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In this paper, the authors study the 3D propagation of sound waves between
two closed spaces. The separation element between the two rooms is considered to
include either a small opening or a homogeneous lightweight panel, coupling the two
spaces. A numerical study of this configuration is performed, trying to understand
the influence of the position and geometry of this opening in the sound pressure level
reduction curve at low and midfrequencies. Additionally, the coupling effect between
the two acoustic spaces is analyzed, in order to better understand its importance
when determining the sound pressure level reduction. Different boundary conditions
are ascribed to the walls of these rooms, simulating both the completely reflecting
and partially absorbing surfaces.
The numerical modelling was performed using a multi-domain formulation of the

Method of Fundamental Solutions (MFS). The system is composed of two coupled
rooms, limited by rigid or by absorbing walls, and separated by a thin wall (tending
to null thickness) with a small opening. An experimental validation of the pro-
posed model is presented, comparing its results with those found experimentally for
a reduced-scale model. It is important to note that, for such a configuration, a tra-
ditional single-domain approach using methods like the MFS or the BEM would
lead to undetermined equation systems, and thus the proposed model makes use of
a domain decomposition technique.

Keywords: Method of Fundamental Solutions, domain decomposition, closed spaces,
sound pressure level reduction.

1. Introduction

The transmission of sound between two rooms separated by a partition wall is
a complex dynamic problem, involving many variables. Among these, the physical
and elastic properties of the partition element and the incident sound frequency



576 L. Godinho, F.G. Branco; P. Amado Mendes

are usually considered as dominant. It is known that there is a strong relation
between sound insulation and the element mass, with the inertial forces playing
a dominant role. As for the incident frequency, it is known that the vibration
power of a partition diminishes as the sound frequency increases which, together
with a higher energy dissipation capability, leads to an increase in sound insula-
tion for higher excitation frequencies. However, other dynamic phenomena, such
as the coincidence effect or the structural modes of the element, can originate
insulation dips, and can even hinder the development of the insulation increase
with the frequency in some cases.
This topic has interested researchers over the years, and many prediction

models have been proposed to estimate the sound insulation provided by a wall.
One of the best known prediction models is the mass law (see, for example,
Beranek andVer, 1992), which has been extensively applied to study the sound
insulation provided by many types of partition walls. However, the limitations
of this model have stimulated the development of more complex models, such as
those proposed by Sharp (1978) or by Tadeu and António (2002).
The above mentioned models are usually applicable to homogeneous parti-

tions and allow taking into account a large number of aspects of the dynamic
behaviour of a partition wall system. However, a partition wall should not al-
ways be analyzed as an isolated homogeneous element. Many other variables
influence its behaviour, such as the existence of weak points throughout the el-
ement, the acoustic behaviour of the construction elements of the envelope, or
the acoustic characteristics of neighboring spaces. Thus, when a partition el-
ement separates two closed spaces, the provided sound insulation is not only
influenced by the dynamic behaviour of the partition itself but also by the be-
haviour of each one of the adjacent spaces. Additionally, if the partition element
includes an opening or other types of heterogeneity, a coupling effect between
spaces can be generated, and the individual dynamic behaviour of each room
can be considerably modified. This coupling phenomenon between rooms is well
known, but is still a research topic in many fields such as architectural acous-
tics (see, for example, the recent works by Bradley and Wang, 2009, or by
Meissner, 2009).
A number of authors tried to set up more complex models that allow further

variables to be taken into account, in an attempt to overcome some of the iden-
tified difficulties. Different numerical schemes for predicting the sound insulation
of a separating wall between two rooms have been proposed. One such method,
the Statistical Energy Analysis (SEA) method, is very suitable for studying prob-
lems involving sound transmission, as demonstrated by Craik (1996). However,
it is known that the predictions computed using the SEA at lower frequencies are
unreliable, and thus the method is not applicable to low-frequency sound trans-
mission. To overcome this difficulty, Steel and Craik (1994) used the SEA
together with a Finite Element Method (FEM) model to estimate the sound
transmission between walls.
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Maluski and Gibbs (2000) used a FEM model to predict the sound in-
sulation between adjacent rooms at low frequency, concluding that the sound
insulation is strongly dependent on the modal behavior of the separated com-
partments.
During the last three decades, the Boundary Element Method (BEM) has

become one of the major numerical techniques for solving the problems of wave
propagation, particularly in domains involving unbounded or semi-infinite media
(see, for example,Godinho andTadeu, 2002). The major advantage of the BEM
over its counterparts, especially the FEM and the Finite Differences Method
(FDM), is that it can solve the wave equation when only the boundary interfaces
are discretized.
Perhaps the strongest drawbacks of the BEM are its complex mathematical

formulation and the fact that it requires prior knowledge of the fundamental
solutions, which are available only for some specific types of differential equations
with specific boundary conditions. However, for acoustic spaces, with typically
homogeneous propagation media, those solutions are well known, and the method
has been applied with success, as documented in the reference book by Wu
(2000). Another point that should not be neglected is that the accuracy of a BEM
model depends on the special treatment of analytical and numerical integration
of the singular and hypersingular integrals. This treatment is not trivial in the
general case and specific numerical integration strategies need to be devised in
some cases to allow for accurately performing those integrations (as is the case
of the strategy devised in Telles, 1987). Using a BEM model, Santos and
Tadeu (2002) studied the acoustic insulation provided by a single wall with
elastic behaviour separating two tunnels. They concluded that the geometry and
the dynamic behaviour of the tunnels have a very strong influence on the sound
insulation provided by the separating wall. Later, Tadeu and Godinho (2003)
used the BEM together with fundamental solutions for an elastic halfspace to
analyse the scattering of acoustic waves by movable lightweight elastic screens.
Mostly in the last decade, a different class of numerical methods has been pro-

