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The transient vibroacoustic response suppression of a piezo-coupled sandwich circular plate backed
by a rigid-walled cylindrical acoustic enclosure is investigated. Problem formulation is based on the
linear acoustic wave theory, Kirchhoff thin plate model, fluid/structure compatibility relations, Rayleigh
integra formula, and active damping control (ADC) strategy. Matlab’s Genetic Algorithm (GA) is utilized
to identify and optimize the feedback controller gain parameter based on a multi-objective performance
index function. Durbin’s numerical Laplace inversion scheme is then used to calculate the key acousto-
structural response parameters due to a transverse impulsive shock force for selected cavity depths.
Numerical simulations demonstrate satisfactory performance of adopted control methodology in effective
suppression of panel displacement response and radiated external sound pressure for enclosures of shallow
and moderate depths. Limiting cases are considered and accuracy of the proposed model is rigorously
verified.
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1. Introduction

Suppressing vibroacoustic response of an acoustic
space coupled with a flexible boundary structure is
an important noise control problem with a wide va-
riety of engineering applications such as in vehicu-
lar/aircraft cabins, building structures, industrial ma-
chines, and civil/marine structures. The traditional
passive treatments (e.g., viscoelastic damping mate-
rials (Nashif et al., 1985)) are typically inappro-
priate at low excitation frequencies. Furthermore,
they can substantially increase total structural weight
and are prone to disintegration under sever envi-
ronmental and frequency variations. With recent de-
velopments in the smart material technology, active
control tactics that employ secondary force inputs
(Fuller, 1990) and/or smart piezoelectric materials
(Hasheminejad, Keshavarzpour, 2013; Hashemi-
nejad, Alaei-Varnosfaderani, 2012; Hashemine-
jad, Rabbani, 2015) have provided a viable means
to deal with this problem. In particular, numerous re-
searchers have employed various control methodologies

to actively suppress sound radiation from (transmis-
sion through) cavity-coupled flexible plates or pan-
els in the past few decades. Among them, (Pan,
Hansen, 1991) utilized a point force actuator for
active control of noise transmission through a thin
simply-supported aluminum panel into a rectangu-
lar parallelepiped acoustic cavity. Koshigoe et al.
(1993) proposed a fully coupled acoustic/plate inter-
action model for active control of noise transmission
from an external source into a rectangular cavity us-
ing surface-mounted piezoelectric actuators. Cheng,
Nicolas (1992) followed a variational approach to de-
velop a coupled acousto-elastic formulation for steady-
state sound radiation from a point-driven elastically-
supported flexible circular end-plate into a hard-walled
cylindrical enclosure in an attempt to control noise in
an airplane cabin. Veeramani, Werely (1996) uti-
lized piezo-actuators in the context of a hybrid pas-
sive/active damping system to control sound radiation
from a composite sandwiched visco-elastic plate as the
boundary of a three dimensional rectangular enclosure.
Balachandran et al. (1996) used microphone sen-
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sors and surface-bonded piezo-ceramic (PZT) actuator
patches to investigate active feed-forward noise con-
trol within a three-dimensional rectangular cavity with
a flexible wall.Niekerk, Tongue (1997) presented an
active H2-optimal control methodology that employ
piezo-ceramic patch actuators to reduce the transient
noise transmitted into a three-dimensional rectangular
cavity through a flexible wall. Shields et al. (1998) de-
veloped a finite element model to control low-frequency
sound radiation from a rectangular plate into an acous-
tic cavity using patches of active piezoelectric-damping
composites (APDC). Ro, Baz (1999) developed an
acoustic finite element model for effective sound ra-
diation control of a vibrating aluminum rectangular
plate coupled with an acoustic cavity by using active
constrained layer damping (ACLD) patch treatments.
Sampath, Balachandran (1999) presented analyt-
ical and experimental investigations on active (LMS
feed-forward) control of multiple tones transmitted
into a three-dimensional rectangular panel-enclosure
system by using multiple piezoelectric actuators. Kim
et al. (1999) utilized finite element modeling to study
the response of a piezoelectric smart structure consist-
ing of an aluminum plate with a surface-mounted cir-
cular piezoelectric actuator/sensor pair for active noise
reduction within a cubic-shaped cavity. Azzouz, Ro
(2002) developed a finite element model to numerically
simulate an ACLD (Active Constrained Layer Damp-
ing) treated rectangular plate/acoustic cavity system
excited by a point harmonic force over broad frequency
bands. Ray, Reddy (2004) developed a finite ele-
ment model to investigate active structural acoustic
control (ASAC) of a thin laminated composite plate
coupled to a rectangular parallelepiped acoustic cav-
ity by using active constrained layer damping (ACLD)
treatment. Al-Bassyiouni, Balachandran (2005)
developed a zero-spillover feed-forward controller for
attenuation of both narrowband and broadband three-
dimensional sound fields within a rectangular enclosure
with a flexible boundary containing surface-bonded
piezo-actuator patches. Ray et al. (2009) developed
a coupled structural-acoustic finite element model for
controlling sound radiation from a vibrating thin lam-
inated composite plate integrated with vertically rein-
forced 1–3 PFRC material into a backing rectangular
parallelepiped acoustic cavity. Casadei et al. (2010)
presented a coupled finite element model to evaluate
noise reduction performance of a flexible rectangular
plate containing a periodic array of tunable resistive-
inductive (RL) shunted piezoelectric patches within an
enclosed rectangular cavity. Jin et al. (2011) offered an
analytical study on active control of sound transmis-
sion into a cabin-like enclosure comprising of two par-
allel flexible plates using three different control system
configurations.
The presented state of art clearly shows that the

