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The purpose of the paper is to outline a systematic and unified non-local treat-
ment of mode conversion effects associated with an interface superlattice being a 2D
pseudo-array composed of altered phase inclusions (exemplified by impurity clusters)
and located at a solid-solid plane interface. It will be illustrated, in some detail, for
the instructive case of a Stoneley type acoustic wave (SW), incident on a period-
ically nonhomogeneous portion of an interface and partly transformed into bulk
modes propagating in one of the component solid. An analytical model scheme is
constructed, using a variational method combined with the T matrix approach, ap-
propriate for the 2D periodic array treated, and decaying into the depth of this solid
for the structure in a way determined by the array geometry and element 3D pro-
files as well as the boundary conditions at the interface. An apodization (weighting)
to reduce the side-lobes level is incorporated into the structure by appropriately
varying lateral dimensions and the depth of particular scatterers.
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1. Introduction

It is well known that a characterization of near-surface properties of materials
by acoustic means is most conveniently done by surface acoustic waves (SAW),
because they are very sensitive to surface inhomogeneities. In a series of pre-
vious works (Kapelewski, Pasternak, 1996; 1999) we developed a method
of using a surface 2D quasicomposite array composed of altered phase clusters
which play the role of antenna elements when irradiating by a surface (Rayleigh)
wave.
We have previously developed devices utilizing the new types of reflectors and

interesting results have been obtained. We shall not dwell here on the merit of
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the method over more conventional electronically controlled 2D antenna arrays,
which was thoroughly discussed elsewhere (Kapelewski, Pasternak, 1996;
1999; Kapelewski, 1991). In this paper we consider an analogous problem for
the case when the array of altered phase clusters (as before (Angel, Achen-
bach, 1985; Claus, 1978) modelled by dipole-force dilation centers distribution
in the host region) is situated at the interface between two (similar or identical
but differently oriented) solids, and the excitation is provided by the SW propa-
gating along the perturbed interface plane. The interface instead of surface has
been used since the array plane has several new aspects. The interface structures
of this kind can be implemented in various manners. It may be affected by in-
terfering with the epitaxial growth process or by creating the interface through
a mechanical adhesive contact of two samples, the one of which with a surface
array treated previously. One important advantage of the interface localization of
the 2D array in consideration, as compared to its surface version, lies in avoiding
the contamination and another detrimental effect of the environment without re-
calling to high vacuum conditions. Generally the latter is rather necessary for the
shortterm stability of working conditions for any phased array device of this kind.
Another aspect of the problem is treating it in terms of the non-destructive

evaluations (NDE) of the inhomogeneous interface region, where the 2D peri-
odic interface region can be viewed as a non-random periodic part of the local
inhomogeneity profile of a material interface.
In case of the interface array, the exciting force for the antenna effect is

provided by the SW which then play the role of SAW (Rayleigh wave) when
going from the surface to the interface array systems of acoustical scatterers
(reflecting elements). It has been long ago recognized that SW can be used very
effectively to test the quality of solid-solid contacts, especially in detecting metal
fatigue and testing the quality of adhesive bonds (Angel, Achenbach, 1985).
The SW scattering in propagation through a nonhomogeneous interface should
be the principal mechanism treated in such studies.

2. Description of the model treatment

An essential element of the method lies in taking advantage of an inherent
structural analogy between analytic forms of the static Green’s function for the
two-component medium and that for typical acoustic waves of the Stoneley type
given respectively by (Djafari–Rouhani et al., 1977; 1980):

G(kS ; z, z′) =
3∑

i,j

gij(kS) exp(−qikS |z| − qjk
S |z′|)

+
3∑

i

gi(kS) exp(−qikS |z − z′|) (1)
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and

u
(j)
0 (kS , z) =

3∑

n=1

u
n(j)
0 (kS) exp[−qn(j)kS |z|], j = 1, 2. (2)

Following the model treatment, developed by us for a modified material sur-
face (Kapelewski, 1991) for the upper component (2) (z > 0), we obtain:

T
S(kS , z) =

∑
c(i)(kS) exp(−αiz)P

(i) +T(kS) exp(−ηz), (3)

were η is the decaying coefficient.
The SW scattered wave can than be written in the following form (Kapelewski,