gressively developed. Those methods are usually designated as meshless meth-
ods, as they require neither domain nor boundary discretization. Many tech-
niques can be incorporated in this group, such as the MLPG-Meshless-Local-
Petrov-Galerkin (Atluri, 2004), Kansa’s Method (Kansa, 1990a; 1990b) or the
Method of Fundamental Solutions (MFS).The latter technique is, in practice,
a boundary-only technique, in which the pressure field within a given domain is
reproduced using a linear combination of the effects of virtual sources located
outside this domain; in this process, boundary conditions are enforced at a lim-
ited number of boundary points, giving rise to a linear system of equations whose
unknowns are the amplitudes of the virtual sources. As in the BEM, the MFS
also requires a prior knowledge of the fundamental solutions, but its mathemat-
ical formulation and computational implementation are considerably simpler,
since no numerical integrations are needed; thus, the difficulty of the singular
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and hypersingular integrations is avoided. Some recent papers by Fairweather
and Karageorghis (1998), by Fairweather et al. (2003) and by Golberg
and Chen (1999), describe the MFS and some of its possible applications. It is
important to note that, despite the simple concept behind the method, many of
the published works dealing with the MFS indicate that it can provide very accu-
rate solutions to different types of physical problems, including those related to
acoustics and wave propagation, to heat and mass transfer, or to the structural
behaviour of solid structures.
Although different studies have been published on the use of this technique in

acoustics, they are mostly restricted to solving the Helmholtz equation in prob-
lems involving two-dimensional domains. Alves and Valtchev compared the
plane waves method and the MFS for acoustic wave scattering (2005). Godinho
et al. (2006) studied the accuracy of the MFS in the analysis of 2D acoustic and
heat transfer problems, concluding that the method is very accurate for the study
of smooth geometrical configurations. Later, the same authors (Godinho et al.,
2007) implemented the MFS together with domain decomposition techniques to
simulate wave propagation around thin elements and cracks.
Interestingly, to the authors’ knowledge, the published studies in which the

MFS is applied to 3D acoustic problems are very scarce, in particular concerning
more complex problems with connected sub-domains. In one of the few published
works, António et al. (2008) simulated the propagation of sound within a closed
space, using a MFS formulation. In that work, the authors used a single-domain
formulation and concluded that the accuracy of the method depends on the
number and location of the virtual sources.
In the present paper three-dimensional MFS models are implemented to sim-

ulate sound propagation between two closed spaces separated by a rigid wall
with a heterogeneity. The heterogeneity connecting the two spaces can be either
an opening or a panel which allows only partial transmission of the incident en-
ergy (see, for example, Mechel, 2002). Since the separating wall is modelled
as a thin element, it is necessary to perform domain decomposition to overcome
the numerical difficulties associated with thin elements. Two different models
are considered here: one of the models performs the full coupling effect between
the two spaces, imposing physically consistent continuity conditions; the other
treats the two spaces separately, first determining the pressure or normal par-
ticle velocity over the interface between sub-domains (just considering the first
space), and then imposing those values as boundary conditions when analysing
the second sub-domain. Comparison between those models will allow to assess
the importance of the coupling effect between the two spaces and its influence
on the calculation of the sound pressure level (SPL) reduction.
The present paper is organized as follows: first, the mathematical formulation

of the MFS model is presented, together with the fundamental solutions used
in its implementation; then, a brief explanation of the domain decomposition
technique is given; there follows a verification of the 3D MFS against the reference
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analytical solutions known for simple configurations; an experimental validation
against laboratorial results obtained for a reduced-scale model is then performed;
some applications are presented, illustrating the importance of the coupling effect
between rooms when they are connected by an opening; and finally, the coupled
MFS model is used to analyze the SPL reduction between two closed spaces
connected by an opening or by a lightweight panel.

2. Mathematical formulation

2.1. Sound propagation in 3D spaces

The propagation of sound within a three-dimensional space can be mathemat-
ically represented in the frequency domain by the Helmholtz differential equation:

∇2p+ k2p = 0, (1)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, p is the acoustic pressure, k = ω/α, ω = 2πf ,

f is the frequency and α is the sound propagation velocity within the acoustic
medium.
Assuming a point source placed within this propagation domain, at point

x0 with coordinates (x0, y0, z0), it is possible to establish fundamental solutions
for the sound pressure G and particle velocity H at a point x with coordinates
(x, y, z), which can be written respectively as

G(x,x0, k) =
e−ikr

r
, (2)

H(x,x0, k,n) =
1

−iρω
(−ikr − 1)e−ikr

r2
∂r

∂n
. (3)

In Eqs. (2) and (3), r =
√
(x− x0)2 + (y − y0)2 + (z − z0)2, n represents the

direction along which the particle velocity is to be calculated and ρ is the density
of the propagation medium.

2.2. Mathematical formulation of the MFS

The MFS can be used to model the presence of a generic 3D geometry, with
different boundary conditions. For this purpose, consider a closed space of ar-
bitrary geometry, as represented in Fig. 1. Assuming that NS virtual sources
are placed outside the propagation domain, around the closed space, the pres-
sure field can be approximated in terms of a linear combination of fundamental
solutions for the governing equation. So, within the propagation domain, the
pressure field can be written as

p(x, k) =
NS∑

j=1

QjG(x,xj , k), (4)
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where xj represents the coordinates of the virtual source j (xj , yj, zj), and Qj

is the amplitude of source j. The particle velocity field can be expressed in
a similar way.

