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The parametric anti-resonance phenomenon as an active damping tool for suppression of externally
excited resonant vibration is numerically studied herein. It is well known fact that the anti-resonance
phenomenon, i.e. the stiffness periodic variation by subtractive, combination resonance frequency, brings
stabilization and cancelling into self-excited vibrations. But this paper aims at a new possibility of its
application, namely a damping of externally excited resonant vibration. For estimation of its effect we
come both from a characteristic exponent of the analytical solution and numerical solution of forced
vibration of 2DOF linear system with additional parametric excitation. The amplitude suppression owing
to the parametric anti-resonance is studied on several parameters of the system: a depth of parametric
excitation, mass ratio, damping coefficient and small frequency deviations from the parametric anti-
resonance.
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1. Introduction

This contribution deals with next possibilities of
an application of the additional parametric excitation
(Tondl, 2012) as a tool for the suppression of vibra-
tion. By adding the parametric excitation, the equa-
tions of motion are governed by linear differential equa-
tions with periodic time variable coefficients. It is well
known that these systems can be unstable due to the
action of parametric excitation in the vicinity of the
first kind and of combination parametric resonances
(e.g. Tondl, 1959; Halanay, 1966; Mettler, 1965;
Łuczko, Czerwiński, 2015). The combination reso-
nances can be additive or subtractive. It was, however,
discovered and mathematically proven (Tondl, 1998a;
1998b; 2000b; Tondl, Ecker, 1999; Tondl et al.,
2000) that due to the stiffness periodic variation only
for additive, combination resonance the instability in-
terval can exist and that the excitation by subtractive,
combination resonance frequencies on the contrary
brings stabilization and cancelling (also called quench-
ing) into self-excited vibrations. This phenomenon is
called parametric anti-resonance. There exists a nu-
merous literature dealing with this problem where for
different systems the influence on self-excited vibration

has been analyzed (Tondl, 2000a; 2013; 2008a; 2008b;
Ecker et al., 2002; Tondl, Ecker, 2003; Tondl,
Nabergoj, 2004; Ecker, Tondl, 2004; 2005; 2007;
2011; Nabergoj et al., 2006; 2007; Dohnal, Tondl,
2009; Ecker, 2010; Pumhoessel et al., 2011; Tondl,
Pust, 2011; Pešek, Tondl, 2012; Ecker, Pumhoes-
sel, 2012). Furthermore it was shown (Tondl, Půst,
2010) that the subtractive, combination resonance can
also reduce subharmonic oscillations in externally ex-
cited systems. From these findings it is obvious that
the parametric anti-resonance excitation brings the ad-
ditional damping into the system. Therefore we de-
cided to deal herein with possibility to use paramet-
ric anti-resonance effect for suppression of externally
excited resonant vibration since it can be a remedy
for some structures that suffer by a resonant vibra-
tion as typical in many cases of rotordynamics (Pešek
et al., 2015).

2. Analytical solution of subtractive,
combination resonance
for stability analysis

Stability analysis of periodic vibrations of linear
mechanical system with additional parametric excita-
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tion by Tondl (1959) comes from quasi-normal form
of homegenous equations of motion

ẍs +Ω2
sxs = ε

[
n∑

k=1

(Psk(t)ẋk +Qsk(t)xk)

]
,

(s = 1, 2, ..., n), (1)

where Psk(t), Qsk(t) are periodic time functions with
frequency ωp, ε is a small parameter, Ωs are eigenfre-
quencies of the abbreviated linear (i.e. no coefficient
periodicity) system of n DOFs. Then the equations of
motion Eq. (1) have resonances ωp = (Ωj ± Ωk)/N
(N = 1, 2, ...). The resonances are called of the first
kind and N -th order for a case k = j and sign plus
between the eigenfrequencies. If k 6= j then the reso-
nances are called of the second kind or combination
parametric (additive or subtractive) resonances and
N -th order.
To solve Eq. (1) analytically, we transform Eq. (1)

to equations of the 1th order

ξ′s = iΩsξs

+
1

2
ε

[
n∑

k=1

(
Qsk(ξk+ηk) +

1

iΩk
Psk(ξk−ηk)

)]
,

η′s = − iΩsηs

+
1

2
ε

[
n∑

k=1

(
Qsk(ξk+ηk) +

1

iΩk
Psk(ξk−ηk)

)]
.