1991; Kapelewski, Pasternak, 1996):

uSα(k
S , z) =

∑

rs

grsαβ,γ(k
S) exp(−qrkSz)

[
∑

i

c(i)(kS)P i
βγ

qrkS + αi
+

Tβγ(k
S)

qrkS + η

]

−
∑

r

grαβ,γ(k
S)

{
∑

i

[
exp(−αiz)− exp(−qrkSz)

qrkS − αi
+

exp(−αiz)

qrkS + αi

]
c(i)(kS)P i

βγ

−
[
exp(−ηz)− exp(−qrkSz)

qrkS − αi
+

exp(−ηz)
qrkS + αi

]
Tβγ(k

S)

}

+
∑

rs

[
g
(rs)
αβ (kS) + g

(r)
αβ (k

S)
][∑

i

c(i)(kS)P i
βz + Tβz(k

S)

]
, (4)

with TS denoting the interface internal stress, Pi and αi describe, the dipole
moments of the i-th kind dilation centers and the decaying of their concentration,
respectively. The indices r and s denote the partial (longitudinal and shear)
components of the SW, 1 and 2 is to number the component solids with the
common interface.
The corresponding effective change in the elasticity tensor produced by the

static bias, in the quasi-elastic approximation, can then be written in the form:

Hαβ = T S
αγδβδ + δCS

λβγδ

∂uSα
∂xλ

+ δCS
αβλγ

∂uSδ
∂xλ

. (5)

Then the variational formula for the relative full energy shift can be expressed
by the relation

δI(kS)

P0
=

1

2ρω2

∫

V

[SβαHαβγδS
∗
γδ − δρω2|u2γ |]dV

∫

V

|u2γ | dV
, (6)
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where S(r, z) is the dynamic strain tensor produced by the incident SW consid-
ered here to be an appropriate test function. The general form of the incident
SW amplitude is given by:

u(j)α (kS , r, t) =

3∑

n=1

βn(j)α exp[−qn(j)kS |z|+ i(ωt− k
S · r)], (7)

where j = 1, 2 denotes (as in (2)) solid components of the sample separated

by the interface under consideration, β
n(j)
α are wave amplitudes of displacement

vector components, qn(j) is the partial decaying coefficient; kS – the SW wave
vector; ω – the frequency; |z| – the distance from the interface. The interface
elastic energy density outgoing from the region considered, averaged over the
period of time, can then be written:

δI(r) =
1

4

∞∫

0

D(r, z)dz − 1

4
ω2

∞∫

0

δρ(r, z)|u(r, z)|2 dz ≡
∫
I(r, z)dz, (8)

where (r, z) – the vector of position, r = (x, y), δρ(r, z) – the interface modifi-
cation of the material density and D = S H S∗ – an auxiliary quantity.
For the elastic stress tensor T(r, z) in the quasilinear approximation, we

have:
T(r, z) = C(r, z)S(r, z) (9)

with C(r, z) being the position depending elasticity tensor.
The Poynting formula for the c.w. case yields:

1

2
Re


iω

∫

S

−u
∗ ·T · n̂ dS


 = Re


iω

∫

V

δI(r, z) dV


 ≡

∫

S

Pn̂ dS, (10)

where: n̂ – versor (unit vector) of the normal to the surface S of the volume V ;
P – the Poynting vector; u – particle displacement. Having P, we are able to
calculate the attenuation of the propagating SW due to the coherent scattering
to the bulk or other SW waves (i.e. those propagating in the directions other
than the incident one).
Extending the approach for surface wave attenuation presented by Snieder

(1988) to the case of interest here, we can evaluate the attenuation coefficient by
means of the formula

γj =

4N
∑

i 6=j

Pi

ω(kS)2
(11)

with Pi = iωJi and N being the number of scatterers for unit length along the
SW propagation direction.
For simplicity of the description, we will concentrate themselves on the rea-

sonable realistic case, when the modified interface is assumed to have an effective
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acoustic impedance just near to that of the one constituent solid (2), so that the
scattering into the other solid constituent (1) is neglected (in the first approxima-
tion at least). Adopting this model assumption about the impedance matching,
the dominant contribution to the integral in Eq. (10) is provided effectively by
the clusters – solid 1 interface areas (denoted simply by Sa hereafter).
For the periodically distributed pattern, the form factor of the structure is