use of various control methods to attenuate sound

transmission through (radiation from) flexible enclo-
sure boundaries of rectangular geometry has been un-
der continual focus of the scientific community. In
contrast, there appears to be no rigorous theoretical
studies on the transient vibroacoustic response con-
trol of a circular plate structure coupled to a back-
ing cylindrical enclosure (see Fig. 1). Thus, in this
work, we shall take advantage of the linear acous-
tic wave equation, classical Rayleigh integral formula
(Junger, Feit, 1986), Kirchhoff piezo-coupled plate
model (Wang et al., 2001), and Durbin’s numerical
Laplace transform inversion scheme (Durbin, 1973)
in conjunction with the active damping control (ADC)
strategy (Hasheminejad, Rabbani, 2015), to fill this
important gap in the literature. The proposed model,
which takes full account of interaction between vibrat-
ing panel and internal cavity fluid, is of both aca-
demic and industrial interest as a canonical problem
in structural acoustics. The presented set of converged
space-time solutions can provide further physical in-
sights into the transient sound radiation characteristics
of smart cylindrical cavity-coupled structural systems
with a wide range of potential engineering applications
(e.g., cavity resonators (Yang et al., 2007), endplates
and internal bulkheads in submarine hulls (Caresta,
Kessissoglou, 2010), launch vehicles (Niezrecki,
Cudney, 2001), and sounding rockets (Comrie, Ko-
rde, 2012). It can also serve as the benchmark data for
confirmation of other solutions obtained by asymptotic
or strictly numerical procedures (Cheng, Nicolas,
1992; Ro, Baz, 1999; Kim et al., 1999; Ray, Reddy,
2004).

Fig. 1. Problem configuration.
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2. Formulation

