overall accuracy,
RBF – radial basis function,
SVM – support vector machines,
TN – true negative,
TP – true positive.

1. Introduction

Explosive growth of inexpensive but highly power-
ful multimedia devices enables the production of ex-

tremely huge collection of various audio-visual data.
Indexing and browsing such data, searching for desired
files, and classifying existing material, have become
very difficult tasks. Many efforts have been made to re-
solve these problems. Except for images and video, sig-
nificant attention was devoted to the automatic analy-
sis and classification of music content and audio infor-
mation, having numerous potential applications, such
as genre classification, musical instrument classifica-
tion, indexing of audio databases, etc., which are usu-
ally referred as music information retrieval (MIR), as
reported in (Wold et al., 1996; Li et al., 2001;Tzane-
takis, Cook, 2002; Guo, Li, 2003; Kostek, 2004;
Barbedo, Lopes, 2007; Feng et al., 2008; Lee et al.,
2009; Jensen et al., 2009).
Humans, especially those who are musically edu-

cated and/or gifted, are capable of making accurate
distinctions between different music pieces and sepa-
rating sounds originated from different sources. Recog-
nition and classification of sounds is performed spon-
taneously by means of subjective auditory sensation
generated in human brain. Regarding machine process-
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ing, description and classification of sounds are very
hard and challenging tasks, because a device (or an
algorithm) needs appropriate descriptions of percep-
tual features. The main problem in automatic clas-
sification of sounds is to find suitable objective de-
scriptors in good correspondence to subjective sensa-
tion of sounds. Usually, descriptors are expressed as
numerals and are arranged in the form of an appro-
priate feature vector (FV). By comparing FVs of dif-
ferent sounds their similarity/dissimilarity can be eva-
luated.
Standard approach for describing audio content

uses temporal and/or spectral features (Tzanetakis,
Cook, 2002; Guo, Li, 2003; McKinney, Bree-
baart, 2003; Rein, Reisslein, 2006; Chudy, 2008).
Among various spectral features, the most frequently
used are mel-frequency cepstral coefficients (MFCCs),
which are perceptually motivated and well suited to
the human auditory system. The Mel scale1 was intro-
duced by (Stevens et al., 1937) as a scale of pitches
which are subjectively equal in distance from one an-
other. The MFCCs were proven as an efficient tool for
speaker identification (Davis, Mermelstein, 1980)
and have widely been used in different systems for au-
tomatic speech recognition and speaker classification,
for instance (Huang et al., 2001; Muda et al., 2010).
Later, the use of MFCC was extended to music analysis
and classification (Logan, 2000; Berenzweig et al.,
2002; Tsai, Wang, 2006; Feng et al., 2008). Basic
audio descriptors are even standardized and embedded
into the MPEG-7 standard (Kostek, 2004; Lyndsay,
2011; Gomez, 2013;). Note that for the two challeng-
ing problems in MIR: recognition of music genres and
recognition of instruments playing together in a given
music sample, the data mining contest was organized
in 2011, in conjunction with the 19th Int. Symposium
on Methodologies for Intelligent Systems, ISMIS 2011
(Kryszkiewicz et al., 2011). In this contest, competi-
tors were requested to use feature vectors with a de-
fined number of 171 descriptors from which the first
147 were ‘standard’ descriptors: MPEG-7 (127 descrip-
tors), and MFCC (20), while additional 24 were related
to time domain and have been a free choice of competi-
tors being their original contribution (Kostek, 2011).
In the paper by (Schedl et al., 2013) very interesting
study regarding system-based and user-centric MIR
was derived. The authors pointed out the problems
with subjective judgment of similarity of songs/music
and hence difficulties at user-centric evaluation in fields
related to MIR.
In (Mandelbrot, 1967) Mandelbrot introduced

a new kind of geometry, called the fractal geometry,
which has been proven as an efficient way for describ-
ing the complexity of structures, objects, systems, or

1The word mel comes from the word melody, indicating to
the pitch comparison.

