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Nonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We focus
on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound
in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity
permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion
of a flow. Magnetoacoustic heating and streaming in the field of periodic and aperiodic magnetoacoustic
perturbations are discussed, as well as generation of the magnetic perturbations by sound. Two cases,
corresponding to magnetosound perturbations of low and high frequencies, are considered in detail.
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1. Introduction

Magnetohydrodynamic phenomena in conducting
fluids attract attention of researchers in cosmic
physics, geophysics, plasma physics, physics of con-
trolled thermonuclear fusion, and hypersonic aerody-
namics. Magnetic strength, which is not strictly par-
allel to the fluid velocity, enlarges the fluid’s stiffness;
this in turn enlarges the speed of sound (Herlofson,
1950; Truesdell, 1950). Acoustic anisotropy of mag-
netic media is the most important issue which essen-
tially complicates the mathematical context of magne-
tohydrodynamics (MHD). It was established in 50-ties
of the last century that finite conductivity of plasma
introduces dispersion and absorption (dependent on
frequency) of sound planar waves whose propagation
direction is perpendicular to the direction of the mag-
netic field (Anderson, 1953). This is the physical dis-
persion which appears due to magnetic effects. We do
not consider in this study geometrical dispersion which
follows propagation of waves in bounded volumes and
waveguides, and which in fact introduces the charac-
teristic length scale in addition to the wavelength of
perturbations (Leble, 1991). An unbounded volume of
gas is considered. We do not consider dispersion caused
by external forces or specific heating/cooling which
make the background of wave propagation non-uniform

either. These effects are well-studied in the context of
MHD and have been discussed in many papers, see for
example (Anand, Yadav, 2014; Vincenti, Baldwin
Jr, 1962; Ponomarev, 1961; Fabian et al., 2005).
Magnetoacoustic travelling waves transport energy

and momentum. They can heat or accelerate the
plasma. Making use of that, we may conclude about
properties of plasma observing magnetoacoustic heat-
ing and streaming. The experimental data may serve
as a unique tool for plasma diagnostics. The obliga-
tory conditions for transporting energy and momen-
tum from wave motion into the entropy and vortex
modes are both nonlinearity and attenuation. In this
study, we account for attenuation and dispersion which
originate exclusively from the finite electrical conduc-
tivity of a plasma. Newtonian attenuation due to shear
and bulk viscosity, as well as thermal conductivity or
any internal relaxation processes in a gas, are left out
of account.
The primary intention is to describe the nonlin-

ear distortions of the magnetoacoustic wave itself. The
nonlinear distortion of planar sound in which gas par-
ticles move perpendicularly to magnetic field are well-
established in the case of perfectly conducting gas, in-
volving waveforms with discontinuities (Singh et al.,
2011; 2012; Sharma et al., 1987; Geffen, 1963).
A short review of the problems relating to wave propa-
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gation with consideration of nonlinear phenomena may
be found in the study (Shyam et al., 1981). As for gases
with finite electrical conductivity, there is evident lack
in the nonlinear description, though the linear disper-
sion relation, which in fact determines linear dynam-
ics of magnetoacoustic perturbations, has been estab-
lished long ago by Anderson (1953). This lack may be
probably explained by frequency-dependent behaviour
which makes non-linear analysis without additional
simplifications difficult (Krishna Pasad et al., 2014)
and many other conditions of fluid flows in a plasma
which have come into notice of researchers. Ander-
son (1953) considers weak magnetic strength and lin-
ear evolution, which in fact makes the results limited
and valid in the leading order.
Once nonlinear dynamics of magnetosound wave