The basic problem configuration is illustrated in
Fig. 1. The tri-laminate piezo-coupled circular plate
(0 ≤ r ≤ a) is comprised of an elastic isotropic host
layer of thickness 2h that is perfectly joined to the
top and bottom piezoelectric actuator and sensor lay-
ers of equal thickness h1. It is assumed to be set in
an infinite rigid baffle while subjected to an arbitrary
transient external excitation f(r, θ, t) on its top sur-
face. Furthermore, it is supposed to be clamped at
its outer edge (r = a), and coupled with a back-
ing rigid-walled cylindrical acoustic enclosure (ρin, cin)
of finite depth L, with ρin denoting the cavity fluid
density and cin being the associated speed of sound.
The composite panel radiates sound into the upper
semi-infinite acoustic medium of the characteristic
impedance, ρexcex, with ρex referring to the external
fluid density (air in this case) and cex being the asso-
ciated sound speed. Here, it should be noted that, as
the overlaying acoustic half-space medium is assumed
to be a light fluid (air) in the present study, its as-
sociated fluid loading effect on the vibrating panel is
entirely neglected (Junger, Feit, 1986), while that
of the internal cavity fluid will be fully taken into ac-
count (Hasheminejad et al., 2012). In what follows,
in order to avoid unnecessary lengthy duplications, we
shall briefly present the basic mathematical model of
our coupled multi-field problem by making extensive
use of the relevant results provided in selected refer-
ences (Hasheminejad, Rabbani, 2015;Wang et al.,
2001; Hasheminejad et al., 2012; Gorman et al.,
2001). In particular, the essential acoustic relations
are given in Subsec. 2.1 (Hasheminejad et al., 2012;
Gorman et al., 2001), the basic structural model is
briefly introduced in Subsec. 2.2 (Wang et al., 2001),
the associated structure/fluid compatibility relation is
implemented in Subsec. 2.3 (Hasheminejad et al.,
2012; Gorman et al., 2001), the active damping con-
trol (ADC) strategy is shortly described in Subsec. 2.4
(Hasheminejad, Rabbani, 2015), and the final gov-
erning equations are derived in Subsec. 2.5.

2.1. Acoustic model

Adopting a time-domain approach based on the
general 3D (non-axisymmetric) linear acoustic model,
the perturbed acoustic velocity potential within the
acoustic cavity, φ(r, θ, z, t) is governed by the clas-
sic wave equation in cylindrical coordinates (Gorman
et al., 2001):

∇2φ =
1

c2in

∂2φ

∂t2
, (1)

where t is time, and ∇2 = ∂2

∂r2 + 1
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∂
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r2
∂2
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∂z2 .
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∞∫
0
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with s being the transform parameter; assuming zero
initial conditions), the wave Eq. (1) transforms into
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where “over-bar” hereafter denotes the Laplace trans-
form with respect to time. Also, following the standard
method of separation of variables, after application of
the enclosure rigid-surface conditions (Hasheminejad
et al., 2012; Gorman et al., 2001):

∂φ

∂z

∣∣∣∣
z=−L

=
∂φ

∂r
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r=a

= 0, (3)

the solution to Eq. (2) is expressed in the form

φ(r, θ, z, s) =

∞∑

n=0

∞∑

m=0

Anm (s)Ωnm(r, θ)[cos(γnmz)

− tan(γnmL) sin(γnmz)], (4)

where Ωnm (r, θ) = Jm(λnmr) cosmθ, Jm is the cylin-
drical Bessel function of first kind (Abramowitz,

Stegun, 1964), γ2
nm = −λ2

nm −
(

s
cin

)2
, in which λnm

(n,m = 0, 1, 2, 3, . . .) are roots of the characteristic
equation J ′

m(λa) = 0, and Anm(s) are the unknown
modal constants.

2.2. Structural model

In this subsection, we shall adopt the formulation
results presented in (Wang et al., 2001) where the
free vibration analysis of piezoelectric coupled circu-
lar plate is based on Kirchhoff’s classical (thin) plate
theory (i.e., the shear deformation and rotary inertia
effects are neglected). Furthermore, a quadratic elec-
trical distribution in thickness direction of the closed
circuit piezoelectric layer is assumed such that the
Maxwell static electricity equation is satisfied. Here,
for the sake of brevity, we shall only present the essen-
tial governing equations of the piezo-coupled sandwich
panel, and the interested reader is referred to (Wang
et al., 2001) for more details on the subject. Accord-
ingly, assuming that the piezo-coupled plate undergoes
small vibratory motion, the panel displacement field
may be described by the classical relations (Wang
et al., 2001),

uz(r, θ, t) = w(r, θ, t),

ur(r, θ, t) = −z ∂w
∂r

, (5)

uθ(r, θ, t) = −z ∂w
r∂θ

,

where uz = w, ur and uθ refer to the displacement
components in the transverse, radial, and tangential
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directions, respectively. Also, the relevant stress com-
ponents in the host isotropic layer are readily obtained
from (Wang et al., 2001)
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(6)