phenomena. The fractal concept is one of the most im-
portant developments in mathematics in the second
half of the 20th century. Fractals are central to un-
derstanding and quantitatively evaluating a wide va-
riety of complex structures (for instance, the shape
of clouds, structure of a tree or a snowflake, etc.)
as well as chaotic, non-stationary and nonlinear sys-
tems, in cases when Euclidean geometry falls down.
Such structures and systems can be described quan-
titatively by a fractal dimension (FD) which is usu-
ally a non-integer number (thus Mandelbrot coined
the term fractal, meaning fractional or broken). By
using the FD, objective description, characterization,
comparison and classification of complex and irregular
structures is enabled. This concept was very successful
in describing events, signals, structures or phenomena,
characterized by a fundamental feature known and re-
ferred to as self-similarity. This property means that
by observing the structure of the object in different
scales, for instance by zooming part of the structure,
(almost) the same shape arises, i.e., it seems that the
structure is composed of smaller versions of itself. Arti-
ficially generated self-similar objects by applying some
predefined rules, for instance, the Cantor set, the von
Koch’s curve and snowflake, the Sierpinski carpet, etc.
(Peitgen et al., 2004), have exactly the same FD in
all scales. Such objects are characterized by an unique
FD and are known as monofractals. Conversely, a large
scale of (mainly natural) objects, for instance, a coast-
line, structure of a tree, venous, arterial or nervous
system, some vegetables (cauliflower, broccoli), even
trends in economy, structure of vocal sounds, music,
etc., exhibit some kind of self-similarity, but not in
strict sense, meaning these objects have different FD
at different scales. Such objects cannot be described
by an unique FD. Instead, the distribution of FDs over
different scales is used to provide even deeper insight
into the structure. This is a simple explanation of mul-
tifractal concept, as an extension of fractal geometry
(Mandelbrot, 1982). Since FDs of such objects dif-
fer at various scales, these objects are known as mul-
tifractals. The distribution of FDs can be expressed in
the form of so-called multifractal spectrum, which will
be described in Sec. 2.
The interdisciplinary nature of fractal geometry

and multifractals has found a broad spectrum of ap-
plications, for instance, in the classification of natu-
ral objects (Mandelbrot, 1982; Stanley, Meakin,
1988), in the analysis of nonlinear and chaotic physical
phenomena (Grassberger, 1983; Hentschel, Pro-
caccia, 1983), in the description of biology structures
(Buldyrey et al., 1994; Iannaccone, Khokha,
1996), in medicine (Sedivy, Mader, 1997; Vasilje-
vic et al., 2012; Reljin et al., 2015), in economics
(Falconer, 2003), even in arts (Bovill, 1996; Peit-
gen et al., 2004). Moreover, these techniques found
significant applications in signal and image analyses
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and processing: the reader can find many examples,
for instance, in (Vehel, Mignot, 1994; Vehel, 1996;
1998; Reljin et al., 2000).
Regarding the audio, fractal and multifractal anal-

yses were also used, mainly for speech analysis and
recognition, but also for music analysis and classifica-
tion. For instance, the paper (Sabanal, Nakagawa,
1996) considered fractal properties of vocal sounds
and results were applied to the speech recognition
model. Further, the authors of (Maragos, Potami-
anos, 1999; Pitsikalis, Maragos, 2009) applied the
fractal dimension of speech signals to their automatic
recognition and classification. The Higuchi fractal di-
mension (Higuchi, 1988), in combination with MFCC,
was used in (Ezeiza et al., 2011) in order to improve
the correct word rate for automatic speech recogni-
tion. The authors of (Krajewski et al., 2012) evalu-
ated fractal features, among other nonlinear dynamics
features, for speech based sleepiness detection, while
the authors of (Gonzales et al., 2012) explored the
fractal and multrifractal nature of speech signals from
two different Portuguese speech databases and found
that, in general, all analyzed signals revealed multi-
fractal behavior under a time frame analysis ranging
from 50 ms to 100 ms.
In (Hsu, Hsu, 1990), the authors suggested the

methodology for describing and characterizing mu-
sic pieces using fractal dimension. Their initial re-
sults were derived from some Bach’s and Mozart’s
music pieces and Swiss children’s songs. In the study
(Bigerelle, Iost, 2000) was shown that fractal di-
mension can be used to discriminate different mu-
sic genres. In the papers (Su, Wu, 2006; 2007) au-
thors found that sequences of musical notes exhibit
fractal nature, and demonstrated the applicability of
MF analysis to distinguish between different styles
of music. Music search and playlist generation based
on fractal dimensions of music were presented in the
paper (Hughes, Manaris, 2012). Also, the authors of
(Zlatintsi, Maragos 2013) proposed the use of mul-
tiscale fractal dimension for recognizing musical instru-
ments.
The main benefit of using MF in signal processing

