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We propose a numerical surface integral method to study complex acoustic systems, for interior and
exterior problems. The method is based on a parametric representation in terms of the arc’s lengths in
curvilinear orthogonal coordinates. With this method, any geometry that involves quadric or higher order
surfaces, irregular objects or even randomly rough surfaces can be considered. In order to validate the
method, the modes in cubic, spherical and cylindrical cavities are calculated and compared to analytical
results, which produced very good agreement. In addition, as examples, we calculated the scattering in
the far field and the near field by an acoustic sphere and a cylindrical structure with a rough cross-section.
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1. Introduction

Application of the boundary element method
(BEM) based on surface integral equations (SIE) to
determine the scattered fields in two-dimensional (2D)
and three-dimensional (3D) systems, has been widely
used in optics, the propagation of seismic waves, and
acoustics in the past (Pointer et al., 1998; Pedersen
et al., 1994; Iturarán-Viveros et al., 2007;Burton,
Miller, 1971; Ursell, 1973; Piscoya, Ochmann,
2014; Zaman, 2000; Tadeu et al., 2001; Maradudin
et al., 1990; Mendoza-Suárez, Méndez, 1997; Li,
Huang, 2011).
In acoustics, the 3D wave equation implies a scalar

Helmholtz equation when considering the potential for
the displacement vector field or the pressure as ar-
guments. Hence, the wave equation in the stationary
regime is the same as in the 2D case, but with im-
portant differences, since the Green’s function and its
normal derivative present higher-order singularities.
This fact complicates the numerical solution when

considering a boundary element method (BEM), which
in general implies the expansion of integrands in curvi-
linear patches. In the application of BEM to the 3D

case, researchers have proposed a number of variants
to the solution of the integral equations associated
with the Helmholtz equation, see Refs. (Zaman, 2000;
Tadeu et al., 2001;Chowdhury et al., 2004;Kirkup,
1998), and references therein.
In this work we propose a solution of the SIE using

a parametric representation on the surface integrals in
terms of the arc’s length in a curvilinear system. This
formulation involves in a natural way the orthonormal
basis n̂, t̂u, t̂v, which are the normal and tangent vec-
tors in the coordinate directions (u, v) of a surface.
It is worth observing that although the formalism

proposed in this work seems to be applicable only to
surfaces with certain symmetric geometries, such as
spheres, cylinders or parametric surfaces in general,
this is just a particular class of problems that can be
treated. As we will demonstrate below, to apply the
method to a given system it would be sufficient if the
vectorial quantities, such as the normal and the curva-
ture vectors, can be associated with each point on the
surface, at least numerically. Consequently the formal-
ism can also be applied to irregular surfaces or surfaces
that do not necessarily have an analytical representa-
tion.
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When reviewing the published work concerned with
the numerical treatment of integrands in the vicinity
of the singularities of the Green’s function, and its nor-
mal derivative, we can see that this information is not
clearly accessible in the literature, except for a few
papers (Jun et al., 1985; Huacasi et al., 2003). In
this study we propose the use of a Taylor series ex-
pansion to treat the singularities of diagonal elements,
given the explicit procedure and matrix elements. This
method has proven to give excellent results in the elec-
tromagnetic case, where surface integrals with higher-
order singularities are present (Tong, Chew, 2010;
Hanninen et al., 2006).
The proposed numerical method is indeed a BEM,

since it implies the solution of integral equations and
sampling of surfaces. In contrast to other methods
that expand into a functional basis of the field and
its normal derivative, our method can determine these
functions directly. This is an important characteris-
tic, given that the precision of a BEM is based on
the use of the functional base which, in turn, depends
on selecting the appropriate base. For irregular sur-
faces, such as random rough surfaces or those of frac-
tal kind, it is difficult to choose an adequate basis.
The proposed method does not depend on this kind
of choice and is useful for treating both regular and
irregular surfaces. Perhaps the most important fea-
ture of this method is its versatility for solving scat-
tering problems (exterior problems), resonant modes
in cavities (interior problems), and calculations of the
band structures in infinite periodic systems like pho-
tonic crystals without demanding complex modifica-
tions. It is not common to find such a variety of ap-
plications with any other BEM method. Finally, the
proposed method is a generalization to 3D of the exten-
sive earlier work that we have published regarding the
application of the integral method to rigorously solve
problems in 2D (Mendoza-Suárez et al., 2004; 2006;
2007; 2011; Pérez-Aguilar et al., 2013; Mendoza-
Suárez, Pérez-Aguilar, 2015).

2. Theory

Let us consider Navier’s equation for the propaga-
tion of acoustic waves (Morse, Ingard, 1968)

∇(∇ · u) + k2u = −f, (1)

where u represents the displacement vector of the point
in the medium defined by the position vector r; assum-
ing that u oscillates at a frequency ω, and k = ω/cl is
the magnitude of the wave vector, and cl the longitu-
dinal speed of the wave in the acoustic medium. The
external force f acts as a source for the perturbation.
In order to develop the integral formalism we assume
the case when f = 0.