with E and ν being the Young’s modulus and Poisson’s
ratio, respectively. Similarly, the stress components in
the piezoelectric material are written as (Wang et al.,
2001)
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,

where C11, C12 and e31 are the material constants,
as defined in Appendix, and the relevant electric field
components, (Er , Eθ, Ez), are defined (in terms of elec-
tric potential) in Eqs. (30) of Appendix.
Now, assuming that the piezoelectric layers are

poled in the thickness (z-) direction, the total elec-
tric potential can be written as the superposition
of the electric potential distributions induced on the
top/bottom electrode surfaces of the actuator/sensor
(Φa, Φs) layers (Wang et al., 2001):

Φ(r, θ, z, t) =
1

h3
1

(z+h+h1)(z
2−h2)Φa(r, θ, t)

+
1

h3
1

(z−h−h1)(z
2−h2)Φs(r, θ, t). (8)

Accordingly, the resultant shear force components
(qr, qθ), based on the resultant moment (Mrr, Mθθ,
Mrθ) expressions provided in Eqs. (32) of Appendix,
are written in the form (Wang et al., 2001)
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1 + 17h3
1

)
.

Direct substitution of the shear force expressions
(9) into the following classic governing equation of mo-
tion for the Kirchhoff plate (Rao, 2007):

∂qr
∂r

+
1

r

∂qθ
∂θ

+
qr
r

+ F

−




h∫

−h

ρh
∂2w

∂t2
dz + 2

h+h1∫

h

ρp
∂2w

∂t2
dz


 = 0, (10)

results into,

(D1 +D2)∇4w − e31D3∇2Φs − e31D4∇2Φa

+ 2(ρhh+ ρph1)
∂2w

∂t2
= F, (11)

where ρh and ρp are material densities of the host
plate and piezoelectric layers, respectively, F (r, θ, t) =
pin(r, θ, z = 0, t) − f(r, θ, t) is the generalized applied
force (where we have adopted the light external fluid
hypothesis (Junger, Feit, 1986)), and pin denotes
the acoustic pressure within the cylindrical enclosure,
which by making use of expansion (4) can be written
in the Laplace domain as (Hasheminejad et al., 2012)

pin(r, θ, z, s) = − ρinsφ

= − ρins
∞∑

n=0

∞∑

m=0

Anm(s)Ωnm (r, θ) (12)

· [cos(γnmz)− tan(γnmL) sin(γnmz)].
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Direct substitution of Eqs. (31) (of Appendix) for
the relevant electric displacement components, (Dr,
Dθ, Dz), into the following classical Maxwell equation
(Duan et al., 2005):

h+h1∫

h

[
1

r
Dr +

∂Dr

∂r
+

1

r

∂Dθ

∂θ
+

∂Dz

∂z

]
dz = 0, (13)

after some manipulations leads to

Ξ11
D3

2
∇2Φs − Ξ33D6Φs − Ξ11D5∇2Φa

− Ξ33D7Φa − e31h1∇2w = 0, (14)

where Ξ11 and Ξ33 are reduced dielectric constants
of the piezoelectric layers (see Appendix), and D5 =

1
12h1

(
24h2 + 28hh1 + 7h2

1

)
, D6 = (4h+ h1) /h

2
1, D7 =

(8h+ 5h1) /h
2
1. Elimination of ∇2Φs between Eqs. (11)

and (14) leads to the expression for the sensor voltage
in the form

Φs(r, θ, t) = B1∇4w −B2∇2Φa

−B3Φa −B4∇2w +B5ẅ +B6F, (15)

where
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.