Fig. 1. Generic problem geometry.

If N collocation points are placed over the boundary surface Γ of the closed
space, and if the necessary boundary conditions are ascribed at each one of those
points, it is possible to establish a system of N equations by NS unknowns. When
N=NS, the system can be solved using standard methods like the Gaussian
elimination.
Any boundary condition may be ascribed at each collocation point. The most

common boundary conditions will be those of a given particle velocity along the
normal direction (n) to the boundary (v(x, k,n) = C), a given sound pressure
(p(x, k) = C), or a specific relation between both (p(x, k)/v(x, k,n) = C), which
may be used, for example, to simulate an absorbing surface. For the latter, if
a totally absorbing boundary for normal incident waves is to be simulated, the
corresponding boundary condition will be given by p(x, k)/v(x, k,n) = ρα.

2.3. MFS with multiple domains

The previous formulation can be used in the generic case of a homogeneous
domain, without special conditions such as the presence of thin elements or the
connection with other domains. However, this formulation can be extended to
a more general case making use of multiple domains.
Consider now a system composed of two closed and interconnected domains,

Ω1 and Ω2, filled with a fluid with density ρ and allowing a sound propagation
velocity α.
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Considering that NS1 sources are distributed around the domain Ω1, and
that NS2 sources are placed around the domain Ω2, the pressure field inside
each domain can be written as:

p(x, k)Ω1 =

NS1∑

j=1

QjG(x,x1,j , k) for x in Ω1, (5)

p(x, k)Ω2 =
NS2∑

j=1

PjG(x,x2,j, k) for x in Ω2, (6)

where k = ω/α, Qj and Pj are the amplitudes of the virtual sources placed
around the domains Ω1 and Ω2, respectively.
To determine the amplitudes Qj and Pj , it is necessary to consider a number

of collocation points covering the boundary of each domain, where the relevant
boundary conditions are imposed. At each collocation point located at the surface
connecting the two domains, continuity boundary conditions should be enforced,
with p(x, k)Ω1 = p(x, k)Ω2 and v(x, k,n)Ω1 = v(x, k,n)Ω2 . Assuming that the
number of collocation points exclusively in Ω1 is N1, that the number of colloca-
tion points exclusively in Ω2 is N2, and that the number of common collocation
points in the coupling interface is NBC, after imposing the relevant boundary
conditions, a set of N1+N2+2NBC equations by NS1+NS2 unknowns system
may be established, allowing the calculation of the Qj and Pj unknowns.
To illustrate the construction of the equation system, consider two rooms

with rigid walls, connected by an opening. Consider that the N1 points are to
enforce the null velocity along the boundaries of room 1 (xi,b1 being the i-th
point) and N2 points are used for the same purpose in room 2 (xi,b2 being the
i-th point); additionally, a number NBC of points (xi,bc being the i-th point)
are used to define the opening. Around each room, NS1 and NS2 virtual sources
are used to define the respective sound fields (xi,j being the i-th source of the
room j). For this case, the equation system originated in the presence of a point
load located at xsource within room 1, can be defined as Ax = B with:

A=




H(x1,b1,x1,1, k,n) ... H(x1,b1,xNS1,1, k,n) 0 ... 0
.
..

.

..
.
..

.

..
H(x1,b1,x1,1, k,n) ... H(xN1,b1,xNS1,1, k,n) 0 ... 0

H(x1,bc,x1,1, k,n) ... H(x1,bc,xNS1,1, k,n) −H(x1,bc,x1,2, k,n) ... −H(x1,bc,xNS2,2, k,n)
...

...
...

...
H(xNBC,bc,x1,1, k,n) ... H(xNBC,bc,xNS1,1, k,n) −H(xNBC,bc,x1,2, k,n) ... −H(xNBC,bc,xNS2,2, k,n)

G(x1,bc,x1,1, k) ... G(x1,bc,xNS1,1, k) −G(x1,bc,x1,2, k) ... −G(x1,bc,xNS2,2, k)
.
..

.

..
.
..

.

..
G(xNBC,bc,x1,1, k) ... G(xNBC,bc,xNS1,1, k) −G(xNBC,bc,x1,2, k) ... −G(xNBC,bc,xNS2,2, k)

0 0 H(x1,b2,x1,2, k,n) ... H(x1,b2,xNS2,2, k,n)
...

...
0 0 H(xN2,b2,x1,2, k,n) ... H(xN2,b2,xNS2,2, k,n)




, (7)
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x =




Q1
...

QNS1
P1
...

PNS2




and B =




−H(x1,b1,xsource, k,n)
...

−H(xN1,b1,xsource, k,n)

−H(x1,bc,xsource, k,n)
...

−H(xNBC,bc,xsource, k,n)

−G(x1,bc,xsource, k)
...