Taking the curl of Eq. (1)

k2∇× u = −∇× [∇(∇ · u)] = 0. (2)

This implies that

u = ∇ψ. (3)

Thus, Navier’s equation is satisfied if the potential ψ
satisfies the Helmholtz equation

∇2ψ + k2ψ = 0. (4)

By considering a point source, placed at r′

∇2G (r, r′) + k2G (r, r′) = −δ (r− r′), (5)

we can demonstrate that a solution to this equation
will be

G (r, r′) =
eikR

4πR
, (6)

which is known as the Green’s function for the 3D
Helmholtz equation.
Using the 2nd Green’s identity with Eqs. (5) and

(4), we can obtain∫
S′

[
G (r, r′)

∂ψ (r′)
∂n′ − ψ (r′)

∂G (r, r′)
∂n′

]
dS′

= ψ(r)θ(r)− ψinc(r), (7)

with

θ (r′) =

{
1 if r′ ∈ V2

0 if r′ /∈ V2,
(8)

where ψinc(r) represents an incident field for this ex-
terior problem, R is the magnitude of R = r− r′ with

Fig. 1. Curvilinear system on a two-region
geometry (interior and exterior problems).
The observer’s position is indicated by r,
while r′ denotes the source position in the
case of the differential equation, and the
point on the surface for the integral surface
equation. This vector spans the surface un-

der integration.



J.A. Guel-Tapia et al. – Acoustic Scattering of 3D Complex Systems Having Random Rough Surfaces. . . 463

r being the observer’s position, and r′ the integration
vector that spans the surface S′ (see Fig. 1), and

∂G(r, r′)
∂n′ = n̂ · ∇′G (r, r′) ,

= γ (r, r′) n̂ ·R, (9)

where n̂ is the outward normal to the surface at r′, and

γ (r, r′) =
1

4π

(
R−3 − ikR−2

)
eikR. (10)

The potential and its normal derivative satisfy the
boundary conditions on an interface

ψ(1) = ψ(2),
1

ρ1

∂ψ(1)

∂n′ =
1

ρ2

∂ψ(2)

∂n′ , (11)

where ρ1 and ρ2 represent the densities of the corre-
sponding media. Sometimes, the conditions are given
as (Burton, Miller, 1971)

ψ (r′) = f (r′) , r′ ∈ S′, (Dirichlet), (12)

∂ψ

∂n′ = g (r′) , r′ ∈ S′, (Neumann), (13)

where f (r′) and g (r′) are arbitrary regular functions
that define the corresponding boundary condition. To
guarantee an outgoing scattered field, the Sommerfeld
radiation condition,

lim
r→∞

r

(
∂ψ

∂r
− ikψ

)
= 0, (14)

must be satisfied.

2.1. Integral equations: exterior and interior problems

Let us consider a closed surface S′ that encloses
the volume V1, with an external incident scalar field
impinging on it ψinc(r) in region V2 as shown in Fig. 1.
By assuming that the normal points outward to S′ and
considering the convention that the surface integral is
positive if the normal points outward and negative in
the opposite case.
If we divide the surface into small surface elements

Sn, which are rectangular regions, the integral equa-
tion for this medium will be

N∑
n=1

∫
Sn

G(2) (r, r′)
∂ψ(2) (r′)
∂n′ dS′

−
N∑

n=1

∫
Sn

ψ(2) (r′)
∂G(2) (r, r′)

∂n′ dS′

= ψ(2)(r)− ψinc(r). (15)

In this equation, Green’s function and its normal
derivative are known and the potential ψ (r′), and its
normal derivative ∂ψ (r′) /∂n′ constitute the functions

to be determined. We have called these functions the
source functions.
A similar equation holds for the case of an interior

problem where V1 is the region enclosed by the surface
S′ (normal outward) as

N∑
n=1

∫
Sn

G(1) (r, r′)
∂ψ(1) (r′)
∂n′ dS′

−
N∑

n=1

∫
Sn

ψ(1) (r′)
∂G(1) (r, r′)

∂n′ dS′ = 0. (16)

We have added the upper index in parentheses to
the functions in order to distinguish the problem when
considering the properties of the acoustic medium in
each case: ρ1, k1, and ρ2, k2, respectively.
If we assume that the surface elements are suffi-

ciently small to guarantee that the potential and its
normal derivative are approximately constant across
Sn, then, the unknown functions can be taken out of
the integrals to obtain

−
N∑

n=1

Φ(2)
n

∫
Sn

G(2) (r, r′) dS′

+
N∑

n=1

ψ(2)
n

∫
Sn

∂G(2) (r, r′)
∂n′ dS′ ≈ ψinc(r), (17)

in the case of an exterior problem or

N∑
n=1

Φ(1)
n

∫
Sn

G(1) (r, r′) dS′

−
N∑

n=1

ψ(1)
n

∫
Sn

∂G(1) (r, r′)
∂n′ dS′ ≈ 0 (18)

for the case of an interior problem. In both cases (j =
1, 2)

ψ(j)
n = ψ(j) (r′)

∣∣∣
r′=rn

, (19)