(2)

Floquet’s theorem designs a solution of Eqs. (2) as
functions ξs = eµsτus(τ), ηs = eµsτvs(τ), where us,
vs are periodic functions and

µs = i (Ωs + κs) (3)

is a characteristic exponent of the solution. The expo-
nent consists of the corresponding eigenfrequencyΩs of
the abbreviated system and a complex number κs. The
real part of κs contributes to the eigenfrequency and
imaginary part to the damping coefficient of the ex-
ponent. According to the asymptotic stability criteria
for small perturbations of equilibrium, the solution is
unstable when at least for one κs (s = 1, 2, ..., n) holds
that Re(iks) > 0. In the paper (Tondl, 1959) there
are solved the exponents κs and analyzed the instabil-
ity intervals both for resonances of the first kind and
combination resonances. Since the paper deals with
the possibility and conditions for vibration suppres-
sion by the subtractive, combination parametric reso-
nance |Ωj −Ωk|, we aim furthermore at the solution
and analysis of this resonance.
The analytical solution of the exponent κs for a two

degree of freedom (2DOF) vibrating linear system with
periodic changes in stiffness coefficients is developed

in (Tondl, 1959). The equations of motion of such
a system can be written in quasi-normal form as

ẍ1 +Ω2
1x1 = ε (−2δ1ẋ1 + (q1 cosωpt)x1

+ (q2 cosωpt)x2),

ẍ2 +Ω2
2x2 = ε (−2δ2ẋ2 + (Q1 cosωpt)x1

+ (Q2 cosωpt)x2),

(4)

where δ1, δ2 are modal damping constants and qi, Qi

(i = 1, 2) are modal depths of parametric modulation.
For the first approximation of the solution of (4),

it is analytically shown in (Tondl, 1959) that when
Ω2 > Ω1, δ1 > 0, δ2 > 0 and Ω1/Ω2 is not a rational
number then the exponents κs in the vicinity (±α0) of
the resonance of the second kind and the 1th order, i.e.
(Ω2 −Ω1)± α0, leads to the solution of the quadratic
characteristic equation

κ2 +

(
α0 − i

δ1 + δ2
ωp

)
κ− q2Q1

16ω2
pΩ1Ω2

−δ1δ2
ω2
p

− iα0
δ1
ωp

= 0. (5)

From this equation it is clear that the exponent κs
is dependent on a size of depth of parametric modu-
lation, on damping constants and on the parametric
excitation frequency ωp.

3. Computational model of forced vibration
with additional parametric excitation

Therefore the parametric “anti-resonance” effect is
studied on the 2DOF mechanical system. The equa-
tion of motion of the 2DOF system with parametric
excitations can be expressed as

m1ÿ1 + b1ẏ1 + k1(y1 − y2) = F cosωt,

m2ÿ2 + b2ẏ2 + k2(t)y2 − k1(y1 − y2) = 0,
(6)

where F is amplitude of harmonic excitation force of
m1 with frequency ω, mi, bi (i = 1, 2) are masses and
damping coefficients, respectively. k1, k2(t) = k20(1 +

Fig. 1. 2DOF system
with external force.
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α2 cosωpt) are constant and time-variable spring pa-
rameters. ωp is a frequency of parametric excitation
and α2 is a depth of parametric modulation and sub-
stitute here the small parameter ε of the analytical
model.
After time transformation ω1t = τ (ω2

1 = k1/m1)
and modifications of Eq. (3) we get non-dimensional
form of equations of motion:

y′′1+(y1−y2)+κ10y′1−α1F cosωτ = 0,

y′′2−M(y1−y2)+q20(1+α2 cosωpτ)y2+κ20y
′
2 = 0,

(7)

where

M =
m1

m2
, q20 =

ω2
2

ω2
1

,

ω =
ω

ω1
, ωp =

ωp

ω1
,

κ10 =
b1

m1ω1
, κ20 =

b2
m2ω1

,

α1F =
F

m1ω2
1

, ω2
2 =

k20
m2

.

For comparision with the analytical solution, the
Eqs. (4) will be transformed into quasi-normal form
by the method of modal decomposition. The Eqs. (4)
will be first rewritten into a matrix form

(K+Kpα2 cosωpτ)y +By′ + y′′ = fb cosωτ, (8)

where K, Kp and B are stiffness, parametric stiffness
and damping matrices, y, y′ and y′′ are the vectors of
displacement, velocity and acceleration, respectively.
Vector fb represents force vector. By use of the left
XL and right XR eigenvector matrices, i.e. substitut-
ing y = XRyN , y′ = XRy

′
N , y

′′ = XRy
′′
N and mul-

tiplying the Eq. (8) from the left by TXL, we get the
quasi-normal form

(kN + kpNα2 cosωpτ)yN + bNy′
N

+mNy′′
N = fbN cosωτ, (9)

where kN = TXLKXR, kpN = TXLKpXR, mN =
TXLXR, bN = TXLBXR, fbN = TXLfb. If the ma-
trices XL, XR are orthonormalized to the unit ma-
trix (TXLXR = I) then Eq. (9) can be expressed as
Eqs. (4) and its coefficients used for analytical solution
of the exponent κs given by (5).