is established, its nonlinear losses in energy and mo-
mentum may be considered. The nonlinear interaction
of magnetohydrodynamic waves has been the subject
of interest of numerous authors (Sagdeev, Galeev,
1969; Petviashvili, Pokhotelov, 1992; Shukla,
Stenflo, 1999; Brodin et al., 2006). We may men-
tion Ponomarev (1961) who has attracted attention
to nonlinear transfer of energy between magnetohydro-
dynamic waves and other types of waves in plasma with
finite conductivity (Ponomarev, 1961). Amplification
of Alfvén wave due to nonlinear interaction with a
magnetoacoustic wave has been discovered recently in
(Zavershinsky, Molevich, 2014). Usually, an anal-
ysis concerns three-wave interactions and depends on
spectra of interacting waves. The review by Ballai
(2006) summarises knowledge on nonlinear waves in so-
lar plasmas. It also considers nonlinear resonant waves.
In contrast, the method which has been applied by

the author in a number of hydrodynamic problems con-
cerning flows of fluids with various attenuation, does
not sort with spectra of interacting waves but allows
to derive a set of dynamic equations which are valid
for any kind of interacting modes, see, for example,
(Perelomova, 2006). The description of nonlinear in-
teraction of different types of magnetohydrodynamic
motions imposes resolution of some issues:
1) to determine the MHD modes in a flow of
infinitely-small perturbations, as linear links be-
tween specific perturbations;

2) to derive the leading-order nonlinear equations
which describe coupling of modes in weakly non-
linear flow;

3) to solve them relating to the physical context of a
problem.
The main idea is to establish linear projectors

which distinguish in the total perturbations only one
specific mode. They also eliminate all other modes in
the linear parts of dynamic equations while applying
on the system of conservation equations in the differ-
ential form. On the whole, the procedure appoints a se-
quence of actions to obtain results as a series in powers

of the Mach number M with any desired accuracy. All
evaluations in this study are made within accuracy up
to quadratic nonlinear terms, that is, up to terms pro-
portional toM2, which are of the major importance in
weakly nonlinear fluid flows. The corrected nonlinear
links recalling that in the Riemann wave will be estab-
lished, and equations which describe generation of the
secondary modes in the dominative magnetoacoustic
field, will be derived and discussed.

2. Magnetoacoustic and non-wave modes
in a planar flow of infinitely-small magnitude

2.1. PDEs describing planar flow of a conducting gas

We consider a planar flow of a gas whose velocity
v(x, t) is perpendicular to the magnetic field strength
H = (0, 0,H(x, t)), where t and x denote time and
Carthesian coordinate indicating the axis orthogonal
to the magnetic field, respectively. The magnetic field
is evidently solenoidal, ∇ · H = 0. The hydrody-
namic flow equations (Korobeinikov, 1976) will be
the starting point:

∂ρ

∂t
+
∂ρv

∂x
= 0 (1)

for mass,

ρ

(
∂v

∂t
+ v

∂v

∂x

)
+
∂p

∂x
+
∂h

∂x
= 0 (2)

for momentum,

∂s

∂t
+ v

∂s

∂x
= 0 (3)

for entropy s, and

∂h

∂t
+v

∂h

∂x
+2h

∂v

∂x
+β

(
−∂

2h

∂x2
+

1

2h

(
∂h

∂x

)2
)

= 0 (4)

for the magnetic pressure h, where

h = µH2/2,

ρ, p are density and pressure of a gas, respectively. In
Eq. (4), β = (µσ)−1, µ is the magnetic permeability,
and σ is the electrical conductivity of a fluid. Equa-
tion (4) readily follows from the equation

∂H
∂t

−∇× (v×H) = β∆H.

2.2. Projecting of the total perturbation
into specific modes

Equations (1)–(4) should be completed by the
caloric equation of state and the thermodynamic
identity for equilibrium thermodynamic processes,
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T ds = de+ p d(ρ−1) (T denotes temperature). We
make use of the internal energy e of an ideal gas:

e =
p

(γ − 1)ρ
,

where γ is the ratio of specific heats under constant
pressure and constant density. The unperturbed quan-
tities will be marked by subscript 0, and all distur-
bances will be primed. Perturbations are developed
against the motionless background with v0 = 0. In
terms of velocity and perturbations in density, pres-
sure, and magnetic pressure, Eqs. (1)–(4) take the
leading-order form:

∂ψ

∂t
+ Lψ = ψnl, (5)

where

ψ =


ρ′

v

p′

h′

,

L =



0 ρ0
∂

∂x
0 0

0 0
1
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∂

∂x

1

ρ0

∂

∂x

c20ρ0
∂
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0 0 0

2h0
∂

∂x
0 0 −β ∂2

∂x2
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, (6)

ψnl =
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2h0

(
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,

and c0 denotes the infinitely small signal sound speed
c in an ideal gas at unperturbed thermodynamic state
p0, ρ0 in the absence of magnetic field,

c =

√
γp

ρ
.

The linear system

∂ψ

∂t
+ Lψ = 0 (7)

determines four eigenvectors. Two of them correspond
to the magnetoacoustic modes which propagate in the

positive direction of axis x (first fast magnetosound
wave) or in the negative direction of axis x (second fast
magnetosonic mode): the entropy mode (third) and the
Alfvén wave, which is stationary in the case of perpen-
dicular to velocity magnetic field (ordered as fourth).
The analysis of Eq. (5) in the context of nonlinear ef-
fects of sound depends on frequency of the dominativ-
ing sound.

2.3. Low frequencies

This case concerns nonlinear effects of sound with

βω
c2m,0 − c20
c4m,0

� 1, (8)

where

cm =
√
c2 + c2A, cA =

√
2h/ρ

denote the magnetosonic speed and the Alfvén speed,
respectively, and cm,0 denotes cm at the unperturbed
state p0, ρ0. No restrictions concerning the small-
ness of unperturbed magnetic pressure h0, and, hence,
c2m,0/c

2
0 − 1 have been set. Considering any perturba-

tion as a planar wave proportional to exp(iωt − ikx),
one arrives at dispersion relations

ω1 = cm,0k +
iβ(c2m,0 − c20)

2c2m,0

k2,

ω2 = −cm,0k +
iβ(c2m,0 − c20)

2c2m,0

k2,

ω3 = 0,

ω4 =
iβk2c20
c2m,0

.

(9)

The total perturbation is actually a sum of specific dis-
turbances which represent the eigenvectors correspon-
dent to eigenvalues −iωn (n = 1, . . . , 4):

v =

4∑
n=1

vn =
cm,0

ρ0
ρ′1 −

β(c2m,0 − c20)

2c2m,0ρ0

∂ρ′1
∂x

− cm,0

ρ0
ρ′2 −

β(c2m,0 − c20)

2c2m,0ρ0

∂ρ′2
∂x

− βc20
c2m,0ρ0

∂ρ′4
∂x

,

p′ =

4∑
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p′n = c20ρ
′
1 + c20ρ

′
2 + c20ρ

′
4, (10)

h′ =
4∑

n=1

h′n =
2h0
ρ0

ρ′1 −
β(c2m,0 − c20)

cm,0

∂ρ′1
∂x

+
2h0
ρ0

ρ′2 +
β(c2m,0 − c20)

cm,0

∂ρ′2
∂x

− c20ρ
′
4.
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Index in summation n denotes ordering number of the
specific mode. The entropy mode is isobaric. Equa-
tions (10) are evaluated with accuracy up to terms
proportional to β0 and β1 inclusively. Hence, we con-
sider weak dispersion of the flow, and correspondent
weak attenuation following dispersion. The rows which
distinguish excess densities specifying the third and
fourth roots,

P3(ρ
′ v p′ h′)T = ρ′3,

P4(ρ
′ v p′ h′)T = ρ′4,

(11)

may be readily established:

P3=

(
1 0 − 1

c20
0

)
,

P4=

(
0 −

(c2m,0−c20)ρ0β
c4m,0

∂

∂x

1

c20
− 1

c2m,0

− 1

c2m,0

)
.