−G(xNBC,bc,xsource, k)
0
...
0




. (8)

It is important to note that other interface conditions can be simulated at the
surface connecting the two spaces. If one assumes that the connection between
the two spaces is made by a homogeneous plate of mass m, behaving as a free
mass with null damping forces and null stiffness, following the approach described
by Mechel (2002), it is possible to establish the following relation between the
sound pressure on both sides of the plate and the normal particle velocity at this
surface:

p(x, k)Ω1 − p(x, k)Ω2 = iω m v(x, k,n)Ω1 . (9)

Additionally, it becomes necessary to enforce continuity of particle velocities
between both sides,

v(x, k,n)Ω1 = v(x, k,n)Ω2 . (10)

These relations allow the definition of two equations at each collocation point
located at the surface connecting the two domains, leading to the necessary
N1 + N2 + 2NBC equations by means of the NS1 + NS2 unknowns equation
system. It is important to note that the presented equation holds its validity
only when the incidence of sound waves occurs along the normal to the plate.
As stated in the introduction of this paper, a second approach was also imple-

mented for the analysis of the proposed problems, based on decoupling the two
acoustic spaces, and analyzing them separately. For this decoupled approach,
when an opening connects the two spaces, the solution sequence can be de-
scribed as:
• The emitting acoustic space, where an acoustic source is located, is first analy-
sed as a completely independent and closed space, using a single domain MFS
model. The MFS model is defined by imposing the relevant boundary condi-
tions at N1 + NBC boundary points and simulating the pressure field using
NS1 virtual sources (originating a (N1 + NBC) × NS1 system). In this anal-
ysis, along the opening’s surface (at NBC points) an approximate absorbing
condition is imposed, ascribing an impedance of p(x, k)/v(x, k,n) = ρα. At
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the remaining boundary points, the adequate conditions are imposed (corre-
sponding either to a rigid or to a partially absorbing surface).

• After solving the previous problem, the normal particle velocities are calcu-
lated at the boundary points located along the opening. For this purpose, the

particle velocity is determined as v(x, k,n)Ω1 =
NS1∑
j=1

QjH(x,x1,j, k,n).

• A second model is then built to separately analyze the receiving space. In this
model, the calculated values of the particle velocity are imposed as boundary
conditions for the second space, at the exact position of the opening. This
boundary conditions will act as the source for the second model, originating
the pressure field within this space. The problem is then solved for that space
using a single domain MFS model. In a similar manner to that used for the
first space, the MFS model is here defined by imposing the relevant boundary
conditions at (N2 + NBC) boundary points and simulating the pressure field,
using NS2 virtual sources (originating a (N2 + NBC)× NS2 system).

2.4. Model verification

The work by António et al. (2008) revealed that the accuracy of the response
computed using a 3D MFS model will significantly depend on the position of the
virtual sources, used to simulate the pressure field. For this reason, a prelimi-
nary study will be performed, verifying the behaviour of the method against a
reference solution known for a simple geometric configuration, with the purpose
of defining an adequate position for those sources and to ensure that meaningful
results will be obtained. For this purpose, the model is first verified against the
analytical solution known for 1D sound propagation near an anechoic surface,
and then against a full 3D analytical solution.
Consider a parallelepipedic space, with dimensions of 6 × 4 × 2.5 m, filled

with air, with a density of 1.22 kg/m3 and allowing the sound to propagate at
340 m/s. Assume that all the surfaces of this space are rigid, with null normal
particle velocities, except one of the surfaces, at x = 0 m, where a boundary
condition of v = 1 × 10−3 m/s, along the direction of the inward normal, is
ascribed. On the opposite face, an anechoic termination is considered and thus,
for this case, the geometry corresponds to a 1D problem in which only plane
waves are generated. It then becomes possible to derive the following analytical
solution for this problem:

p(x, k) = ραe−ikx
(
1 + e−2ik(L−x)

)

(1− e−2ikL)
, (11)

where L is the distance between the vibrating and the anechoic surfaces, and x
is the position of the receiver inside the space.
The proposed MFS model has been used to compute the acoustic pressure

inside this system, dividing the propagation medium into two separate domains,
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and coupling them by imposing full continuity of pressures and normal particle
velocities at the interface. For this purpose, 1480 virtual sources were placed
around each of the defined subdomains. The boundary points were distributed
uniformly along the surfaces of each subdomain, thus leading to a system of
2960 equations by 2960 unknowns. A schematic representation of the boundary
points and virtual sources distribution is presented in Fig. 2. It is important to

a)

b)

Fig. 2. Schematic representation of the boundary points (a) and virtual sources (b) distribution.
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understand that, in this configuration, the intermediate wall, common to the two
sub-domains, acts as a coupling interface, along which continuity conditions are
enforced.
Figure 3a illustrates the real and imaginary responses computed analytically

along the x-axis for a frequency of 250 Hz, while Fig. 3b illustrates the relative
error computed for the MFS approximation, calculated as

∣∣∣∣
panalytic − pMFS
max(panalytic)

∣∣∣∣ , (12)

a)

b)

Fig. 3. a) Real and imaginary parts of the analytical solution for a frequency of 250 Hz;
b) Relative error computed with the MFS.
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when the virtual sources are placed at different positions, at distances 0.6 m,
0.8 m and 1.0 m from the boundary surfaces. It is important to note that the
quantities panalytic and pMFS are both complex numbers, and that the modulus
is used in Eq. (12) to present the global relative error as a real positive number.
Additionally, since the analytical response reaches null values at some domain
points, leading to indeterminacy in the result of Eq. (12), the error is normalized
with respect to the maximum value of the pressure response within the analyzed
points. The figure allows concluding that the MFS solution provides a very good
approximation to the analytical solution, thus proving that the implementation
of the method is correct. It is also possible to conclude that, for this case, the best
results are obtained for virtual sources placed further away from the boundaries
of the system. In fact, in this particular case, only plane waves propagate in the
system, a field which is best simulated when the point sources are located away
from the interior domain so that an almost flat wavefront reaches the receivers.
To better understand the behaviour of the 3D multi-domain MFS model in

the presence of a more complex sound field, an additional verification is here per-
formed for the case in which the above described 3D enclosure has a totally rigid
envelope, and when the excitation source is a point load with unitary amplitude
factor (as given in Eq. (2)) located at (x = 1.0 m; y = 1.0 m; z = 1.0 m). For
this case, an analytical solution can be obtained using the image-source method,
as described in the literature by Tadeu et al. (2000). However, to allow for the
definition of such solution using a finite number of virtual sources, a damping
factor is introduced in the form of a complex frequency of the type