is that this concept enables both local and global anal-
yses of an observed signal. Hence, using MF analysis
it is possible to find and extract details from the sig-
nal under consideration, which carries some hidden and
subtle information thus enabling the recognition, selec-
tion and classification of complex signals. For instance,
MF was applied to find clicks in heart sounds char-
acterizing pathological syndrome so-called the MVP
(mitral valve prolapse, or click-murmure syndrome),
as reported in (Gavrovska et al., 2013). Moreover,
it was shown that some MF parameters can be used
as characteristic features for discriminating malignant
from benign cases from appropriate medical signals, as
shown in (Reljin et al., 2008), or for identifying the

primary cancer from biopsy images of bone metastases
(Vasiljevic et al., 2012).
In music/sound analysis and classification partic-

ular attention should be addressed to the problem
of distinguishing and classifying performers (or music
groups) playing the same music piece(s) in the same
manner, using the same types of instruments, similar
vocals, and under the same arrangements. In this case,
performed music pieces are subjectively similar thus
making their recognition and classification very diffi-
cult even for musically skilled persons. This problem,
which may be of interest in forensic and/or copyright
issues, is the goal of our research. Since the MF anal-
ysis has been proven as an efficient tool for describing
signals and finding fine details and characteristic parts
within signals, we investigated the use of MF for re-
solving this problem. Although the MF analysis was
applied to some of audio related problems, to the best
of our knowledge this approach was not used for given
task of music performers classification. We found that
only a few MF parameters, which correspond to the
characteristic points within the MF spectrum, could
be used as features, thus enabling successful classifi-
cation of music performers. As a classification tool we
used support vector machines (SVM), while four-fold
cross-validation was used to determine optimal values
of the SVM hyperparameters and to evaluate the ac-
curacy of the proposed classifier.
The paper is organized as follows. Section 2 consid-

ers the basics of multifractal analysis. In Sec. 3 a con-
cept of proposed classifier based on MF parameters
as relevant features is presented. Section 4 describes
experimental setup for music performer classification
based on MF features and presents classification re-
sults derived on the dataset containing the same songs
performed by music group ABBA and by actors in the
movie Mamma Mia. Results are compared with those
derived on the same dataset by applying MFCC as
characteristic features and using the same SVM classi-
fiers with linear, polynomial and RBF kernel functions.
Concluding remarks are given in Sec. 5.

2. Basics of the multifractal analysis

Multifractal spectrum can be derived in several
ways, as reported in literature (Harte, 2001; Peit-
gen et al., 2004). The histogram method is very pop-
ular due to its simplicity and possibility to determine
MF spectrum directly from measured data (Chhabra,
Jensen, 1989; Vehel, 1998). Main steps for deriving
the MF spectrum using this method will be briefly ex-
plained as follows.
Signal is covered by non-overlapping boxes Bi of

side width ε. Within the box, a signal is characterized
by some attribute, called a measure, µ(Bi) (Vehel,
Mignot, 1994). Different measures may be used, for
instance, the maximum of the signal’s intensity, the
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minimum value, the sum of intensities, etc. (Vehel,
1998). It is common to assume normalized space, i.e.,
ε, µ ∈ [0, 1].
For audio signals, which are considered in this pa-

per, signal is time-dependent and boxes are represented
by time intervals (windows) of width ε. Among differ-
ent measures that can be used, we found that measure
maximum provided the best results for considered clas-
sification problem. For a particular time interval Bi

the coarse Hölder exponent αi is calculated as (Vehel,
Mignot, 1994):

αi =
log (µ(Bi))

log ε
. (1)

By using a sequence of time intervals B(k)
i , with de-

scending widths ε(k), k = 1, 2, . . ., i.e., ε(k) > ε(k+1),
andB(k)

i ⊃ B
(k+1)
i , the corresponding values of param-

eter αi will differ, but will approach to limit value α,
known as the Hölder exponent (Vehel, 1998). Due to
practical reasons, the value of α is usually estimated as
a slope of linear regression line in the log-log diagram:
log(µ(Bi)) vs. log(ε), for several values of ε (Su, Wu,
2006).
After estimating Hölder exponents for all signal

samples the α-representation of the signal is obtained
– each signal sample is characterized by its α value.
Since α is calculated from the measure µ around a par-
ticular sample of the signal, this parameter describes
local singularity (regularity) of the signal. For samples
where the signal is smooth (slow varying with respect
to neighbor samples) the value of α is small, while sam-
ples within regions with sudden changes are character-
ized by high values of α (Vehel, 1998). The Hölder
exponent has finite limits αmin and αmax. In the whole
signal, many samples can have the same value of α,
i.e., they can have the same local regularity. After es-
timating the Hölder exponents of all samples within
the observed signal, we find their distribution. All ob-
tained values of Hölder exponents can be considered
as the α-space. The continuous α-space is divided into
R values as follows:

αr = αmin + (r − 1)∆α, r = 1, 2, . . . , R, (2)

∆α = (αmax − αmin)/R, (3)

and the histogram of αr values is calculated: if the ac-
tual value of α falls within the subrange [αr, αr+1),
this value is replaced by αr. The number of subranges
R has to be determined empirically. Small value of R
behaves as low-frequency filtering: MF spectrum will
be smooth but with small resolution, which reduces
discriminative capabilities. As opposed to when using
high R value, more details can be extracted but spec-
trum becomes irregular (saw-toothed). A compromise
solution could be to choose R between 50 and 100.
In the next step, the α-space is covered by boxes

of width δ (δ < 1) and the number of boxes, Nδ(α),

containing given value of Hölder exponent, α = αr,
is counted. Furthermore, the Hausdorff dimension of
the distribution of α, also known as the multifractal
singularity spectrum (or simply, the MF spectrum), is
determined as (Vehel, 1998):

f(α) = − lim
δ→0

log(Nδ(α))

log δ
. (4)

In practice, similar to determining Hölder exponents,
the values of f(α) are estimated by a linear regression
in (log(δ), log(Nδ)) for several box sizes δ. The plot of
MF spectrum is usually parabola shaped, as shown in
Fig. 1, with finite values, αmin; αmax; fmin(α); fmax(α).

Fig. 1. Typical shape of MF spectrum.

Values of f(α) describe global regularity of the sig-
nal. Small values of f(α) correspond to rare events,
meaning that a small number of points in the origi-
nal space (amplitude-time space) is characterized by
this particular value of α. The opposite is true for high
values of f(α). By combining the pair (α, f(α)), both
local regularity (via α) and global behavior (via f(α))
can be described, thus permitting fine analysis and
classification of signals, both images (Vehel, 1998;
Reljin et al., 2000) and music (Su, Wu, 2006; 2007).

3. Music performer classifier based

on MF features

3.1. Creation of audio database

For given problem, distinguishing and classifying
music performers playing the same melodies in quite
similar manner, our initial assumption was that ir-
respective of subjective similarity, each performer or
music group has some characteristic (individual) fea-
tures. Since the MF analysis has been proven as a pow-
erful method for finding subtle details within signals
(Gavrovska et al., 2013) and for characterizing and
distinguishing different signals (Reljin et al., 2008;
Vasiljevic et al., 2012) we investigated the MF ap-
proach for resolving given problem. As examples we
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will observe the same 14 songs, listed in Table 1, per-
formed by famous Swedish group ABBA, producing
mega hits from 1974 to 1982 (Sheridan, 2012), and
by actors in the movieMamma Mia (released in 2008).
These songs are denoted here as ABBA and MOVIE.
These melodies were composed by the same composers
and arrangers (Benny Anderson and Björn Ulvaeus)
and were performed in a very similar way, being dif-
ficult for distinguishing even for musically educated
persons. We have created a database as follows.

Table 1. Songs considered for classification.

Pieces ABBA Title of the song Pieces MOVIE

1, 2 Dancing Queen 29, 30

3, 4 Does Your Mother Know 31, 32

5, 6 Gimme Gimme Gimme 33, 34

7, 8 I Have a Dream 35, 36

9, 10 Lay All Your Love on Me 37, 38

11, 12 Mamma Mia 39, 40

13, 14 Money Money Money 41, 42

15, 16 SOS 43, 44

17, 18 Super Trouper 45, 46

19, 20 Take a Chance on Me 47, 48

21, 22 Thank You for the Music 49, 50

23, 24 The Name of the Game 51, 52

25, 26 The Winner Takes It All 53, 54

27, 28 Voulez Vous 55, 56

Prior to further processing and classification, all the
songs are preprocessed. First, recordings are converted
from stereo to mono, and downsampled to 8 kHz, with
the Audacity software (Audacity, 2015). Although mu-
sic is characterized by wide bandwidth, and nowadays
the sampling frequency is usually 44.1 kHz, the reason
for using 8 kHz is based on several facts. In the paper
(Rein, Reisslein, 2006) was shown that sampling fre-
quency of 8 kHz is sufficient to identify classical mu-
sic compositions, although such music is characterized
by spectra rich in harmonics. Further, the authors of
(Jensen et al., 2009) derived deep quantitative anal-
ysis of a MFCC, as a common audio similarity mea-
sure. The authors have shown that if all songs have
the same sampling frequency of 8 kHz, the classifica-
tion accuracy decreased only by few percents compared
to when higher sampling frequency is used. Certainly,
extracting MFCCs from downsampled songs is compu-
tationally easier and cheaper, and since classification
accuracy is not noticeably degraded, authors suggested
the use of homogeneous music collection downsampled
to 8 kHz. This is of particular interest in cases when
songs in actual database do not have the same sam-
pling rate.
After downsampling, songs were normalized with