(12)

They are also evaluated with accuracy up to terms
proportional to β0, β1. P3, P4 reduce all terms of the
other modes when applying in system (5). They yield
the linear dynamic equations for ρ′3 and ρ

′
4, respec-

tively.

2.4. High frequencies

Another limiting case is represented by inequa-
lity

βω ≡ B−1ω � c2m,0 − c20. (13)

We will conditionally call this limit “high-frequency”:
this case concerns also weak magnetic strengths,
c2m,0/c

2
0 − 1 � 1. Only terms proportional to zero and

first powers of this small parameter, will be kept. All
evaluations are undertaken with accuracy up to zero
and first powers of B, B0, and B1. Recalling all steps
described in the subsection before, one arrives at the
dispersion relations

ω1 = c0k + i
B

2
(c2m,0 − c20),

ω2 = −c0k + i
B

2
(c2m,0 − c20),

ω3 = 0,

ω4 =
ik2

B
− iB(c2m,0 − c20).

(14)

The total perturbation represents a sum of specific
perturbations:

v =

4∑
n=1

vn =
c0
ρ0
ρ′1 +

B(c2m,0 − c20)

2ρ0

∫
ρ′1 dx

− c0
ρ0
ρ′2 +

B(c2m,0 − c20)

2ρ0

∫
ρ′2 dx− B

ρ0

∫
h′4 dx,

p′ =

4∑
n=1

p′n = c20ρ
′
1 + c20ρ

′
2, (15)

h′ =
4∑

n=1

h′n = Bc0(c
2
m,0 − c20)

∫
ρ′1 dx

−Bc0(c
2
m,0 − c20)

∫
ρ′2 dx+ h′4.

The limits of integration should be chosen in accor-
dance with the physical context of a flow. As usual,
the magnetoacoustic perturbations for the first mode
vanish at plus infinity, so the lower limit of integration
equals ∞, and the upper one equals x. The projector
P3 is the same as in the low-frequency case, and the
projector which distinguishes the magnetic pressure
in the fourth mode, takes the form

P4,h =

(
0 −B(c2m,0 − c20)ρ0

∫
dx 0 1

)
. (16)

We will consider the non-linear generation of two
non-wave modes by the dominative planar and quasi-
planar sound in Secs. 4, 5. The main idea is to make
use of linear definition of specific modes and to apply
projecting in order to eliminate all other terms in the
linear parts of dynamic equations.

3. Nonlinear corrections in magnetoacoustic
perturbations and dynamic equations

Projection gives a possibility to derive weakly non-
linear equations because it distributes nonlinear terms
in ψnl between dynamic equations in a proper way.
Making use of the physical conditions of a flow, the
nonlinear terms which include cross contributions of
all modes, may be selected. Among the most meaning-
ful problems of nonlinear interactions sound is dom-
inative, and only acoustic nonlinear terms may be
considered among all variety of nonlinear terms. For
definiteness, the first magnetoacoustic mode will be
treated as dominative. This means that magnetoa-
coustic perturbations are much larger than that of
the non-wave modes over spatial and temporal do-
mains which are considered. This in fact determines
spacial and temporal domains where results are valid.
The nonlinear terms in dynamic equations for the non-
wave modes form some kind of “acoustic forces”; they
originate from loss in acoustic momentum and en-
ergy and may be readily established making use of
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projecting. The Riemann wave is known to be the
waveform which is an exact solution of the conserva-
tion equations in flow of an ideal gas. The correspon-
dent nonlinear links in the dominative magnetoacous-
tic wave should be established; they are necessary for
correct distribution of the nonlinear terms between dy-
namic equations in the leading order by use of project-
ing.