Applying the Laplace operator to Eq. (15), and di-
rect substitution of results into Eq. (11), after taking
the Laplace transform with respect to time (assuming
zero initial conditions), yields the final equation of mo-
tion for forced vibrations of the piezo-coupled circular
plate in the form

P3∇6w − P2∇4w + s2P1∇2w − s2P0w

= F − P4∇2F + P5∇2Φa + P6∇4Φa, (16)

where
P0 = 2(ρhh+ ρph1),

P1 =
Ξ11D3

Ξ33D6
(ρhh+ ρph1),

P2 =

(
D1 +D2 +

e231h1D3

Ξ33D6

)
,
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2Ξ33D6
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2Ξ33D6
,

P5 =
e31D3D7

D6
− e31D4,

P6 =
e31Ξ11D3

2Ξ33D6
(2D5 +D4),

with the general solution

w(r, θ, s) =
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n=0
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m=0

Qnm(s)Wnm (r, θ), (17)

where Qnm(s)(n,m = 0, 1, 2, . . .) are unknown con-
stants, andWnm(r, θ) refer to the free vibrational mode
shapes of the (dry) piezo-coupled circular plate with
the general form (Wang et al., 2001):

Wnm(r, θ) =
[
M1nmΠ1nm(

√
|x1|r)

+M2nmΠ2nm(
√
|x2|r)

+M3nmΠ3nm(
√
|x3|r)

]
cosmθ, (18)

where

Πinm

(√
|xi|r

)
=

{
Jm(

√
|xi|r), xi < 0

Im(
√
|xi|r), xi > 0

(i = 1, 2, 3)

in which Im is the modified cylindrical Bessel function
of the first kind, Minm(i = 1, 2, 3) are mode shape
constants, the parameters x1,2,3 (which are related to
the system natural frequencies ωnm) are roots of the
associated characteristic equation, as given in Eq. (54)
of (Wang et al., 2001).

2.3. Fluid/structure compatibility

Next, we are ready to impose the last remaining
boundary condition. In particular, the continuity of in-
ternal fluid particle velocity with the piezo-elastic plate
velocity at z = 0 implies that (Hasheminejad et al.,
2012; Gorman et al., 2001)

∂φ

∂z

∣∣∣∣
z=0

= sw(r, θ, s). (19)

By direct substitution of expansions (4) and (17) into
the above fluid/structure compatibility relation, one
obtains

−
∞∑

n=0

∞∑

m=0

Anm (s)γnmΩnm(r, θ) tan(γnmL)

=
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n=0

∞∑

m=0

Qnm(s)Wnm (r, θ). (20)

Multiplying the above equation by Wij (r, θ) and
integrating over the circular panel surface area one ob-
tains

∞∑

n=0
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m=0

Anm(s)Hnmij =
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n=0
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m=0

Qnm(s)Knmij , (21)
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where

Hnmij = −γnm tan(γnmL)

∫∫

A

Ωnm(r, θ)Wij (r, θ) dA,

Knmij = s

∫∫

A

Wnm (r, θ)Wij (r, θ) dA,

in which i, j, n,m = 0, 1, 2, . . ., and dA = r dr dθ.

2.4. Controller design

Now, following the controller design procedure
presented in (Hasheminejad, Rabbani, 2015; Vel,
Baillargeon, 2005), we shall apply the active damp-
ing control (ADC) strategy as a proportional volt-
age feedback controller to our cavity-coupled smart
panel system (see Fig. 1). This can be readily achieved
through a second order compensator forced by the sen-
sor electric potential (Φs) measured at an arbitrary
point (r = r0, θ = θ0, z = −h − h1) on the lower
surface of the piezo-composite panel (Hasheminejad,
Rabbani, 2015), i.e,

η̈a + 2ξcωcη̇a + ω2
cηa = kpω

2
cαΦs(r0, θ0, t), (22)

where kp is the controller gain,

α = −2(h+ h1)(2h+ h1)
/
h2
1,

ηa(t) is the controller coordinate, and ωc and ξc re-
fer to the natural frequency and damping ratio of the
controller, respectively. Taking Laplace transform of
the above equation, and solving for the controller co-
ordinate, one gets

ηa(s) = T (s)Φs(r0, θ0, s), (23)

where T (s) = kpω
2
cα
/(

s2 + 2ξcωcs+ ω2
c

)
is the con-

troller transfer function, and the transformed sensor
voltage can readily be obtained from Eq. (15).