Ω(k) =
∑

l

eikl =
(2π)2

Sa

∑

K

δ(k −K), (12)

where K = 2πh with h being the points of the “reciprocate lattice” of the 2D
cluster distribution.
In case of apodized 2D structure, the form factor can by written

ΩA(k) =
∑

l

F (l)eikl =
(2π)2

Sa

∑

K

F (k−K), (13)

where F (l) can be viewed as the apodization rule.
The respective variational formula for the scattering (ks →k) coefficient can

be presented in the following form (Kapelewski, 2004)

R(k,kS) = Re
iω

P

∫ [
S
∗(k, z)δH(k − k

S , z)SS(ks, z)

−δρ(k− k
S , z)ω2

u
∗(k, z)uS(kS , z)

]
dz. (14)

For the first term in (14) we can write:

∫
S
∗
0(k, z)δH(k− k

s, z)SS
0 (k

S , z)dz = S
∗
0(k)H0S

S
0 (k

S)f̃ t1(k− k
s) (15)

with S0, H0 denoting, respectively, the amplitude of the strain and the value of
H taken at z = 0 is given by

f̃ t1(k) =

∫
f(k, z)dz. (16)

The second term is then given in the same way (with f1 → f2) according to
Eqs. (3)–(5). Denoting both f1 and f2 by F , we have then

F̃ (k− k
s, z) =

∑

l

F (l, z)ei(k−ks)·l =
∑

K

F (k− k
s −K, z). (17)

From the Poynting formula taken for all the structure, we then finally obtain:

δI(k) =
1

4

∑

K

∫ [
D(K, z)f(k −K, z)− ω2ρ0 |u(K, z)|2 c(k−K, z)

]
dz. (18)
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The effective contribution to Eq. (18) is provided only by those components
of K (i.e. for those “lobes”) for which the dynamic matching conditions

kSα = kα −Kα, α = x, y (19)

with

kx = k(m) sin θ cosϕ, ky = k(m) sin θ sinϕ (20)

are satisfied, and the superscript (m) denotes the appropriate bulk or interface
modes, θ and ϕ are angles in the spherical coordinate system.
Let us notice that the scattering of the incident SW to an interface wave prop-

agating in another direction (then expressed by ϕ), within its angular range of
existence, is given directly by taking θ = π/2. δI(k) is the 2D Fourier transformed
density of the elastic energy associated with the modified material interface given
(according to Eqs. (8) and (10) by

δI(r) = −1

2

∫
T(r, 0)u∗(r, 0) · n̂dS (21)

In Eq. (18) D(k, z) = SC0S
∗f(k, z) and, in accordance with the model

form given by Eq. (3), ρ = ρ0
∑
c(i)(k) exp(−αiz) ≡ ρ0c(k, z). The apodiza-

tion (weighting) can be effected by controlling c(k, z).
Taking into account the foregoing effect of SW attenuation (for the case

without apodization), Eq. (18) can be written:

δI(k) =
1

4

∑

K

∫
δB(k

′ −K)
∫∫ [

S(k, z)C0S
∗(k− k

′, z)f(k′, z)−

− ω2ρ0u(k, z)u
∗(k− k

′, z)c(k′, z)
]
dk′ dz, (22)

where δB is the tempered δ-function defined as

δB(kj −Kj) =
2γj

γ2j + (kj −Kj)2
, j = x, y (23)

and γj is the attenuation parameter along the SW propagation direction j.
In effect, Eq. (12) should be replaced by

Ωmod(k) =
∑

l1, l2

eikl−γ1|l1|−γ2|l2| =
(2π)2

Sa

∑

K

δB(k−K). (24)

For the limiting case of γx, γy → 0, we have δB → δ, and (18) takes the “classical”
form.
Having the array contribution to the interface and the dynamic stress tensor