respect to their amplitudes. Each song from the con-

sidered audio collection has parts that repeat; parts
with the same melody but different lyrics – verses, and
parts with the same melody and the same lyrics – cho-
ruses. Hence, by selecting just these parts of the songs,
we obtain parts that are subjectively similar and have
all the necessary information for representing the ba-
sic music characteristics of the song (melodic line and
harmony), as well as characteristics of performers. By
following this assumption, we constructed two music
sequences per song (in the text we will call these se-
quences pieces): the first verse and chorus (denoted by
odd numbers 1–27 for ABBA and 29–55 for MOVIE),
and the second verse and chorus (denoted by even
numbers 2–28 and 30–56 for ABBA and MOVIE, re-
spectively). Each piece lasts about 40 seconds. This
way we constructed the music dataset with 28 pieces
per performer (music group ABBA and MOVIE), i.e.,
56 pieces in the whole dataset, as indicated by ordinal
numbers 1 to 56 in Table 1.
Next step in signal preprocessing is to divide each

music piece into short overlapping blocks called frames
as is common in audio analysis (Logan, 2000; Beren-
zweig et al., 2002;Barbedo, Lopez, 2007; Zlatinsi,
Maragos, 2013). The reason for using short se-
quences, of length 20–50 ms, is to assure the station-
arity of the signal. Namely, as shown in (Rabiner,
Juang, 1993, p. 17), speech signal is almost station-
ary over a sufficiently short period of time (between 5
and 100 ms), and similar conclusion is derived for mu-
sic instruments (Zlatintsi, Maragos, 2013). In our
study, we used frames of 32 ms of length overlapped
by 50%. In order to reduce the discontinuities at the
edges of the frames, and thus to reduce the spectral
leakage, the Hamming tapered window is applied.

3.2. MF feature extraction

For each particular frame within our dataset, we es-
timated its MF spectrum using custom developed soft-
ware based on histogram method (Reljin et al., 2000).
Then we determined the MF spectra for every music
piece (28 of ABBA and 28 of MOVIE) as a mean of MF
spectra of their frames. The two illustrative examples
are depicted in Figs. 2–5. Figures 2 and 3 respectively
relate to first and second pieces of song Dancing Queen
(pieces denoted by numerals 1 and 2 for ABBA, and
by 29 and 30 for MOVIE, according to Table 1), while
Figs. 4 and 5 relate to song Does Your Mother Know
(pieces 3 and 4 for ABBA, and 31 and 32 for MOVIE).
Characteristic points within MF spectra plots: the first
point (F), the last point (L), and the point of maxi-
mum (M), are denoted, and corresponding values of
α and f(α) are inserted into Figs. 2–5. Although MF
spectra are visually similar, the three significant con-
clusions may be derived:

1. For the same music group playing the same song,
for instance Dancing Queen, Figs. 2 and 3, the first
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Fig. 2. MF spectra of the first pieces of the song Dancing
Queen: 1 (ABBA) and 29 (MOVIE).

Fig. 3. MF spectra of the second pieces of the song Dancing
Queen: 2 (ABBA) and 30 (MOVIE).

Fig. 4. MF spectra of the first pieces of song Does Your
Mother Know: 3 (ABBA) and 31 (MOVIE).

Fig. 5. MF spectra of second pieces of song Does Your
Mother Know: 4 (ABBA) and 32 (MOVIE).

and second pieces (denoted as 1–2 for ABBA; and
29–30 for MOVIE) have very similar values (α,
f(α)) at characteristic points F, M and L.

2. For the same song performed by different groups,
characteristic values (α, f(α)) differ, as noted in
Figs. 2 and 3. By comparing characteristic values
for pieces 1 and 29; and 2 and 30, we can note that
although differences are not so intensive, they can
be used for classification of music performers.

3. For different songs performed by the same group,
characteristic values (α, f(α)) differ, as can be
noted when comparing corresponding values for
pieces 1 and 3, and 2 and 4 (ABBA); and 29
and 31, 30 and 32 (MOVIE).