2.5. Final governing equations

At this point, by decomposition of the actuator
voltage in the form Φa(r, θ, s) = ηa(s)ϕa(r, θ), and
direct substitution of Eq. (17) into the equation of
motion (16), while noting that the normal modes,
Wnm(r, θ) must satisfy the free vibration eigen-relation
P3∇6Wnm −P2∇4Wnm = ω2

nm

(
P1∇2Wnm − P0Wnm

)

one obtains
∞∑

n=0

∞∑

m=0

Qnm(s)(ω2
nm + s2)(P1∇2Wnm − P0Wnm )

= − sρin
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n=0
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m=0

Anm (s)Ωnm (r, θ)− f(r, θ, s)

+ sρinP4
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Anm(s)∇2Ωnm(r, θ)

+ P4∇2f(r, θ, s) + ηa(s)
(
P5∇2ϕa + P6∇4ϕa

)
. (24)

Also, direct implementation of pressure and dis-
placement field expansions (12) and (17) into the con-
troller coordinate Eq. (23), keeping Eq. (15) in mind,
yields

[
1

T (s)
+
(
B2∇2ϕa(r0, θ0) +B3ϕa(r0, θ0)

)]
ηa(s)

=

∞∑

n=0

∞∑

m=0

Qnm(s)Ψnm(r0, θ0, s)− B6f(r0, θ0, s)

− sρinB6
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m=0

Anm(s)Ωnm(r0, θ0), (25)

where

Ψnm(r0, θ0, s) = B1∇4Wnm (r0, θ0)

−B4∇2Wnm (r0, θ0)

+ s2B5Wnm (r0, θ0).

Finally, multiplication of Eqs. (24) and (25)
through by Wij (r, θ), and subsequent integration on
circular surface area of the panel respectively leads to

∞∑

n=0

∞∑

m=0

Qnm(s)Znmij =S
(1)
ij + ηa(s)S

(2)
ij

+
∞∑

n=0

∞∑

m=0

Anm (s)Xnmij ,

S
(3)
ij ηa(s) =

∞∑

n=0

∞∑

m=0

Qnm(s)Υnmij − S
(4)
ij

−
∞∑

n=0

∞∑

m=0

Anm (s)Γnmij ,

(26)

where

Znmij = (ω2
nm+s2)

∫∫

A

Wij

[
P1∇2Wnm−P0Wnm

]
dA,

Xnmij = sρin

∫∫

A

Wij

[
P4∇2Ωnm −Ωnm

]
dA,

Υnmij = Ψnm(r0, θ0, s)

∫∫

A

Wij dA,

Γnmij = ρinsB6Ωnm(r0, θ0)

∫∫

A

Wij dA,

S
(1)
ij =

∫∫

A

Wij

[
P4∇2f − f

]
dA,

S
(2)
ij =

∫∫

A

Wij

(
P5∇2ϕa + P6∇4ϕa

)
dA,
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S
(3)
ij =

[
1

T (s)
+
(
B2∇2ϕa(r0, θ0) +B3ϕa(r0, θ0)

)]

·
∫∫

A

Wij dA,

S
(4)
ij =B6f(r0, θ0, s)

∫∫

A

Wij dA,

Thus, by truncating the linear systems of Eqs. (21)
and (26), with M being the truncation constant, one
advantageously arrives at the final set of matrix equa-
tions:

H(s)A(s) = K(s)Q(s),

Z(s)Q(s) = S1(s) + S2(s)ηa(s) +X(s)A(s),

S3(s)ηa(s) = Υ(s)Q(s)− S4(s)− Γ(s)A(s),

(27)

where

Q(s) = [Q00(s), Q01(s), . . . ,

Q0M (s), Q10(s), Q11(s), . . . , Q1M (s), . . . ,

QM0(s), QM1(s), . . . , QMM (s)]T,

A(s) = [A00(s), A01(s), . . . ,

A0M (s), A10(s), A11(s), . . . ,

A1M (s), . . . , AM0(s), AM1(s), . . . , AMM (s)]T,

Si(s) = [S
(i)
00 (s), S

(i)
01 (s), . . . ,

S
(i)
0M (s), S

(i)
10 (s), S

(i)
11 (s), . . . ,

S
(i)
1M (s), . . . , S

(i)
M0(s), S

(i)
M1(s), . . . , S

(i)
MM (s)]T,

in which i = 1, 2, 3, 4, and the coefficient matrices in
Eq. (27) are of general form:

H(s) =





























H0000 . . . H0M00

...
. . .