ωc = 2πf − i× 2ξπ∆f. (13)

In this expression, f is the frequency in Hz, ∆f is the frequency increment
and ξ is the damping factor. For this verification, we use ξ = 0.7 and ∆f = 4 Hz.
In practice, this damping factor corresponds to attenuating at least 81 times the
effect of the virtual sources required for the analytical solution placed further
than 1/∆f×340 = 85 m. For further details in this respect, the Reader is advised
to consult the original work by Tadeu et al. (2000). Analytical results (real and
imaginary parts) computed at a receiver placed at (x = 5.0 m; y = 2.0 m;
z = 1.5 m) are presented in Fig. 4a. In Fig. 4b and 4c, the relative errors
computed for the MFS model using Eq. (12) are displayed. The distances between
the virtual sources and the boundary are set to 0.6 m, 0.8 m and 1.0 m. As in
the previous example, in the MFS model, the enclosure is divided into two sub-
domains with equal dimensions, coupled together by a virtual interface located
at x = 3.0 m. For the results displayed in Fig. 4b, 944 boundary points and
virtual sources were used to model each of the sub-domains, while for Fig. 4c,
this number was increased to 1480. The results shown in both figures prove
that, as in the previous case, the relative errors tend to decrease as the sources
are placed further away from the boundary. Additionally, it is clear that, for
the higher frequencies, the model benefits from the increase in the number of
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a)

b)

c)

Fig. 4. a) Real and imaginary parts of the analytical solution for a frequency range between
100 Hz and 400 Hz; b) Relative error computed for the MFS using 1888 virtual sources; c) Re-

lative error computed for the MFS using 2960 virtual sources.
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boundary points and virtual sources, with the relative error decreasing. For that
case, low relative errors are obtained, with values below 1% for all frequencies
when the sources are located 1.0 m from the boundary.

3. Experimental validation

To assess the practical applicability of the MFS model in simulation of the
sound propagation, it is important first to compare the results it provides with
those that can be measured experimentally. For this purpose, a simple experi-
mental setup was developed and subjected to the incidence of sound waves. The
model consisted of a reduced-scale parallelepipedic enclosure, with internal di-
mensions of 0.6× 0.4× 0.25 m. These dimensions correspond to scaling down 10
times the geometry defined in the verification examples. The sound waves are
introduced in this system through an impedance tube with a diameter of 0.05 m,
centered on one of the faces of the enclosure. The use of an impedance tube for
this purpose allows to accomplish two main objectives: first, it allows an adequate
control of the excitation introduced in the system, ensuring that this excitation
can be adequately represented as a plane wave; second, it avoids the use of an
acoustic source inside the small-scale model, which would act as a partially ab-
sorbing object influencing the pressure field within the acoustic space. On the
face opposite to the source, an exit tube was installed, formed by a short PVC
tube 0.10 m long, with a diameter of 0.05 m, and with an anechoic termination
materialized by a block of rockwool 0.04 m thick, with a density of 70 kg/m3. The
sound pressure level was then measured at the entrance (within the impedance
tube) and in the exit tube, at opposite faces of the model, by means of two
microphones. Inside the model, an obstacle simulating a rigid wall was intro-
duced, generating a disturbance in the sound field and originating a complex
wave pattern within the space. An opening 0.1 m wide was left open, connecting
two parts of the experimental model. A schematic representation of this model
can be found in Fig. 5a. In this plan view representation, the position of the two
microphones, of the plane-wave source and of the internal obstacle, is indicated.
The signal is acquired using a 2-channel “Symphonie” acquisition system,

from 01 dB, connected to two GRAS Sound & Vibration 40AF microphones.
These are free-field microphones subject to an incidence at an angle of 90◦, and
thus a corrective term should be introduced at each of them, obtained from the
characteristic curve provided by the producer (GRAS Sound & Vibration). How-
ever, for this specific microphone model, the correction factor is approximately
null up to 3 kHz, and thus it does not influence the measured sound pressure
levels within the analyzed frequency range. The response of this system when
the impedance tube generates a broad band noise is registered during 6 s, and
this test is repeated 5 times. Average SPLs are calculated at each microphone for
frequencies up to 1750 Hz. An average SPL reduction is then calculated as the
difference between the average SPLs registered at the entrance and exit tubes.
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a)

b)

Fig. 5. a) Schematic representation of the validation model (plan view); b) Numerical and
experimental curves obtained for the sound reduction in the presence of the given geometry.

Figure 5b illustrates the comparison between experimental and numerical re-
sults computed for the defined configuration. Observing this figure, it is possible
to conclude that, in general, there is a very good agreement between the mea-
sured results and those estimated using the numerical model. In fact, the two
curves have very similar trends, with the position of peaks and valleys match-
ing well between both. Some discrepancies occur in what concerns the involved
amplitudes, a situation which can be justified by small differences between the
experimental apparatus and the modeled geometry. Among these, small mis-
alignment between inlet and outlet and slight variations of the position of the
internal obstacle may play an important role.