Similar conclusions can be derived for all considered
songs in our dataset.

3.3. Feature vectors

Based on conclusions 1 to 3 from previous section,
we proposed the use of MF parameters: values of α
and f(α) describing characteristic points as compo-
nents of feature vectors. We explored different com-
binations of characteristic points from MF spectra:
(i) only single points (F, M or L), (ii) combinations
of two points (F+M, F+L, M+L), and (iii) all three
points (F+M+L). Hence, obtained feature vectors as-
sociated to each of music pieces contain 2, 4 and 6
components for cases (i), (ii) and (iii), respectively.
The proposed method for music classification us-

ing MF features is compared with method that uses
MFCCs as characteristic features. To this end we cal-
culated MFCCs for the same frames of all 56 music
pieces, using publicly available software the Auditory
toolbox (Slaney, 1998). By finding MFCCs for the
whole dataset, we selected their dominant components
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supporting more than 98% of signal energy (in our case
we selected first 13 components).

3.4. Classification and performance evaluation

In this study we used support vector machines as
a classifier. This method was originally developed for
binary (two-class) problem (Vapnik, 1998) and later
was extended to multiclass problems as well (Hsu, Lin,
2002). The SVMs are widely and successfully used in
many classification problems, including the music in-
formation retrieval. Moreover, as noted in (Rosner
et al., 2014), the SVM algorithm is even better choice
for music genre classification than, for instance, a very
popular k-nearest neighbor (k-NN) method. The goal
of SVMs is to construct a hyperplane in the space of
transformed input vectors, which will separate observa-
tions from different classes such that the minimal dis-
tance between observations and the separation hyper-
plane is maximized (Kecman, 2001; Bishop, 2006).
We used SVMs with different kernels: linear, polyno-
mial and radial basis function (RBF) (Kecman, 2001;
Chang, Lin, 2011).
The performance of the classification model can be

measured in several ways. The confusion matrix is fre-
quently used, and for the two-class problem has the
form as given in Table 2 (Tan et al., 2005). Classes are
denoted as +1 and −1: in our case classes correspond
to music pieces ABBA and MOVIE. The entries of the
confusion matrix have the following meaning: the true
positive (TP) value denotes the number of music pieces
belonging to the class +1 which are correctly classified
as+1, while false negative (FN) is the number of pieces
from class +1 which are incorrectly predicted as class
−1. Similarly, false positive (FP) represents the num-
ber of pieces from the class −1 which are incorrectly
classified, and true negative (TN) is the number of cor-
rectly classified pieces from the class −1.

Table 2. Confusion matrix for our two-class problem.

Predicted
class +1

Predicted
class −1

True class +1

(ABBA)
True Positive (TP) False Negative (FN)

True class −1

(MOVIE)
False Positive (FP) True Negative (TN)

By combining entries from the confusion matrix,
several performance measures can be derived (Tan
et al., 2005). These measures are Overall Accuracy
(OA) and F-measure (Tan et al., 2005), which are de-
fined as:

OA =
TP + TN

TP + TN + FP + FN
, (5)

F -measure =
2 · TP

2 · TP + FP + FN
. (6)

These two measures are compact, describing classifier’s
performance with only one value, thus being of high
practical use.
To determine the optimal values of the SVM hyper-

parameters as well as to evaluate the classifier’s perfor-
mance, we utilized a four-fold cross validation method
(Bishop, 2006), recommended for small data sets.

4. Experimental results and discussion

Based on previous considerations we developed ex-
perimental setup for music performer classification, as
depicted in Fig. 6. For every music piece from our
dataset we created two groups of feature vectors: based
on MF parameters and on MFCC. Feature vectors are
determined from MF spectra using custom developed
software based on histogram method (Reljin et al.,
2000), while MFCCs are calculated following the pro-
cedure in (Slaney, 1998).

Fig. 6. Block scheme of experimental setup used for music
performer classification.