...
H000M . . . H0M0M

· · ·

HM000 . . . HMM00

...
. . .

...
HM00M . . . HMM0M

...
. . .

...
H00M0 . . . H0MM0

...
. . .

...
H00MM . . . H0MMM

· · ·

HM0M0 . . . HMMM 0

...
. . .

...
HM0MM . . . HMMMM





























where H(s) = [Hnmij ] can be any of H(s) = [Hnmij ],
K(s) = [Knmij ], Z(s) = [Znmij ], X(s) = [Xnmij ],
Υ(s) = [Υnmij ] and Γ(s) = [Γnmij ]. By simultane-
ous solution of the linear system of matrix Eqs. (27),
one can ultimately determine the unknown coefficients
A(s), Q(s) and ηa(s) in the Laplace domain. This
completes the mathematical modeling of the problem.
Next, we consider some numerical examples.

3. Numerical results

Before presenting the main results of our numeri-
cal simulations, it should be mentioned here that the
primary goal of proposed GA-tuned active damping
control system is effective suppression of key acousto-
structural parameters (i.e., panel displacement and
radiated sound pressure amplitudes) with a reason-
able control effort. Also, noticing the relatively large
number of input parameters involved, while keep-
ing in mind our computational hardware limitations,
a specific model will be considered here. The exter-
nal surrounding fluid is assumed to be air (ρex =
1.2 kg/m3, cex = 343 m/s), while the cavity fluid is
taken to be either air or water (ρin = 1.2 kg/m3,
1000 kg/m3, cin = 343 m/s, 1500 m/s), for selected
cavity depth parameters (L/2a = 0.1, 1, 10). The core
layer of the piezo-coupled circular plate (a = 0.5 m)
is supposed to be steel (ν = 0.3, ρh = 7800 kg/m3,
E = 2.1 × 1011 N/m2, 2h = 0.01 m), with the phys-
ical properties of the thin PZT4 piezo-ceramic sen-
sor/actuator layers (h1 = 0.001 m,), as given in Ta-
ble 1. In all numerical simulations (except in valida-
tion), an impulsive central transverse point load is as-
sumed to be acting on the top surface of the piezo-
coupled panel (r = θ = 0), which can be represented
by f(r, θ, t) = F0δ(r)δ(θ)δ(t) with F0 = 4 kPa, where
δ(.) is the Dirac delta function. Also, in the absence of
material damping, ensuing the controller design pro-
cedure in (Vel, Baillargeon, 2005), the damping
ratio of the controller is assumed to be ξc = 0.1,
while the controller frequency is targeted at the fun-
damental frequency for free vibrations of the piezo-
coupled clamped (dry) circular panel (Wang et al.,
2001) Furthermore, the input voltage Φs is measured
at the point (r = r0 = 0.25 m, θ = θ0 = π/6,
z = −0.006 m) on the lower surface of the sensor layer.
Similarly, the actuation voltage, ϕa(r, θ), is assumed
to be imposed in an annular region (0.2 ≤ r ≤ 0.3 m,
0 ≤ θ ≤ 2π, z = +0.006m) over the upper surface
of the actuator layer. Moreover, the controller gain
parameter, kp, is tuned by utilizing the Genetic Al-
gorithm (GA) capability of Matlab Global Optimiza-

Table 1. Physical properties of the constituent panel
materials.

Core steel layer PZT4 layers

Elastic moduli
[N ·m−2]

E = 200 · 109

c11 = 132 · 109

c12 = 71 · 109

c33 = 115 · 109

c13 = 73 · 109

Density [kg ·m−3] 7.8 · 103 7.5 · 103

e31 [C ·m−2] – −4.1

e33 [C ·m−2] – 14.1

E11 [F ·m−1] – 7.124 · 10−9

E33 [F ·m−1] – 5.841 · 10−9
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tion Toolbox in a multi-objective framework, where
the principal objective functions, which account for
evaluation of the solution at each step, are selected
as the internal radiated (cavity center-point) sound
pressure, pin(r = θ = 0, z = −L/2, t) transverse panel
center-point displacement, w(r = θ = 0, t) and the
actuator input voltage, Φa(r = 0.25 m, θ = π/6,
z = 0.006 m, t), with maximum weight given to the
panel displacement. For a detailed description of the
GA-based controller gain optimization and weighting
function selection procedure, the reader is referred to
(Hasheminejad, Rabbani, 2015).
With the hypothesis of light external fluid (air)