3.1. Low frequencies

The linear eigenvector for the progressive in the
positive direction of axis x low-frequency magnetoa-
coustic modes (when β tends to zero) takes the form:

ψ1 = (ρ′1 v1 p′1 h′1)
T

=

(
ρ0
cm,0

1
ρ0c

2
0

cm,0

ρ0(c
2
m,0 − c20)

cm,0

)T
v1. (17)

The vector with unknown constants K, L, N ,

ψ1,n = (Km 0 Lm Nm)Tv21 , (18)

corrects ψ1. The sum ψ1 + ψ1,n should result in four
equivalent leading-order nonlinear equations for mag-
netoacoustic velocity, when substituted into Eq. (5)
with β replaced with zero. The unknowns may be read-
ily established. They are:

Km =
c2m,0 − c20(γ − 2)

4c4m,0

ρ0,

Lm =
c20(c

2
m,0(2γ − 1)− c20(γ − 2))

4c4m,0

ρ0, (19)

Nm =
(c2m,0 − c20)(3c

2
m,0 + c20(γ − 2))

4c2m,0

ρ0.

In the unmagnetised gas,

K = − (γ − 3)ρ0
4c20

, L =
γ + 1

4
ρ0, N = 0.

These constants make the progressive Riemann’s wave
isentropic in the leading order (Rudenko, Soluyan,
1977); they also yield the parameter of nonlinearity

ε =
γ + 1

2
.

The parameter of nonlinearity, which is responsible for
distortions of magnetoacoustic wave, see also paper by
Sharma et al. (1987), equals

εm =
3c2m,0 + c20(γ − 2)

2c2m,0

.

The dynamic equation which accounts for nonlinear
distortions and attenuation recalls the Burgers equa-
tion in newtonian fluids:

∂v1
∂t

+ cm,0
∂v1
∂x

+ εmv1
∂v1
∂x

−
(c2m,0 − c20)β

2c2m,0

∂2v1
∂x2

= 0. (20)

Attenuation of magnetoacoustic wave depends in gen-
eral on unperturbed magnetic pressure, h0, by means
of cm,0, and electrical conductivity and magnetic per-
meability, by means of β. This distinguishes Eq. (20)
from the Burgers equation for the newtonian fluids,
where attenuation depends on the summary damping
due to shear, bulk viscosity, and thermal conduction.
Solutions of Eq. (20) may be established by the well
known methods: the Burgers equation readily trans-
forms into the linear diffusion equation by the Hopf-
Cole transformation (Rudenko, Soluyan, 1977). The
stationary solutions in the form of a shock wave which
propagates with linear magnetoacoustic speed or with
a different one, are also well known.

3.2. High frequencies

In this case, nonlinear corrections may be estab-
lished by use of the same procedure which was de-
scribed in the previous subsection. The nonlinear cor-
rections in ψ1 (when B tends to zero),

ψ1 = (ρ′1 v1 p′1 h′1)
T

=

(
ρ0
c0

1 ρ0c0 0

)T
v1, (21)

are determined by constants K, L, N for unmagne-
tised gas. The parameter of nonlinearity also takes an
unmagnitised value. The dynamic equation for velocity
takes the form:

∂v1
∂t

+ c0
∂v1
∂x

+ εv1
∂v1
∂x

+
B

2
(c2m,0 − c20)v1 = 0. (22)

It may be rearranged into a pure nonlinear equation in
the new variables

ṽ1 = exp(B(c2m,0 − c20)x/(2c0))v1,

X = −
2c0
[
exp(−B(c2m,0 − c20)x/2c0)− 1

]
B(c2m,0 − c20)

,

τ = t− x/c0

with the leading-order result

∂ṽ1
∂X

− ε

c20
ṽ1
∂ṽ1
∂τ

= 0. (23)

Methods of solution of pure nonlinear equation
Eq. (23) before and after forming of the discontinu-
ities, are well known (Rudenko, Soluyan, 1977). It
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is interesting to note that Eq. (22) describes sound in
many other cases of thermodynamic relaxation of in-
ternal degrees of freedom in gases (Osipov, Uvarov,
1992). Also, it appears in open systems with external
heating/cooling and, with negative coefficient standing
by v1, describes sound in acoustically active media.