4. Numerical examples

The proposed numerical formulations were used to study the sound prop-
agation between two rooms. In what follows, two different groups of analyses
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will be presented: in a first set, the importance of the coupling effect between
the rooms is analysed, making use of a simple configuration in which a rigid
barrier partially separates the two spaces; in the second set, the case of two
rooms connected by either an opening or a lightweight panel, placed at different
positions, is analysed. In all examples, the remaining part of the wall between
the two rooms is assumed to be rigid and with thickness tending to zero. Two
different wall surface conditions are simulated, namely a completely reflecting
surface (v = 0 m/s) and a partially absorbing surface. For the latter one, the
partially absorbing surface conditions (with an absorption coefficient of α = 0.2)
are ascribed to all the surfaces of both rooms by imposing an impedance with
the relation

p(x, k)/v(x, k,n) = ρ α
1 +

√
1− α

1−
√
1− α

. (14)

One should note that, in this specific case, this equation originates a real
impedance value. However, complex impedances may be incorporated in the
proposed model using the same approach.
In all the cases presented, both rooms are parallelepipedic with 3×4×2.5 m,

and the sound field within each room is simulated by 1480 virtual sources, placed
at a distance of 1.0 m from the boundary. The necessary boundary conditions
are enforced by making use of 1480 boundary points covering the whole surface
of each room. The propagation media have a density of 1.22 kg/m3 and allow
sound waves to travel at 340 m/s.

4.1. Coupling effect between rooms

The SPL reduction provided by a wall with an opening separating two rooms
can be estimated using different methodologies with different degrees of simplifi-
cation. A common and effective simplification corresponds to decoupling the two
spaces and analysing them separately. However, it is important to understand
the consequences of such simplification, and to what extent it can affect the ac-
curacy of the results. To assess the importance of that methodology, consider
the above described acoustic spaces, separated by a rigid wall up to a height
of 1.9 m, and with an opening between the top of this wall and the ceiling.
Additionally, consider that the emitting room is excited by a point source posi-
tioned at (x = 1.0 m; y = 1.0 m; z = 1.0 m), as illustrated in Fig. 6, oscillating
with different frequencies. The response has been computed for 200 frequencies,
ranging from 50 Hz to 500 Hz, calculating the response at two distinct sets of
receivers, placed within each of the rooms. These receivers are positioned in a reg-
ular 3D grid of 240 receivers, equally spaced of 0.5 m along each direction. The
average sound pressure level inside each room (L1 and L2) has been computed
using these two grids, and the SPL reduction between them has been calculated
as L1-L2.
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Fig. 6. Schematic representation of the problem.

Figure 7a illustrates the SPL reduction curve computed using both a fully
coupled model and a decoupled model, when the surfaces of the walls are com-
pletely rigid. For both models, the computed SPL reduction curve shows pro-
nounced variations along the frequency domain, exhibiting a strong oscillatory
behaviour with a sequence of dips. Analyzing the position of these dips in the
frequency domain, it becomes possible to relate them to stationary wavefields
generated inside both rooms. For parallelepipedic rooms, in the absence of any
opening, it is possible to compute analytically these eigenfrequencies as:

fn,m,p =
α

2

√(
n

Lx

)2

+

(
m

Ly

)2

+

(
p

Lz

)2

(15)

where n, m and p are the order numbers of the mode along the directions x, y
and z, and Lx, Ly and Lz are the dimensions of the room along those directions.
For the analysed system, this equation allows to conclude that the first modes
of the rooms occur at f1,0,0 = 56.7 Hz, f0,1,0 = 42.5 Hz, f0,0,1 = 68.0 Hz,
f1,1,0 = 70.8 Hz, f1,0,1 = 88.5 Hz, f0,1,1 = 80.2 Hz and f1,1,1 = 98.2 Hz.
To allow a more accurate comparison, the position of these modes is also

represented in Fig. 7b together with a zoomed view of the SPL reduction curves.
Interestingly, the SPL reduction dips are slightly shifted from the calculated fre-
quencies when the coupled model is used, but they match almost exactly when
a decoupled analysis is performed. In fact, in presence of the opening, the cou-
pling between the two rooms introduces a variation in the dynamic behaviour of
the system, changing the positions of the acoustic modes of each individual room.
For example, in the case of the first acoustic mode, in presence of the opening it
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a)

b)

Fig. 7. Sound pressure level reduction curves for the two models considering perfectly
reflective walls: a) analyzed frequency range; b) zoomed view between 50 Hz and 100 Hz.

occurs around 61 Hz, being shifted by approximately 4 Hz above the frequency
estimated by Eq. (15). By contrast, if a decoupled analysis is performed, the dy-
namic behaviour of each individual room is maintained, and thus the frequency
position of the SPL reduction dips coincides with the predicted values.
It is interesting to note that, globally, the trends of the curves predicted

by the two models are quite similar, particularly at the upper frequencies of
the analyzed frequency range. In fact, the decreasing influence of diffraction for
higher frequencies helps to explain the reduction in dips and peaks registered
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for the model with non-absorbing surfaces. However, in considering the low-
frequency SPL reduction values, the differences between the two approaches are
very significant, and indicates the importance of considering the full coupling
between spaces. A similar analysis was performed in the case of an absorbing
room (with homogeneous internal surfaces with α = 0.2), and the corresponding
results are presented in Fig. 8. Once again, both the coupled and the uncoupled
models present predictions of the same order of magnitude (around 10 dB for the
higher frequencies, and lower below 100 Hz), but with visible differences between
the two curves. Those differences are more pronounced at lower frequencies,
where the first normal modes of the acoustic spaces are located, while for the
upper frequency range the two curves are very close to each other.