Φ(j)
n =

∂ψ(j) (r′)
∂n′

∣∣∣∣
r′=rn

, (20)

where rn is a vector that points the centroid of Sn.
Integral equations for the source functions are ob-

tained by letting r = r′m + ζn̂m, where ζ is a positive
infinitesimal and m = 1, 2, ..., N .
Let us consider a parametric representation of the

integrals that appear in Eqs. (17) and (18) in terms
of the arc’s lengths su, and sv (see Appendix). The
parametrization can be expressed by the vector func-
tion, class C2, r′ = r′(su, sv). These arc’s lengths cor-
respond to the orthogonal directions of the curvilinear
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system (orthogonal) proposed to represent the surfaces
in question. Because of this fact the small surface ele-
ments, Sn, have a rectangular form, so dS′ = dsudsv.
Such integrals define matrix elements, Lmn and Nmn,
expressed as

Lmn = lim
ζ→0+

∫
Sn

G (r, r′)|r=r′m+ζn̂m dS
′

= lim
ζ→0+

svn+∆sv
2∫

svn−∆sv
2

sun+∆su
2∫

sun−∆su
2

· G (r, r′)|r=r′m+ζn̂m dsu dsv, (21)

Nmn = lim
ζ→0+

∫
Sn

γ (r, r′) n̂ (r′) · (r− r′)|r=r′m+ζn̂m dS
′

= lim
ζ→0+

svn+∆sv
2∫

svn−∆sv
2

sun+∆su
2∫

sun−∆su
2

γ (r, r′) n̂ (r′)

· (r− r′)|r=r′m+ζn̂m dsu dsv. (22)

The integration region involved in Eqs. (21) and (22) is
shown in Fig. 2. The region is rectangular with a center
point (sun , svn), and small length sides ∆su and ∆sv.

Fig. 2. Integration region involved
in Eqs. (21) and (22).

In the case that m 6= n, the integrands possess
no singularities for sun and svn within the range of
integration. We can therefore approximate Lmn and
Nmn by

Lmn ≈ ∆s2

4π

eikRmn

Rmn
, (23)

Nmn ≈ ∆s2

4π

eikRmn

Rmn

(
− 1

R2
mn

+
ik

Rmn

)
n̂n ·Rmn, (24)

where the vectorRmn is defined byRmn = rm−rn, its
magnitude by Rmn = |rm − rn| and we have assumed
that ∆su = ∆sv = ∆s for the sake of simplicity.
In evaluating the diagonal matrix elements, Lnn

and Nnn, we have to take into account explicitly the

singularities in the integrands of Eqs. (21) and (22) for
coinciding arguments. Making the change of variables
η = su − sun , and ξ = sv − svn leads to

Lnn = lim
ζ→0+

∆sv
2∫

−∆sv
2

∆su
2∫

−∆su
2

G (r, r′)|r=r′n+ζn̂n dη dξ, (25)

Nnn = lim
ζ→0+

∆sv
2∫

−∆sv
2

∆su
2∫

−∆su
2

γ (r, r′) n̂ (r′)

· (r− r′)|r=r′n+ζn̂n dη dξ. (26)

Note that the variables η and ξ are small, thus the
integrands can be expanded using the Taylor’s power
series.
Let us consider the position vector r′ that denotes

a point on the surface S′

r′ (su, sv) = r′ (η + sun , ξ + svn)

= r′n +
∂r′

∂η

∣∣∣∣
η=0,ξ=0

η

+
∂r′

∂ξ

∣∣∣∣
η=0,ξ=0

ξ +
1

2

∂2r′

∂η2

∣∣∣∣
η=0,ξ=0

η2

+
1

2

∂2r′

∂ξ2

∣∣∣∣
η=0,ξ=0

ξ2 +
1

2

∂2r′

∂η∂ξ

∣∣∣∣
η=0,ξ=0

ηξ

+
1

2

∂2r′

∂ξ∂η

∣∣∣∣
η=0,ξ=0

ξη + ..., (27)

expanded in a Taylor’s series around the point r′n.
Because ∂r′/∂η|η=0,ξ=0 = ∂r′/∂su|sun ,svn

and
∂r′/∂ξ|η=0,ξ=0 = ∂r′/∂sv|sun ,svn

, we can identify
from the differential geometry, the tangent vectors to
the surface S′,

t̂un = t̂u
∣∣∣
sun ,svn

=
∂r′

∂su

∣∣∣∣
sun ,svn

=
∂r′

∂η

∣∣∣∣
η=0,ξ=0

, (28)

t̂vn = t̂v
∣∣∣
sun ,svn

=
∂r′

∂sv

∣∣∣∣
sun ,svn

=
∂r′

∂ξ

∣∣∣∣
η=0,ξ=0

, (29)

and the curvature vectors, respectively

t′un
=

∂2r′

∂s2u

∣∣∣∣
sun ,svn

=
∂2r′

∂η2

∣∣∣∣
η=0,ξ=0

, (30)

t′vn
=

∂2r′

∂s2v

∣∣∣∣
sun ,svn

=
∂2r′

∂ξ2

∣∣∣∣
η=0,ξ=0

, (31)

which in general are not unitary. These vectors are
illustrated in Fig. 3 for a spherical surface.
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Fig. 3. Basis curvilinear vectors on a spherical
parametric surface and their first derivatives.