4. Evolution of non-wave modes in the field
of magnetoacoustic wave

The projecting rows P3 and P4 eliminate terms
specifying other modes in the linear part of Eq. (5)
which describes dynamics of ρ′3 or ρ

′
4. They apply also

to ψ+ψnl. Only terms belonging to the first progressive
mode will be considered among all variety of nonlinear
terms in ψnl. The terms which form the “magnetoa-
coustic forces” of the secondary modes originate from
the nonlinear magnetoacoustic terms proportional to
β (or B) in the initial Eq. (5), and from the terms
proportional to β (or B) in the projectors.

4.1. Low frequencies

Application of P3 yields an equation which governs
an excess density in the entropy mode:

∂ρ′3
∂t

=β(γ−1)ρ0
(c2m,0 − c20)

2c4m,0

((
∂v1
∂x

)2

+ v1
∂2v1
∂x2

)
. (24)

Making use of P4, we obtain the governing equation for
an excess density corresponding to the fourth mode:

∂ρ′4
∂t

− βc20
c2m,0

∂2ρ′4
∂x2

= βρ0
(c2m,0 − c20)

2c6m,0

·
(
3c20(γ − 2)− c2m,0γ

)
·

((
∂v1
∂x

)2

+ v1
∂2v1
∂x2

)
. (25)

Equations (24), (25) describe nonlinear effects pro-
duced by periodic or aperiodic magnetoacoustic per-
turbations. They are not averaged over the sound pe-
riod. On the other hand, v1 should satisfy Eq. (20).
Equation (24) may be integrated over time for approx-
imately progressive with the speed cm,0 magnetoacous-
tic perturbation with the result:

ρ′3 = −β(γ − 1)ρ0
(c2m,0 − c20)

2c5m,0

v1
∂v1
∂x

. (26)

The acoustic forces of heating and magnetic pertur-
bation in the right-hand sides of Eqs. (24), (25) are
neglible quantities in the case of nearly periodic sound
since they equal zero on average. That is surprising in
view of the fact that the dispersion relations, dynamic
equation for sound, and links of p′1, v1 and ρ

′
1 overlap

in their form with those for newtonian flows (Eqs. (9),
(10), (20)) (Perelomova, 2008). This is conditioned
by the absence of nonlinear term proportional to β
in the dynamic equation for excess pressure analogous
to newtonian attenuation. On the contrary, acoustic
force of heating in a newtonian flow is proportional to(
∂v1

∂x

)2
, which makes it almost constant on average for

periodic perturbations. Hence, it depends on the sound
intensity and total attenuation but does not depend on
frequency of sound.

4.2. High frequencies

In the high-frequency limit, the dynamic equations
which govern secondary modes, follow by making use
of P3 and P4,h:

∂ρ′3
∂t

=−B(γ−1)ρ0
(c2m,0−c20)

2c20

(
v21+

∂v1
∂x

∫
v1 dx

)
, (27)

and
∂2h′4
∂x2

−B
∂h′4
∂t

= O(B2). (28)

The generation of magnetic pressure is a weak effect
for both periodic and aperiodic magnetoacoustic per-
turbations, as well as for the magnetoacoustic heating.
The acoustic force of heating is proportional to both
small parameters, B and (c2m,0− c20)/c20. Equation (27)
may be readily integrated with the leading-order re-
sult, which is almost zero on average for the periodic
sound:

ρ′3 = B(γ − 1)ρ0
(c2m,0 − c20)

2c20cm,0

(
v1

∫
v1 dx

)
. (29)

5. Magnetoacoustic streaming
in a two-dimensional quasi-planar flow

We consider now velocity in the pane (x, y), that
is, v = (vx(x, y, t), vy(x, y, t), 0) perpendicular to
magnetic field H = (0, 0, Hz(x, y, t)). We also con-
sider a weakly diffracting magnetoacoustic beam which
propagates, for definiteness, in the positive direction
of axis x. A flow is characterised by a small parameter
which accounts for diffraction and measures the ratio
of characteristic scales of perturbations in the longi-
tudinal and transversal directions (that is, the ratio
of characteristic wavelenghts of sound and radius of
a transducer), µ = ky/kx, so that