Fig. 8. Sound pressure level reduction curves for the two models considering all internal surfaces
with an absorption coefficient of 0.2.

Besides the coupling effect, it is interesting to analyse the behaviour of the
system in what concerns the efficiency of the barrier. For this purpose, in Fig. 9
the 1/3 octave band SPL reduction curves calculated using the coupled model
are presented for the cases of rigid and absorbing walls. The difference between
the magnitudes of the SPL reduction is very clear, and indicates the advantage
of considering an absorbing treatment for the walls, ceiling and floor. For that
case, the multiple reflections occurring within each space are greatly attenuated,
since part of the sound energy is dissipated when the sound waves reach various
surfaces. For the case of rigid walls, the effect of the barriers at the lower fre-
quency bands can be considered to be null, with the lower order acoustic modes
of the rooms dominating the response. For higher frequencies, this reduction
steadily increases and reaches 7 dB for the 400 Hz 1/3 octave band. If the walls
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Fig. 9. 1/3 Octave band sound pressure level reduction curves for the case of a barrier between
the two rooms.

are modelled as absorbing surfaces, even at lower frequencies a SPL reduction
of around 7 dB is achieved, and these values become significantly higher above
100 Hz, reaching a maximum of around 11 dB.

4.2. SPL reduction in the presence of a smaller heterogeneity

Let us consider, in this section, the case in which the wall separating the
two rooms includes a smaller heterogeneity, which can either be an opening or
a lightweight panel. For all cases analyzed here, consider that this heterogeneity
is square, with dimensions of 1×1 m. Two different positions of the heterogeneity
are considered, what can be seen in Fig. 10a.
For the first set of analysis, consider the heterogeneity to be an opening, along

which the continuity conditions are imposed.
When the surfaces of the walls are completely rigid, the computed SPL reduc-

tion curve exhibits, as before, pronounced variations along the frequency domain,
with a strong oscillatory behaviour and a sequence of dips (see Fig. 10b). Ana-
lyzing the position of these dips in the frequency domain, it becomes possible to
relate them with stationary wavefields generated inside both rooms, but these
SPL reduction dips are slightly shifted from the calculated natural frequencies of
the acoustic spaces. This phenomenon was observed in the previous section and
it is due to the existence of an opening which modifies the dynamic behaviour
of the rooms by making them behave as two coupled domains. In spite of the
coupling area being considerably smaller than in the previous cases, this effect
can still be easily seen in the presented results.
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a)

b) c)

Fig. 10. Two rooms connected by a wall with a 1× 1 m opening: a) system geometry; b) sound
pressure level reduction when the opening is at position 1; c) sound pressure level reduction

when the opening is at position 2.

A SPL reduction curve is also plotted in Fig. 10b, computed for the case
in which all surfaces have an absorbing treatment (with α = 0.2). Since these
boundary conditions strongly contribute to attenuate the stationary wavefields,
by absorbing a part of the energy, the SPL reduction curve is now smoother,
revealing less pronounced dips at the natural frequencies of the rooms. Addition-
ally, due to this absorbing effect, the sound reduction appears to be consistently
higher in this situation.
The SPL reduction curves were also calculated for 1/3 octave bands and are

shown in the same figure. For comparison purposes, a simplified approach has
been used for calculating the SPL reduction provided by this configuration, in
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which the sound transmission coefficient is assumed to be τ = 1 in the opening
and 0 over the rest of the rigid wall. Using this approach, the reduction can be
estimated by weighting the areas of the opening and of the wall, and applying
the equation

R = 10 log

((
Aopeningτopening +Awallτwall

Aopening +Awall

)−1
)
, (16)

where Awall and Aopening are, respectively, the areas of the wall and of the open-
ing. For the tested configuration, a SPL reduction of 10 dB is predicted by this
equation.
Comparing the computed curves for 1/3 octave bands with the prediction

by the simplified method, it can be seen that there are significant differences
between them. In fact, the SPL reduction predicted by Eq. (16) is significantly
different from that predicted by the proposed model with reflecting surfaces,
since it neglects the modal behaviour of the two rooms. The reduction predicted
by the MFS strongly varies with the frequency, but it seems to be, on average,
below the 10 dB value predicted by Eq. (16). However, it is interesting to note
that when the absorbing walls are modelled, the SPL reduction increases above
this value, and that it seems to approach 10 dB as the frequency increases.
In a second simulation, the opening is considered to be at position 2. Ob-

serving the SPL reduction curve (see Fig. 10c) along the frequency domain, it
becomes possible to conclude that most of the oscillatory behaviour of the SPL
reduction curve is still present, although with a tendency for the SPL reduction
to be lower than in the previous case. Analyzing the 1/3 octave band curves, it
becomes evident that, globally, they have the behaviours slightly different from
the previous case, mainly around 70–80 Hz, in which the SPL reduction decreases
in this second situation. Once again, for the case of absorbing walls, the dips in
the SPL reduction curve are attenuated, originating a sensible increase in sound
reduction.
Consider now a second case consisting of a rigid wall (with null sound-trans-

mission coefficient) within which a small lightweight panel is located. For this
case, simplified interface conditions are ascribed to the plate, following those in-
dicated in Eqs. (9) and (10). To allow application of those equations, this plate is
assumed to behave as a rigid body and its resonances are not taken into account.
In this system, a 1 × 1 m plate, with a mass of 25 kg/m2, is embedded within
the wall that separates the two rooms. Two different situations are modelled,
corresponding to perfectly rigid or absorbing (α = 0.2) interior surfaces.
Figure 11 illustrates the results computed when the sound field is generated

by the same point load used in the previous examples, and when the lightweight
panel is located either in position 1 (Fig. 11a) or 2 (Fig. 11b). In these figures,
the SPL reduction predicted by the proposed MFS model is plotted together
with the reduction predicted by a simplified calculation based on the mass law
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a)

b)