We will define by shorthand notation, the vectors

t′uvn
=

∂2r′

∂su∂sv

∣∣∣∣
sun ,svn

=
∂2r′

∂η∂ξ

∣∣∣∣
η=0,ξ=0

, (32)

t′vun
=

∂2r′

∂sv∂su

∣∣∣∣
sun ,svn

=
∂2r′

∂ξ∂η

∣∣∣∣
η=0,ξ=0

. (33)

Then, we can express the Eq. (27) to a first-order ap-
proximation

r′ ≈ r′n + t̂unη + t̂vnξ + ... (34)

In this way, the vector

R = r− r′ ≈ ζn̂n − ηt̂un − ξt̂vn , (35)

where the tangent vectors t̂un , t̂vn , and the normal n̂n
constitute a right hand set orthonormal basis. With
these considerations, the magnitude of this vector, R,
is given by

R ≈
(
ζ2 + η2 + ξ2

)1/2
. (36)

If we now consider the expansion of the tangent
vectors around rn up to first order

t̂u = t̂un + t′un
η + t′uvnξ + ..., (37)

t̂v = t̂vn + t′vn
ξ + t′vun

η + ..., (38)

the normal vector can be expressed to a first order
approximation as

n̂ = t̂u × t̂v (39)

≈ (1− τuvη − τvuξ) n̂n + (−τnuη + τunξ) t̂un

+(−τnvξ + τunη) t̂vn , (40)

where the factors τij , with i, j = u, v, n have been de-
fined in the Appendix. It is worth noticing that these
factors, which involve dot products of basis vectors and
their first derivatives, must be evaluated at point r′n.

With these results, we can calculate the product

n̂·R ≈ ζ−ζτuvη−ζτvuξ−τunηξ+τnuη2+τnvξ2, (41)

that appears in one of the integrands.
Now, let us consider Taylor’s expansion of the ex-

ponential function present in Green’s function

G(R) =
1

4π

exp(ikR)

R
=

1

4π

∞∑
m=0

(ik)m

m!
Rm−1. (42)

In a similar fashion,

γ(R) =
1

4π

∞∑
m=0

1−m

m!
(ik)mRm−3. (43)

With these results, the integrals that constitute the
diagonal matrix elements, m = n, can be calculated
directly, obtaining

Lnn ≈ ∆s

4π

[
2 ln

(
1 +

√
2

1−
√
2

)
+ ik2∆s

]
, (44)

Nnn ≈ 1

2
+
∆s

4π
(τnu+τnv)

[
ln

(
1+

√
2

1−
√
2

)
+
ik3

3
∆s

]
. (45)

The matrix elements were expressed up to quadratic
terms of the small parameter ∆s and the factors
τnu and τnv, which depend on the curvature vectors
(see Appendix) given by n̂n · ∂2r′/∂s2u

∣∣
sun ,svn

and

n̂n · ∂2r′/∂s2v
∣∣
sun ,svn

, respectively. The Eqs. (23), (24)
and (44), (45) give the matrix elements for any choice
of the indices m and n.

3. Resonant modes in cubic
and spherical cavities

To validate the method, let us consider a couple of
problems that involve two different cavities with two
types of surfaces that imply different types of boundary
conditions. One condition is for perfectly soft surfaces
and the other for perfectly hard surfaces. In both cases,
we can use Eq. (18), to obtain a homogeneous algebraic
linear system

N∑
n=1

L(1)
mnΦ

(1)
n −

N∑
n=1

N (1)
mnψ

(1)
n = 0. (46)

In the case of some regular surfaces, the curvilin-
ear coordinates to be used are well-known, but it is
important to mention that although an irregular sur-
face cannot be modeled with curvilinear coordinates
explicitly, the construction of orthonormal vector tri-
ads at each point of the surface is completely possible.
An important fact when we consider a small vicinity on
the surface is that this is approximately plane (see the
schematic construction in Fig. 2). Therefore, even in
the case of irregular surfaces, the proposed formalism
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does not lose its applicability, and the most relevant
feature relies on the form of the factors τnu and τnv
in the matrix elements given by Eq. (45). Let us recall
that, for example, according to Eqs. (82) and (84) of
Appendix,

τnu = n̂n · t′un

=

(
∂r′

∂su

∣∣∣∣
sun ,svn

× ∂r′

∂sv

∣∣∣∣
sun ,svn

)
· ∂

2r′

∂s2u

∣∣∣∣
sun ,svn

, (47)

which gives us a relation between the curvilinear vec-
tors of the basis that can be defined at each point,
even in the case of irregular surfaces. When consider-
ing an irregular surface, we necessarily know a number
of points that are sufficient to represent such a sur-
face, or perhaps we could use some computational al-
gorithm to generate the surface in such a way that it
is always possible to visualize it in 3D. We can assume
that in some way we know the Cartesian coordinates of
every point; so, we can apply a proper numerical pro-
cedure to such irregular geometry in order to define
small surface elements Sn (assumed to be plane) and
choose two mutually-orthogonal directions denoted by
the directions su and sv. A differential of arc in each
direction would be equal to the magnitude of the differ-
ential change of dr′ in each one of these directions. As
a result, ∂r′/∂su|sun ,svn

and ∂r′/∂sv|sun ,svn
are per-

pendicular unitary vectors. The vector r′ can be rep-
resented in a parametric form by means of the Carte-
sian components, x′(su, sv), y′(su, sv), z′(su, sv). This
is useful since, for example, ∂r′/∂su can be calculated
approximately with the simple formula ∂r′/∂su ≈
∆r′/∆su = (∆x′/∆su,∆y