As already noted, feature vectors created from MF
analysis consist of pairs (α, f(α)) from characteristic
points in MF spectra, F, M, L and their combinations
with two points (F+M, M+L, or F+L), and all three
points (F+M+L). This way MF feature vectors are
very low-dimensional, containing n = 2, 4 and 6 com-
ponents, for single points, combination of two points,
and all three points, respectively. In Fig. 7, plots of
pairs (α, f(α)) associated to characteristic points: F,
M and L of MF spectra, for the whole dataset of 56
music pieces (28 ABBA and 28 MOVIE), are depicted.
Points related to ABBA are presented by circles, while
triangles are related to MOVIE pieces.
Using feature vectors based on the described MF

and MFCC features, the classification of music groups
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Fig. 7. Plots of characteristic points (α, f(α)) of MF spectra
for the music dataset with 56 pieces: 28 pieces denoted as
ABBA and 28 denoted as MOVIE in Table 1. Characteristic
points: the first point (F), points of maxima (M), and the
last point (L), are depicted in upper, middle and lower

plots, respectively.

from our dataset was performed by applying the sup-
port vector machines algorithms embedded in an in-
tegrated software LIBSVM (Chang, Lin, 2011). We
used linear SVMs and SVMs with polynomial and RBF
kernel functions (Kecman, 2001; Bishop, 2006). To
assure fair classification and comparison, the four-fold
cross-validation was applied, enabling also the determi-
nation of optimal values of relevant SVM parameters
for the best possible classification.
Classification results, expressed by Overall Accu-

racy and F-measure (given by Eqs. (5) and (6)), are
presented in Table 3. Note that the MF feature vec-
tors, labelled in Table 3 as MF type-n, are low-
dimensional, containing only n = 2, 4 or 6 compo-
nents, respectively, where type relates to character-
istic point(s): single point (F, M, or L), combination

Table 3. Classification results for different feature vectors and different SVMs.

Feature vector
Linear SVMs Polynomial SVMs RBF SVMs

OA [%] F-meas [%] OA [%] F-meas [%] OA [%] F-meas [%]

MF F-2 73.21 71.96 76.79 79.57 69.64 74.32

MF M-2 55.36 59.36 53.57 65.64 55.36 61.19

MF L-2 91.07 92.07 96.43 97.13 94.64 94.92

MF FM-4 91.07 92.59 92.86 93.10 92.86 91.59

MF ML-4 92.86 93.90 96.43 97.13 96.43 96.48

MF FL-4 98.21 97.87 98.21 97.87 98.21 98.41

MF FLM-6 98.21 97.87 98.21 98.46 98.21 98.18

MFCC-13 71.43 73.56 71.43 76.28 71.43 76.50

of two points (FM, ML, or FL), and all three points
(FML). Since MFCC method is widely used and well
described in literature we only note here that first 13
dominant components, supporting more than 98% of
signal energy, are used for feature vectors, denoted in
Table 3 as MFCC-13.
As can be noted from results presented in Table 3,

our general observation is that MF features provide
better classification than MFCC. The best classifica-
tion result is obtained with MF-FLM feature vector
with polynomial SVM (row 7 in Table 3): obtained re-
sults for OA and F-measure were 98.21% and 98.46%,
respectively, and very close were results for the MF-
FL (row 6). On the other hand, the best results with
MFCCs were 71.43% and 76.50%, respectively for the
OA and F-measure (last row, for RBF SVM).
Note that the single point L (corresponding to high

local changes), having only 2 components in FVs, ex-
hibits (in general) the most relevant discriminative ca-
pabilities with F-measure and Overall Accuracy in the
range between 91.07% and 97.13%, depending on the
SVM used, as shown in third row in Table 3. The F
point (first row) achieves the second best result, while
the M point (second row) is the worst case. By com-
bining the two characteristic MF points, classification
results are improved. For instance, even M with F pro-
duces slightly better results than those of L point alone
(row 4, case with linear SVM), while combining M with
L (row 5, for all three SVMs) classification capabilities
are improved significantly, being even better in com-
parison to only L point.
These results can be explained by observing plots

of (α, f(α)) pairs of characteristic points, as depicted
in Fig. 7. As evident from plots in Fig. 7, points char-
acterizing music pieces ABBA and MOVIE are clus-
tered in some way, thus permitting their distinction
and classification. The best discriminative behavior is
that of last points (lowest plot in Fig. 7) – the overlap-
ping of classes is minimal for the case of L points for
ABBA and MOVIE, while for the M points (middle
plot) classes ABBA and MOVIE are very interweaved
thus being difficult to separate.
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5. Conclusions