√
k2x + k2y ≈ kx

(
1 +

k2y
2k2x

)
,

etc. The analog of the Khokhlov-Zabolotskaya-
Kuznetsov equation, which describes propagation of
the weakly diffracting sound beam in a newtonian fluid
(Rudenko, Soluyan, 1977), may be written on for
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the magnetoacoustic beam. In the case of the low-
frequency sound, it describes the longitudinal velocity
in the magnetoacoustic beam:

∂v1,x
∂t

+ cm,0
∂v1,x
∂x

+ εmv1,x
∂v1,x
∂x

−
(c2m,0 − c20)β

2c2m,0

∂2v1,x
∂x2

+ cm,0
∂2

∂y2

∫
v1,x dx = 0. (30)

As for the vortex motion, it is determined by the fifth
root of dispersion relation, ω5 = 0, which corresponds
to the solenoidal flow,∇ ·v5 = 0. The solenoidal veloc-
ity attributable to the vortex flow may be decomposed
from the total one by applying of the operator Pvor at
the vector of the total velocity:

Pvorv = ∆−1


∂2

∂y2
− ∂2

∂x∂y

− ∂2

∂x∂y

∂2

∂x2




5∑
n=1

vn,x

5∑
n=1

vn,y



=

 v5,x

v5,x

. (31)

Applying Pvor at the two-dimensional momentum
equation and considering the first magnetoacoustic
wave as dominative, one arrives to the equation gov-
erning velocity of magnetoacoustic streaming:

∂v5
∂t

= − 1

ρ0
Pvor

(
ρ′1
∂v1
∂t

)

= β
c2m,0 − c20
2cm,0ρ20

Pvorρ
′
1∇

∂

∂x
ρ′1. (32)

The averaged form of equation which describes the lon-
gitudinal component of the streaming velocity in the
case of the periodic magnetoacoustic wave may be ex-
pressed in terms of magnetoacoustic pressure:

∂v5,x
∂t

= Fm,s = β
c2m,0 − c20
2c7m,0ρ

2
0

(
∂p′1
∂t

)2

. (33)

Fm,s overlaps in its form with the acoustic force of
streaming in a newtonian fluid (Perelomova, 2006;
Makarov, Ochmann, 1996). The upper line denotes
averaging over the sound period. The details of the
evaluations in the case of a newtonian fluid may be
found in (Perelomova, 2006;Makarov, Ochmann,
1996; Perelomova, Wojda, 2010). The longitudi-
nal velocity of streaming is directed according to the
course of sound and enhances in time. The magnetoa-
coustic streaming induced by the high-frequency sound
is fairly weak.

6. Concluding remarks

This study brings out some features of the gener-
ation of slow modes by the dominative sound in the
magnetogasdynamic flow perpendicular to the mag-
netic field. Weakly nonlinear Eqs. (24), (25), (27),
(28), (32) are the main results of the study. They are
valid for periodic and aperiodic sound and describe
evolution of the non-wave perturbations in the field
of dominative sound independently on its spectrum
(in the frames of the starting points). This makes the
method different from the usual methods of seeking
a solution as the series of harmonics and resolving
of coupling equations for exactly satisfied resonance
conditions with some desired accuracy (Brodin et al.,
2006; Zavershinsky, Molevich, 2014).
The nonlinear effects of “low” and “high” frequency

acoustic planar and quasi-planar waves are considered.
These both cases formally coincide if

c2m,0 − c20 � ωβ �
c4m,0

c2m,0 − c20
.

This may be satisfied at extremely small magnetic
strength. The leading-order dispersion relations in this
case are simply

ω1 = c0k, ω2 = −c0k, ω3 = 0, ω4 = iβk2.