′/∆su,∆z
′/∆su), where in

particular ∆x′/∆su ≈ ∆x′/
√

∆x′2 +∆y′2 +∆z′2,
can be determined by knowing what the associated
direction to su is, and using couples of points that de-
termine the variation∆r′. By following a similar proce-
dure, it is possible to calculate numerically the second
derivatives of r′ with respect to the the arc’s lengths su
and sv. With these expressions it is possible to obtain
the matrix elements given in Eqs. (23), (24) and (44),
(45). Let us clarify that in the numerical calculations
that we performed to find the derivatives numerically,
we took into account enough points (more than two)
to obtain calculations with good accuracy.
It is not easy to obtain the matrix elements, Lmn

and Nmn, in the case of diagonal elements; thus it is
necessary to use a procedure to test them. This con-
sists in analyzing the modes in cavities with symmetric
geometry.
For a perfectly soft surface, the Dirichlet boundary

condition ψ(r′)|r′∈S′ = 0 cancels the second term of
Eq. (46). This allows us to analyze and set up directly
only these matrix elements

N∑
n=1

L(1)
mnΦ

(1)
n = 0. (48)

By solving the homogeneous linear system, it can be
shown that the modes of the cavity can be calculated
by finding the minimal of the determinant (Mendoza-
Suárez et al., 2006),

∆(ω) = ln
(∣∣∣detL(1)

mn

∣∣∣) . (49)

On the other hand, for a perfectly hard surface the
Neumann boundary condition

(
Φ (r′)|r′∈S′ = 0

)
can-

cels the first term of Eq. (46), and our system of equa-
tion transforms to

N∑
n=1

N (1)
mnψ

(1)
n = 0. (50)

This procedure allows us to check the complementary
matrix elements N (1)

mn independently, following a sim-
ilar criterion by finding the minimum of the determi-
nant,

∆(ω) = ln
(∣∣∣detN (1)

mn

∣∣∣) . (51)

The cavities chosen are a cube and a sphere, where
the Helmholtz equation has analytical solutions. In the
case of a cubic cavity with edges of length D, and
one corner at the origin of a Cartesian system of co-
ordinates, solving the Helmholtz equation allow us to
demonstrate that the frequencies spectrum can be ob-
tained from the relation

k =
ω

cl
=
π

D

(
l2 +m2 + n2

)1/2
, (52)

where k is the magnitude of the wave vector as be-
fore, and l, m, and n are the numbers 1, 2, 3, ... when
considering the Dirichlet boundary conditions

ψ(0, y, z) = ψ(D, y, z) = 0, (53)

ψ(x, 0, z) = ψ(x,D, z) = 0, (54)

ψ(x, y, 0) = ψ(x, y,D) = 0. (55)

When the Neumann boundary conditions are

∂ψ

∂n′

∣∣∣∣
(0,y,z)

=
∂ψ

∂n′

∣∣∣∣
(D,y,z)

= 0, (56)

∂ψ

∂n′

∣∣∣∣
(x,0,z)

=
∂ψ

∂n′

∣∣∣∣
(x,D,z)

= 0, (57)

∂ψ

∂n′

∣∣∣∣
(x,y,0)

=
∂ψ

∂n′

∣∣∣∣
(0,y,D)

= 0, (58)

the parameters are l,m, n = 0, 1, 2, ....
Expressing the frequency in reduced units ω =

ω2πcl/D, considering D as a normalization parameter
in this case, solving for the reduced frequency spectrum
for a cubic cavity will be

ω =
1

2

(
l2 +m2 + n2

)1/2
. (59)
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It is important to note that in both cases, the posi-
tion of the modes in the reduced frequency scheme are
independent of the size of the cavity. This is quite con-
venient while testing the programed algorithms.
We can show that when the cavity is spherical, it is

also possible to obtain an analytical relation (Arfken
et al., 2013)

ω =
αli

2π
, (60)

where we have taken the radius of the sphere ra as
a normalization parameter in this case. αli represents
the i-th zero of the spherical Bessel functions of order
l when the boundary conditions are those stated in
Eq. (53). The first zeros of these functions are α01 = π,
α02 = 2π, α11 = 4.4934, α12 = 7.7253, α21 = 5.7635,
α22 = 9.0950, α30 = 6.9879,...
When the derivative of the scalar field is involved,

the boundary conditions that have to be considered
are those given in Eq. (57). These conditions imply
that these modes are given in terms of the zeros of the
first derivative of the spherical Bessel functions α11 =
2.0816, α21 = 3.3421, α01 = 4.4934, α31 = 4.5141,
α41 = 5.6467, α12 = 5.9404,...
It is important to observe that the cubic cavity al-

lows us to analyze in detail each integral separately
from the corresponding boundary conditions in each
case, since the terms involving the curvatures are zero
τnu = τnv = 0. On the other hand, when considering
the spherical cavity, in addition to the terms of the
expansion already considered, the terms that involv-
ing the curvatures τnu, τnv come to play an important
role in the matrix elements N (1)

mn.
In Table 1, we compare the modes position for

a cubic cavity and a spherical cavity of radius ra,
analytically- and numerically-determined for L(1)

mn and

Table 1. Eigenfrequencies of cubic and spherical cavities
calculated analytically (ωa) and numerically (ωLmn and

ωNmn) expressed in reduced units ω.