4. Numerical solution of forced vibration
with additional parametric excitation

The vibration suppression is presented herein for
4 cases of 2DOF model parameters with the additional
parametric excitation:

a) M = 2, q20 = 1, κ10 = 0.001, κ20 = 0.05,
α2 = 0÷ 0.5, α1F = 0.1, α0 = 0,

b) M = 2, q20 = 1, κ10 = 0.05, κ20 = 0.05,
α2 = 0÷ 0.5, α1F = 0.1, α0 = 0,

c) M = 1÷ 7, q20 = 1, κ10 = 0.001, κ20 = 0.05,
α2 = 0.2, α1F = 0.1, α0 = 0,

d) M = 2, q20 = 1, κ10 = 0.001, κ20 = 0.05,
α2 = 0.2, α1F = 0.1, α0 = −0.28÷ 0.28.

The eigenfrequencies of the undamped system
(M = 2, q20 = 1, κ10 = κ20 = 0) are Ω1 = 0.5176,
Ω2 = 1.9319 and then the anti-resonance frequency
ωp = η = Ω2 −Ω1 = 1.4142. The results after time in-
tegration of Eqs. (7) for sweep excitation (ω̇ = 2e−4 in
frequency range ω = 〈0.2, 1〉) and for different values
of a selected parameter (underlined for each case) are
summarized graphically in Figs. 2 up to 5. The max-
imal vibration amplitudes were first determined from
all successive amplitudes during the sweep excitation.
Since the maximal amplitudes fluctuate, the maximal
amplitudes were smoothed next by moving average
method over ten exciting cycles for better graphical
contour mapping.

a) The contour lines of the maximal amplitudes
(Fig. 2, left) show that amplitudes of resonant vi-
bration gradually decrease by increasing amplifi-
cation factor of additional parametric excitation
up to α2 = 0.075. Then after exceeding the level
α2 = 0.075 the resonant frequency split into two
frequencies. It is in accordance with the analytical
solution of the characteristic exponent iκ (Fig. 2,
right). Imaginary part describing the change of
eigenfrequency Ω1 splits after α2 = 0.075, too.
Adding the imaginary parts to Ω1 (Ω1 + imag(iκ))
we get the resulting values of the exponent (white
lines in Fig. 2, left). Real part of the exponents, real
(iκ), (Fig. 2, bottom right) that define the level of
damping behave otherwise to the imaginary part.
For lowest values of α2, the two branches of the
characteristics have the maximal splitting. Increas-
ing value of α2 a level of damping of upper branch
gradually increases and after exceeding value 0.075
split branches fuse together in a constant value line.
This behavior is in accordance with the observation
of the maximal amplitudes of contour diagram.

b) The contour lines of maximal amplitudes (Fig. 3,
left) and characteristic exponent diagram (Fig. 3,
right) are qualitatively very similar to the previous
case. The only difference is that the moment of the
splitting arises for higher values of α2 due to higher
damping coefficient κ10 = 0.05 than in previous
case. Analytical solution gives higher estimation of
this value and it shows that analytical solution is
more sensitive on the value of damping. White lines
in the contours of maximal amplitudes (Fig. 2, left
top) were obtained again like in the previous case
by sum of the imaginary parts of the exponent iκ
and the eigenfrequency Ω1.
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Fig. 2. Contours of maximal amplitudes of displacements (left) and characteristic exponent iκ (right) for different values
of α2 = 0÷ 0.5, M = 2, q20 = 1, κ10 = 0.001, κ20 = 0.05, α0 = 0 of 2DOF model.