In this paper the use of MF features for music per-
formers classification is proposed. Our study indicates
that features obtained from characteristic points of
multifractal spectra may be promising for audio classif-
cation tasks, and are more suitable for the classification
of different music performers playing the same songs
than well-adopted mel-frequency cepstral coeffcients.
By considering the same songs performed by different
music groups (14 songs from the music group ABBA
and the same songs performed by the cast of the movie
Mamma Mia) in quite similar way, the F-measure and
the Overal Accuracy were about 98% (or slightly bet-
ter, depending on the SVM used) with MF-based fea-
tures, which were notably better than the best result
with MFCC features (less than 77%). Moreover, by
using low-dimensional feature vectors with only two
components (containing values of α and f(α) from last
points in MF spectra), very good classification was ob-
tained: Fmeasure and Overall Accuracy were between
91% and 97% (depending on the SVM used). These
results could be explained by the fact that multifrac-
tal analysis captures both local regularity and global
behavior of the observed signal, permitting better dis-
tinguishing of subtle details within signals.
The proposed methodology was evaluated on a lim-

ited dataset with 28 songs. A part of our work in
progress is the validation of the proposed method us-
ing MF features on larger audio datasets. In addition,
we plan to compute the MF spectra over shorter mu-
sic pieces (for instance, 5 to 10 seconds, instead of the
currently used 40 second pieces), and explore if perfor-
mance could be further improved. While the principal
aim of the study is music performer classification, it
can be used as a case study for a much broader prob-
lem of utilizing features based on multifractal analysis
for various kinds of music (or audio in general) classi-
fication tasks.
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(2000), Multifractal analysis of gray-scale images, Pro-
ceedings of 10th IEEE Mediterranean Electrotechnical
Conference (MELECON-2000), pp. 490–493, Lemesos,
Cyprus.

48. Reljin I., Reljin B., Avramov-Ivic M., Jovano-
vic D., Plavec G., Petrovic S., Bogdanovic G.
(2008), Multifractal analysis of the UV/VIS spectra of
malignant ascites: Confirmation of the diagnostic va-
lidity of a clinically evaluated spectral analysis, Physica
A: Statistical Mechanics and its Applications, 387, 14,
3563–3573.

49. Reljin N., Reyes B.A., Chon K.H. (2015), Tidal
volume estimation using the blanket fractal dimension
of the tracheal sounds acquired by smartphone, Sensors,
15, 5, 9773–9790.

50. Rosner A., Schuller B., Kostek B. (2014), Classi-
fication of music genres based on music separation into
harmonic and drum components, Archives of Acous-
tics, 39, 4, 629–638.

51. Sabanal S., Nakagawa M. (1996), The fractal prop-
erties of vocal sounds and their application in the
speech recognition model, Chaos, Solitons and Fractals,
7, 11, 1825–1843.

52. Sedivy R., Mader R. (1997), Fractals, chaos and can-
cer: Do they coincide?, Cancer Investigation, 15, 6,
601–607.

53. Schedl M., Flexer A., Urbano J. (2013), The ne-
glected user in music information retrieval research,
Journal of Intelligent Information Systems, 41, 523–
539.

54. Sheridan S. (2012), The complete ABBA, 2nd Ed, Ti-
tan Books, London, UK.

55. Slaney M. (1998), Auditory toolbox, version 2, Tech-
nical report 1998-010, Interval Research Corporation.

56. Stanley H.E., Meakin P. (1988), Multifractal phe-
nomena in physics and chemistry, Nature, 335, 405–
409.

57. Stevens S.S., Volkmann J., Newman E.B. (1937),
A scale for the measurement of the psychological ma-

gnitude pitch, Journal of the Acoustical Society of
America, 8, 3, 185–190.

58. Su Z.-Y., Wu T. (2006), Multifractal analyses of mu-
sic sequences, Physica D: Nonlinear Phenomena, 221,
2, 188–194.

59. Su Z.-Y., Wu T. (2007), Music walk, fractal geome-
try in music, Physica A: Statistical Mechanics and its
Applications, 380, 418–428.

60. Tan P.-N., Steinbach M., Kumar V. (2005), Intro-
duction to data mining, Addison-Wesley, Upper Saddle
River, NJ, USA.

61. Tsai W.-H., Wang H.-M. (2006), Automatic singer
recognition of popular music recordings via estimation
and modeling of solo vocal signals, IEEE Transactions
on Audio, Speech, and Language Processing, 14, 1,
330–341.

62. Tzanetakis G., Cook P. (2002), Musical genre
classification of audio signals, IEEE Transactions on
Speech and Audio Processing, 10, 5, 293–302.

63. Vapnik V.N. (1998), Statistical learning theory, John
Wiley & Sons, New York.

64. Vasiljevic J., Reljin B., Sopta J., Mijucic V.,
Tulic G., Reljin I. (2012), Application of multifractal
analysis on microscopic images in the classification of
metastatic bone disease, Biomedical Microdevices, 14,
3, 541–548.
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