Cubic Cavity

ψ(r′)|r′∈S′ = 0

ωa 0.866 1.225 1.500 1.658 1.732 1.871

ωLmn 0.872 1.230 1.507 1.669 1.742 1.881

Φ (r′)|r′∈S′ = 0

ωa 0.000 0.500 0.707 0.866 1.000 1.118

ωNmn 0.027 0.505 0.712 0.872 1.003 1.123

Spherical Cavity

ψ(r′)|r′∈S′ = 0

ωa 0.500 0.715 0.917 1.000 1.112 1.230

ωLmn 0.502 0.719 0.921 1.069 1.116 1.234

Φ (r′)|r′∈S′ = 0

ωa 0.331 0.532 0.715 0.718 0.899 0.945

ωNmn 0.333 0.532 0.719 0.719 0.897 0.943

N
(1)
mn, respectively, which are in very good agreement.
In this calculation, ∆s ≈ D/10 was considered.

4. Resonant modes in cylindrical cavities
with a rough cross-section

The examples considered up to this point imply the
application of our numerical method to smooth sur-
faces with a regular and well-defined geometry. How-
ever, we can go further by showing that the method
is useful for treating problems involving cavities with
random surfaces as well.
Let us state that a rough surface can be modeled

by creating ensembles of numerically-generated spe-
cific contours (Maradudin et al., 1990; Mendoza-
Suárez et al., 2004). Each one of these contours is
usually known as a realization. Figure 4 represents
a cylindrical cavity with a cross-section given by a re-
alization of the ensemble (curved wall) and flat faces.
We calculated some acoustic modes assuming that the
Dirichlet boundary condition is satisfied on the sur-
face S: ψ|S = 0.

Fig. 4. Cylindrical cavity with a rough
cross-section.

To calculate the matrix elements for this structure
we have chosen the direction su to be tangent to the
profile assigned to the realization shown, and the di-
rection sv was taken along the z direction. In addition,
it is necessary to assume that such a realization can be
represented by a continuous function with continuous
derivatives up to the second order. From a practical
point of view, we obtain realizations of the random sur-
face using discrete sets of points. These sets satisfy the
proper conditions to allow the numerical calculation
of the derivatives of the profiles. The plot representa-
tions of these profiles with sufficient points appear as
C2 class curves.
The statistical properties of the modeled rough

curved wall profile employed in this work can be found
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inMendoza-Suárez et al. (2004). Let r(θ) be a func-
tion that represents the general required profile with
0 ≤ θ < 2π, defined in terms of the statistical proper-
ties as given below.
The average profile is a circumference of radius R,

〈r(θ)〉 = R. (61)

We can define the function

δr(θ) = r(θ)−R, (62)

where δr(θ) represents the radial fluctuations of the
profile with respect to the reference circumference. The
curved wall can be modeled by a Gaussian probability
density function, given by

f(δr) =
(
1/
√
2πσ

)
exp

(
− (δr)2

2σ2

)
, (63)

where σ represents the standard deviation of heights
of the surface roughness.
We also define the angular correlation function,

B (θ, θ′) =
1

σ2
〈δr(θ)δr (θ′)〉 , (64)

by assuming that it has a Gaussian form

B (θ, θ′) = B (|θ − θ′|) exp

(
− (θ − θ′)

2

Θ2

)
, (65)

where Θ is the “angular correlation length”, which rep-
resents the angular scale of the random roughness.
For any problem involving a cavity the random

rough profiles must close onto itself. Thus, the first
and last points of a realization, are ideally neighbor
points that are correlated. To consider this fact, we
use a linear relation given by

δr(θk) = σ
∞∑

j=−∞
ωjXj+k, (66)

where ωj is a set of undetermined weights and Xj

is a Gaussian independent variable that form an in-
finite periodic sequence satisfying the relation given
by 〈XiXj〉 = δij+nN for n = 0, ±1, ±2, . . . The peri-
odicity of this sequence is the key point to adequately
finding closed- and correlated-realizations. Obtaining
the weights by a Fourier transformation (see Ref.
(Mendoza-Suárez et al., 2004)) and using Eq. (66),
we obtain

δr(θk) = σ
∞∑

j=−∞

(
2∆θ

Θ
√
π

)1/2

· exp
(
−2(∆θ)2(j − nN)2

Θ2

)
Xj+k, (67)

where ∆θ is the angular separation between consecu-
tive angles. From the last expression, we can find values

for δr(θ), and finally an ensemble of profiles with the
required statistical properties.
The parameters used to generate the surface pro-

files of our system for a curved wall with random
roughness wereR = 4,Θ = 10◦ and σ = R/10 (R in ar-
bitrary units), which correspond to a small roughness
amplitude. The cylindrical structure has a height of
h = π. The realizations were calculated using Eq. (67),
with n = 0, and the number of points considered in one
realization was N = 360 with a constant angular sep-
aration of ∆θ = 1◦. The eigenvalue spectra and inten-
sity patterns for one realization were compared to the
corresponding spectra for a perfectly circular profile.
Figure 5 shows the result of the numerical calculation
for the normalized intensity distribution of the first
(Fig. 5a) and second (Fig. 5b) state for the circular
profile considered for the eigenvalues ω1 = 1.1829 and
ω2 = 1.4022, respectively. For the realization consid-
ered, the intensity computed is shown in Fig. 5c for
the first state and in Fig. 5d for the second state with
the eigenvalues ω1 = 1.1836 and ω2 = 1.3877, respec-
tively. The normalized intensities were calculated on
a plane perpendicular to the axis of the cylinder that
was divided into two equal parts.