T(r), we are able to calculate the displacement field in the solid 2 by means of
the Helmholtz-type formula, adapted in the Morse and Feshbach (1953) way
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to the solid support of the wave. For case considered here it can be rewritten in
the form:

u
(2)
λ (r) =

∫

S

∑

L

[
−nβTαβ(r′)G(2)

αλ(r− r
′)

+nβδCαβγδ(r
′)uα(r

′)G
(2)
δλ,γ(r− r

′)
]
δ(r′ − L)dr′

=
∑

L

[
nβTαβ(L)G

(2)
αλ(L− r)− nβδCαβγδ(r)uα(r)G

(2)
δλ,γ(L− r)

]
(25)

with

Tαβ(r) = Tαβ(r)e
ikr, uα(r) = u0αe

ikr (26)

and n denoting the direction normal to the surface, G(2) is the part of the so
called interface Green’s function (IGF) corresponding to the specified component
solid denoted here by 2 for the unperturbed two-solids system.
The 2D Fourier transformed IGF can be written in the form (Kapelewski,

Pasternak, 1996; 1999):

G̃αβ(k, z, z
′) =

∑

k=1,2,3

δαβg(1)
k
β(k)e

−αk |z−z′|

+
∑

k=1,2,3
l=1,2,3 (1)
1′,2′,3′ (2)

g(2)klαβ(k)e
−αk |z|+αl|z

′|, (27)

where αk =
√
k2 − ω2/υ2k, k is the number of the bulk modes involved.

Taking the 2D Fourier transform of Eq. (25), we arrive at the formula

u
(2)
λ (k, z) =

∑

K

∫
nβ

[
−G(2)

αλ(k; z, z
′)T 0

αβ(k−K)

+u0α(k−K)δCαβγδ(k)G
(2)
γλ,δ(K; z, z′)

]
dz′ (28)

determining the coherently scattered wave. The angular dependence of Eq. (15)
expresses the respective directivity patterns for the Fourier transformed Poynting
vector P(k) (see Eq. (10)).
Results of exemplary numerical simulations, realized for chosen pairs of isotro-

pic materials, are pictured in Fig. 1. For both the used materials, the Weichert’s

criteria (Claus, 1978)
λL1
λL2

=
µL1
µL2

=
ρ1
ρ2
(λL, µL1 – the Lame constants), have

beeen assumed.
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Fig. 1. Exemplary normalized profile of power conversion ratio for shear (a) and longitudinal (b)
bulk waves. Cluster-solid 2 interfaces are of the circular shape (r = 0.25λ). The Gaussian depth
profile (zn = 0.2λ, dn = 0.3λ), µ1/µ2 = 0.339, ρ1/ρ2 = 0.352. In the cluster area µ3 = 1.08µ1

and ρ3 = 1.1ρ1.

3. Conclusions

The approach presented deals with a specific physical situation when the
2D phased array plays a role of a kind of an acoustic interface antenna for the
anticipated NDE application. The array is assumed to be composed of clusters
having material parameters slightly different to those of the host which can be
both abrupt and slowly varying, even within particular clusters areas. Given
the impurity kind and concentration of the dilation of the perturbed, specifi-
cally varying, elastic parameters can essentially be determined from the static
equilibrium equation, which we expressed indirectly by means of the 2D Green’s
function in terms of the so called interface fluctuation waves. Being especially
well fitted to the dipole-force model of the impurity distribution, it makes the
problem tractable in analytical terms.
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For simplicity, both the solids have been assumed in the tentative numerical
simulation (Fig. 1) to be isotropic. The incident interface wave itself was consid-
ered to be excited externally (i.e. without using interdigital transducers), so the
substrate solid itself need not to be piezoelectric.
The proposed treatment seems to be useful for modelling and optimization

of the bulk waves scattered by various arrays of interface clusters of the type
considered here. The approach can readily be extended to describe 3D focussing
and beam-forming of the bulk waves coherently scattered into the depth by
the mechanism under consideration (both are then governed by the frequency
modulation of the incident SW) for the anticipated use in NDE of the bulk
material used. The treatment of some related problems are now being under
way.
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