This case differs slightly from the case of an unmagni-
tised flow. The weak dispersion followed by weak at-
tenuation of magnetoacoustic perturbations is consid-
ered in this study as a reason for nonlinear distortion
of sound and its coupling with the non-wave modes.
This case is the most important in view of large spatial
and temporal domains over which the magnetosound
perturbations may be considered as dominative. Oth-
erwise, magnetosound wave quickly decays.
The dispersion relations in the case of small mag-

netic strength, c2m,0/c
2
0 − 1 � 1, and without any re-

strictions on magnetic permeability β, are

ω1 = c0k +
(c0 + iβk)kh0
c20ρ0 + β2k2ρ0

,

ω2 = −c0k −
(c0 − iβk)kh0
c20ρ0 + β2k2ρ0

,

ω3 = 0,

ω4 = iβk2 − 2iβh0k
2

c20ρ0 + β2k2ρ0
.

(34)

They readily determine modes inherent to this flow. In
particular, the first magnetoacoustic mode takes the
form
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ψ1 = (ρ′1 v1 p′1 h′1)
T

=

ρ0
c0

− 2h0
βc20

x∫
−∞

exp(−c0(x− x′)/β)dx′

1 ρ0c0 −
h0
β

x∫
−∞

exp(−c0(x− x′)/β)dx′

2h0
β

x∫
−∞

exp(−c0(x− x′)/β)dx′

T v1.
The equation which governs magnetosound velocity,
takes the form

∂v1
∂t

+ cm,0
∂v1
∂x

+ εmv1
∂v1
∂x

+
h0
βρ0

·
x∫

−∞

∂v1(x
′, t)

∂x′
exp(−c0(x−x′)/β)dx′ = 0. (35)

The projecting rows into the fourth mode will take the
form of double integrals with the limits which follow
from the physical context of the flow, usually from ∞
till x. In view of that, further analysis of the nonlin-
ear effects of sound is fairly difficult. Despite of this
there are no obstacles to deriving coupling evolution
equations making use of the method of projecting with
an accurate account for dispersion caused by electrical
conductivity.
The main conclusions about efficiency of nonlin-

ear excitation of non-acoustic modes can be drawn
without precise analysis. The dispersive properties of
sound (established by Eqs. (34)) differ from that in the
Maxwellian fluids with typical thermodynamic relax-
ation. In particular, the phase sound speed decreases
with increasing wavenumber k (or, equivalently, in-
creasing frequency ω), and attenuation is frequently-
independent at large frequencies. The strongest attenu-
ation of sound occurs at frequency c20/β. I has been dis-
covered that strong interaction between magnetic and
hydrodynamic energies occurs at frequencies less than
the frequency of maximum attenuation (Anderson,
1953). If it does not happen to low-frequency range, it
is hardly expected to happen at other domain of fre-
quencies. Magnetoacoustic heating and generation of
the magnetic pressure in the Alfvén wave are expected
to be insignificant when excited by periodic sound
of any frequency or by the impulse sound. Acoustic
streaming (excitation of mean stream in a gas) is sim-
ilar to that in a newtonian fluid and is pronounced
at low frequencies. The beam which is considered in
Sec. 5, is actually transmitted by a rectangular trans-
ducer. That essentially simplifies the mathematical
context as compared with a beam with circular cross-
section: velocity of fluids in a beam with cylindrical

symmetry cannot be perpendicular to one-dimensional
magnetic field.
We do not consider in this study shear, bulk vis-

cosity and thermal conductivity of a gas. These effects
impose on those which are introduced by dispersion
caused by electric conductivity of a plasma. In partic-
ular, they are of most importance in acoustic heating in
a plasma. The conclusions concern also conducting liq-
uids. Equations (24), (25), (26) are longer valid with
γ denoting the adiabatic coefficient of liquid. As for
mercury, a magnetic flux density H of 2.4 teslas yields
absorption maximum about 0.5 nepers per wavelength
at 5 · 105 Hz. Water is much less conducting, and fre-
quency of the strongest attenuation in it is very low,
approximately 5 Hz (Anderson, 1953).
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