Fig. 5. Normalized intensity of the a) first and b) second
state for the perfectly circular profile. Normalized intensity
of the c) first and d) second state for the surface profile

with random wall roughness.

We observed that this numerically calculated in-
tensity distribution for the first state still conserves the
symmetry with a small wall roughness (Fig. 5a and 5c).
However, for the second state we can observe that the
effect of roughness has changed the orientation of the
non-symmetrical mode (Fig. 5d). Although in this pa-
per we only show results for one realization, in Ref.
(Mendoza-Suárez et al., 2004) a similar system is
shown with more detail to demonstrate how the aver-
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aged intensity on an ensemble of samples results in an
almost radially symmetric pattern, with a practically
null angular dependence.

5. Scattering by a sphere and a cylindrical
structure

Now that the method has been validated, let us
calculate the scattering of a rigid acoustic sphere and
a cylindrical structure with a rough cross-section, when
an incident scalar field excites the system. In this case,
Eq. (17) can be expressed as

−
N∑

n=1

L(2)
mnΦ

(2)
n +

N∑
n=1

N (2)
mnψ

(2)
n = ψinc

m , (68)

where we have called ψinc
m = ψinc (rm). The incident

wave represents a plane wave traveling along the pos-
itive direction of the x-axis, as shown in Fig. 1. If we
represent the vector r in Cartesian coordinates, then

ψinc(x, y, z) = eik2x. (69)

Considering the case of acoustic surfaces that are
perfectly soft or perfectly hard, we have the Dirich-
let boundary condition, ψ(2)

n = 0, and the Neumann
boundary condition, Φ(2)

n = 0, respectively. In each
case the Eq. (68) reduces to an inhomogeneous system
of linear equations; so by solving this linear system,
the source functions, Φ(2)

n and ψ
(2)
n , can be determined

for a set of points r′n on the surface S
′.

Once these sources are obtained, the field at any
point r outside the scattering system can be calculated
using Eq. (7), as will be shown in the following section.

5.1. The near field and far field: Dirichlet
and Neumann boundary conditions

For the exterior problem we can find numerical ex-
pressions for the field ψ(r), at any observation point r,
whenever this point lies at least infinitesimally outside
the surface S′.
Let us consider first the Dirichlet boundary condi-

tion given in Eq. (12) with f (r′) = 0. From Eqs. (6),
(7) and (20) we obtain the expression

ψscat(r) ≡ ψ(r)− ψinc(r)

=
1

4π

∫
S′

eik2R

R
Φ (r′) dS′, (70)

where R = |r− r′| and ψscat(r) represents the scat-
tered field. Expressing the vectors r and r′ in terms of
their Cartesian components, the scattered field can be
approximated numerically by

ψscat(x, y, z) =
N∑

n=1

∆s2

4π

eik2

√
a∗

√
a∗

Φ(2)
n , (71)

where

a∗ = (x− x′n)
2
+ (y − y′n)

2
+ (z − z′n)

2
.

In this equation we assume that Φ(2)
n has already been

determined by the solution of the linear system given in
Eq. (68). With this expression, the field at any distance
from the scattering surface can be calculated, including
any point lying in the near field. In addition, we define
the scattering intensity as I(x, y, z) = |ψscat(x, y, z)|2.
In the case of the far field, let us consider that the

observer’s position r is far away from the scatterer sys-
tem. That is |r| � |r′n| para n = 1, 2, ..., N . In this case,
we can obtain the approximated expression

R =
√
(r− r′n) · (r− r′n) ' r − r̂ · r′n, (72)

for the denominator of Eq. (71), and this is sufficient
to consider the first term on the right hand side of this
equation. From Fig. 6

r′n = x′n ı̂+ y′n̂+ z′nk̂, (73)

r̂ = sin θŝ+ cos θsk̂, (74)

where θs is the scattering angle on the y−z plane.

Fig. 6. Schematic description of far field geometry.
θs represents the scattering angle of observation.