Fig. 11. Sound pressure level reduction when the two rooms are connected by a wall with
a 1×1 m lightweight panel: a) results for lightweight plate in position 1; b) results for lightweight

plate in position 2.

and in Eq. (16). This simplified approach predicts that the SPL reduction pro-
vided by the separation element increases with the frequency, with a slope of
6 dB/octave. It is interesting to note that the computed curves seem to ap-
proach the simplified calculation tendency for the higher frequencies, with the
SPL reduction increasing when the frequency also increases.
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Analyzing the plots in Figure 11a, the SPL reduction curve predicted by the
MFS model when the walls are rigid, reveals a strong oscillatory behaviour, with
very few similarities to the SPL reduction curve of the simplified model in the
lower frequency range. Due to the presence of a point source and to the influence
of the acoustic modes of the room, a diffused field is generated within the emitting
room, and thus originates a much more complex behaviour than that predicted
by the simplified approach. The strong oscillations observed in the SPL reduction
curve can be explained by the influence of these acoustic modes excited inside
each room, with multiple reflections occurring at various surfaces of each room.
It is worth noting that additional oscillations and insulation dips would be visible
if the plate was modelled as an elastic solid structure, due to the contribution
of its structural resonances. It is interesting to note that, comparing with the
case of the opening analyzed above, there seems to be a better correspondence
between the calculated eigenfrequencies and the SPL reduction dips. This may
be explained by the fact that the presence of the plate leads to a weaker coupling
between the two spaces, whose dynamic behaviour is now much more similar to
that of isolated (non-connecting) rooms. When the internal surfaces of the rooms
are absorbing, the identified effects are greatly attenuated, originating a much
smoother curve. For that case, the predicted SPL reduction is consistently above
the simplified prediction, particularly at low frequencies, but tends to approach
its values for the upper frequencies of the analysis interval.
When the plate is in position 2 (Fig. 11b) and the internal surfaces are per-

fectly reflective, some changes are observable in the SPL reduction curve, al-
though it still maintains its oscillatory behaviour. Once again, the position of
the eigenfrequencies is very close to the theoretical predictions, since the two
rooms now have dynamic behaviours close to those of uncoupled spaces. The
curve computed for the case of absorbing walls reveals a behaviour similar to the
one described in Figure 11a, although the amplitudes of the observed peaks and
dips exhibit some variations.
For a final comparison, Fig. 12 illustrates the 1/3 octave SPL reduction curves

computed for the 8 configurations analyzed in this section, including the two
positions of the opening and of the panel, and both the absorbing and non-
absorbing boundary conditions. Clearly, these curves can be identified in groups
of two, each pair corresponding to the calculation obtained for the two positions
of the opening or panel in a specific scenario. Here, it becomes possible to confirm
that the influence of the position of the interface that couples the two spaces has
only a significant influence at low frequencies, in which the low-order normal
modes of the room have a strong contribution. When the frequency increases,
the differences are greatly reduced and, for all pairs, the two curves have similar
behaviours. Additionally, it is clear that the effect of an absorbing surface is
very significant, originating large differences in the low frequency range, which
can reach almost 20 dB. At higher frequencies, this difference is smaller and
can be as small as 5 dB. Finally, the curves that correspond to a connection
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Fig. 12. 1/3 Octave band sound pressure level reduction curves for the studied cases.

between rooms via a lightweight panel, exhibit distinctly higher SPL reductions,
a behaviour that was expected and which confirms the strong effect of an opening
in reducing the performance of a separating wall.

5. Conclusions

In this paper, a numerical model based on the MFS is proposed to simulate
the sound propagation between two rooms with a small connecting area. Both
a fully coupled multi-domain model and a decoupled model were implemented
and tested. Two different connection types were modelled, namely an opening,
allowing all the incident energy to travel without attenuation, and a lightweight
panel of a known mass, with a behaviour similar to that predicted by the mass
law. The proposed model has been tested against analytical solutions, reveal-
ing a good accuracy. An experimental validation was also performed, indicating
that the results predicted by the model are close to those found in laboratory
tests. It is important to observe here that the presented technique may easily be
generalized to problems involving a larger number of sub-domains.
The MFS approach was used to simulate several test cases. The results ob-

tained when the connection between the rooms is an opening, exhibit a behaviour
which is consistent with the expected physical behaviour of the systems. The
eigenfrequencies of the coupled rooms were identified and associated with pro-
nounced dips in the SPL reduction curve. In the case of an opening connecting
the two rooms, the coupling effect between the two acoustic spaces was found
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to be significant, with a shift in the eigenfrequencies being clearly identifiable in
the response.
When the presence of a lightweight panel is simulated, the calculated results

exhibit important differences as compared with those predicted by a simplified
model based on the mass law, mainly at lower frequencies. Although the be-
haviour of the plate is also simulated similarly to the mass law, the complex
wavefield generated within each of the rooms markedly influences the SPL re-
duction between the rooms. For this case, the coupling between the two spaces
was found to be weaker and the eigenfrequencies of the coupled systems were
very close to those found for the individual spaces.
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