Fig. 3. Contours of maximal amplitudes of displacements (left) and characteristic exponent iκ (right) for different values
of α2 = 0÷ 0.5 and M = 2, q20 = 1, κ10 = 0.05, κ20 = 0.05, α0 = 0 of 2DOF model.

c) The dependence of the splitting on different val-
ues of the parameter M for a depth of parametric
modulation α2 = 0.2 and for value of κ10 = 0.001 is
shown in Fig. 4, respectively. Again both contours
of maximal amplitudes and characteristic exponent
diagram are presented. The size of splitting is di-
minishing with the size of parameterM and damp-
ing value is decreasing at the same time accord-
ing to the analytical solution. As to the damping
the results of numerical simulations are in accor-

dance with this analytical prediction, however, the
size of splitting is vice versa growing with the size
of M .

d) The influence of small deviation of parametric
excitation frequency from the parametric anti-
resonance on the amplitude suppression was
studied on the last study case. We considered the
same parameters as in the case a) and the deviation
parameter α0 from the interval (±0.28) was added
to the parametric excitation ωp = Ω2 − Ω1 ± α0.
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Fig. 4. Contours of maximal amplitudes of displacements (left) and characteristic exponent κ (right) for different values
of M = 1÷ 7 and α2 = 0.2, q20 = 1, κ10 = 0.001, κ20 = 0.05, α0 = 0 of 2DOF model.

Fig. 5. Contours of maximal amplitudes of displacements (left) and characteristic exponent iκ (right) for different values
of α0 = −0.28÷ 0.28 and α2 = 0.2, q20 = 1, κ10 = 0.05, κ20 = 0.05, M = 2 of 2DOF model.

Again both contours of maximal amplitudes and
characteristic exponent diagram are presented.
It can be seen that the maximal suppression of
maximal amplitudes occurs in the close vicinity
|α0| < 0.05 of the anti-resonance frequency. Due to
lower parametric modulation α2 = 0.2, a splitting
of eigenfrequency is very weak and damping value
is highest in this interval. Above the absolute value
0.05 of the parameter α0 a splitting increases and
an effectiveness of damping rapidly decreases.

5. Conclusion

The results of 2DOF system with additional para-
metric excitation show that parametric anti-resonance
effect is characterized by two factors: a) additional
damping coming out from the parametric excitation;
b) splitting of the first eigenfrequency of the system
Both these factors are influenced by the mass ra-
tio, mutual mass/stiffness ratios

(
q20 = k20

m2
/ k1

m1

)
and

damping coefficients.
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Numerical simulations for parameters M = 2,
q20 = 1 and different values of the depths of parametric
excitation α2 (case a, b) showed that at lower values
of the depth (α2 < 0.075) the decrease of the maximal
amplitudes with no eigenfrequency splitting occur. The
splitting arises at higher values of the depth. So, by
the value of the depth the parametric anti-resonance
effect can be set up with respect to a nature of the
system conceived for suppression of externally excited
resonant vibration
Numerical simulations for parameters α2 = 0.2,

q20 = 1 and different M (case c) showed that high
efficiency of anti-resonance effect for maximum ampli-
tude suppression of the 2DOF system can be expected
for lower value of parameterM = 1, 2. For higher value
of M > 5 the efficiency is quite poor even though the
parametric excitation is amplified since the damping is
decreasing.
The influence of small deviation of parametric ex-

citation frequency from the parametric anti-resonance
on the amplitude suppression was studied for the depth
of parametric modulation α2 = 0.2 (case d). The max-
imal suppression of maximal amplitudes occurs in the
close vicinity |α0| < 0.05 of the anti-resonance fre-
quency. Above the absolute value 0.05 of the parameter
α0, effectiveness of damping rapidly decreases.
The approximate analytical solution of the charac-

teristic exponents can be very helpful to estimate the
efficiency of the parametric anti-resonance or to design
parameters of the mechanical system with the para-
metric anti-resonance excitation, however, for more ac-
curate description of its dynamic behavior, the direct
integration of the equations of motion is recommended.
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Acta Technica ČSAV, 43, 301–309.

20. Tondl A., Ecker H. (1999), Cancelling of self-excited
vibrations by means of parametric excitation, Proceed-
ings of ASME Design Engineering Technical Confer-
ence, Las Vegas 1999, DETC/VIB-8071.

21. Tondl A., Ruijgrok T., Verhulst F., Naber-
goj R. (2000), Autoparametric Resonance in Mechan-
ical Systems, Cambridge University Press.

22. Tondl A. (2000a), Suppressing self-excited vibration
by means of parametric excitation, Proceedings of Col-
loquium Dynamics of Machines 2000, Institute of Ther-
momechanics AS CR, Prague, pp. 225–230.

23. Tondl A. (2000b), Self-excited vibration quenching in
a rotor system by means of parametric excitation, Acta
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