For the scattered far field, we obtain

ψscat(r, θs) = σ (θs)
eik2r

r
,

where the angular scattering amplitude, σ (θs), is gi-
ven by

σ (θs) =

N∑
n=1

∆s2

4π
e−ik2(y′

n sin θs+z′
n cos θs)Φ(2)

n ,

and represents the angular behavior of the scattered
wave in the far field. Also, we define the angular scat-
tering intensity as I (θs) = |σ (θs)|2.
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Let us now consider the Neumann boundary con-
dition given in Eq. (13). With g (r′) = 0, Eqs. (7), (9)
and (10) produce

ψscat(r) ≡ ψ(r)− ψinc(r) =
1

4π

∫
S′

eik2R

R

·
(

1

R2
− ik2

R

)
n̂ (r′) ·Rψ(2)(r)dS′. (75)

This integral can be calculated with the approximated
expression

ψscat(x, y, z)=
N∑

n=1

∆s2

4π

eik2Rn

Rn

(
1

R2
n

− ik2
Rn

)
n̂n ·Rnψ

(2)
n ,

where Rn = r − r′n = (x− x′n, y − y′n, z − z′n). The
last equation allows us to obtain the scattered field at
any distance from the scatterer having calculated ψ(2)

n

from the linear system given in Eq. (68). The normal
vector n̂n can be determined at least numerically, even
for irregular surfaces.
For the far scattered field we consider similar ap-

proximations to the previous case in addition for ne-
glecting the term 1/R2

n, as is commonly done in radi-
ation theory, obtaining in this case

ψscat(r, θs) = σ (θs)
eik2r

r
,

where the dispersion amplitude σ (θs), can be calcu-
lated from

σ (θs) = −
N∑

n=1

ik2∆s
2

4π
e−ik2(y′

n sin θs+z′
n cos θs)

· (nyn sin θs + nzn cos θs)ψ
(2)
n .

The scattered far field calculated for the system
composed of a rigid sphere of unit radius, ra = 1, for
three different values of the product k2ra = 2.0, 4.0,
8.0, are shown in Fig. 7.
Figures 7a, 7b and 7c can be compared to the

corresponding Ref. (Junger, Feit, 2004), obtaining
good agreement. To solve the problem of spurious res-
onant modes, we implemented the method of the dual
surface recently proposed by Piscoya and Ochmann
(2014). This implies the construction of an auxiliary
surface: a concentric sphere with a radius rb = ra − δ,
and the reformulation of the system of equations with
a pure imaginary factor α. The parameters we consid-
ered were δ = λ/10, and α = i.
We considered another example of an exterior prob-

lem that involved a soft, randomly rough cylinder. We
calculated the near field and the far field intensities
for this irregular scattering surface, as shown in Fig. 4.
The parameters used to generate the surface profiles
of a cylindrical structure with a rough cross-section

a)

b)

c)

Fig. 7. Scattering intensity in the far field re-
gion for a rigid sphere of radius ra = 1.0. The
intensity is shown in a polar diagram, where
the radius from the origin to the intersection
of the curve represents the intensity as a func-
tion of θs on the y−z plane for: a) k2ra = 2.0,

b) k2ra = 4.0, and c) k2ra = 8.0.

were the same as in Fig. 5. The cylindrical structure is
illuminated for an acoustic plane wave with unit am-
plitude ψinc(r) = eikz. Figure 8 shows the scattering
intensity (Fig. 8a) and the angular scattering intensity
(Fig. 8b) on the plane z = h/2, where the height of
the cylinder structure is h = π. As we hoped, the pat-
terns do not have a symmetrical form. The important
aspect of this example is that our method proved able
to calculate near field or far field for regular or irregu-
lar scattering surfaces, without large changes. We only
have to calculate the factor (τnu + τnv) in each case
that appears in Eq. (45) to complete the calculation of
the matrix elements of the system.
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Fig. 8. a) Scattering intensity in the near field and b) an-
gular scattering intensity in the far field region for a soft,
randomly rough cylinder of radius R = 4.0. The scatter-
ing intensities are shown on the x−y plane in half of the

cylinder height.

6. Conclusions

We proposed a surface integral method to study
acoustic systems for interior and exterior problems.
The method is based on a parametric representation
in terms of the arc’s lengths in curvilinear orthogonal
coordinates. The change in the magnitudes of tangent
vectors are associated with the principal curvatures of
the surfaces as important quantities that allow us to
state a criterion for the proper partition of the surfaces
by defining the differential arc’s length along both prin-
cipal directions, u and v. With this method, any ge-
ometry that involves quadric or higher order surfaces,
irregular objects, or even randomly rough surfaces can
be considered. To validate the method, the resonant
modes in cubic and spherical cavities were calculated
and compared to analytical results, finding very good
agreement. Also, as examples, we calculated the scat-
tering in the far field and the near field by an acoustic
sphere and a cylindrical structure with a rough cross-
section.

Appendix. Relations among the basis vectors
and their derivatives

Let us consider the unit vector

t̂u · t̂u = 1. (76)

Differentiating this product

∂
(
t̂u · t̂u

)
∂su

= 2t̂u · ∂t̂u
∂su

= 0, (77)

so, t̂u ⊥ t′u. In a similar way we can demonstrate that
t̂v ⊥ t′v.
The normal vector at the point rn is defined as

n̂n = t̂un × t̂vn . (78)

As t̂un ⊥ t′un
, then

t′un
= τvut̂vn + τnun̂n, (79)

t′vn
= τuv t̂un + τnvn̂n, (80)

where

τvu = t̂vn · t′un
, (81)

τnu = n̂n · t′un
, (82)

τuv = t̂un · t′vn
, (83)

τnv = n̂n · t′vn
. (84)

Following similar lines, it can be shown that

tuvn = −τvut̂un − τuv t̂vn − τunn̂n, (85)

where τun = t̂un · ∂n̂n/∂sv.
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