loading, the radiated transient acoustic pressure field
may be computed by making use of the following
form of Rayleigh integral in Laplace domain (Junger,
Feit, 1986; Shakeri, Younesian, 2015):

pex
(
R, β, θ, s

)
=s2

ρex
2π

2π∫

0

a∫

0

eikR

R
w(r, θ, s)r dr dθ, (28)

where

k = is/cex, i =
√
−1,

R =
√
R2 + r2 − 2rR sinβ cos

(
θ − θ

)

is the vector connecting a representative panel element
(dr, r dθ) to the field point “P”, as shown in Fig. 1,
and the transformed panel displacement, w(r, θ, s) is
readily obtained from Eq. (17).
A general Maple code was constructed for simulta-

neous solution of the final truncated matrix Eqs. (27).
In particular, in order to avoid further complications
in the relatively complex problem formulation, and fol-
lowing the novel solution methodology described in
(Hasheminejad et al., 2012; Gorman et al., 2001;
2008), the classical orthogonality properties of Bessel
and transcendental functions (Abramowitz, Ste-
gun, 1964) need not to be applied in the current solu-
tion procedure. Alternatively, all integrations required
in computation of elements of coefficient matrices that
appear in the final set of Eqs. (27) (i.e., H(s), K(s),
Z(s), S1−4(s), X(s), Υ(s), Γ(s)), were performed nu-
merically by making recurrent use of the adaptive
Gaussian quadrature routine ”Gquad” in Maple. Cal-
culations were performed on a network of core i7-based
desktop computers, and the convergence of numeri-
cal solutions was checked in a simple trial and error
fashion, i.e., by accumulating the number of acousto-
structural modes, while looking for steadiness in the
numerical values of the outputs. Taking a maximum
truncation constant of M = 5 was observed to lead
to uniform convergence in all simulations. The inver-
sion of Laplace transforms were numerically performed
by making persistent use of the following Durbin’s in-
version formula in the interval [0, 2T0] (Durbin, 1973;
Hasheminejad et al., 2012):

Λ(t) =
2eµt

T0

[
1

2
Re
[
Λ(µ)

]

+

N̂∑

k=1

{
Re
[
Λ

(
µ+ ik

2π

T0

)]
cos

(
kt

2π

T0

)

− Im
[
Λ

(
µ+ ik

2π

T0

)]
sin

(
kt

2π

T0

)}]
, (29)

where N̂ is the truncation parameter, and µ is an arbi-
trary (real) number larger than all singularities of Λ(s),
with the following selections: N̂ = 2000, µT0 = 4.5,
T0 = 2 s, for obtaining stable and convergent solutions.
Before getting to the main results, we shall briefly

confirm the overall validity of the formulation. To do
this we first computed the time histories of the trans-
verse panel center-point displacement, w(r = θ = 0, t)
the internal radiated (cavity center-point) sound pres-
sure, pin(r = θ = 0, z = −L/2, t) and the exter-
nal radiated (on-axis) sound pressure, pex(r = θ = 0,
z = 5a, t) due to a uniformly distributed step transver-
se load (f(r, θ, t) = F0 = 4 kPa) acting over the cavity-
coupled (air-filled; L = 1 m) piezo-laminated (PZT4-
steel-PZT4) panel. Fair agreements are attained with
the results calculated by using the commercial FEM
package ABAQUS, as depicted in Fig. 2. About 3000

Fig. 2. Comparison of the calculated analytic solutions for
a cavity-backed piezo-coupled circular panel with the FEM

results.
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C3D20RE (quadratic piezoelectric brick) elements
were utilized to model the PZT4 sensor/actuator lay-
ers, and about 1300 C3D20R (quadratic brick) ele-
ments were employed to model the host steel layer in
the ABAQUS model. Also, a total of about 200,000
AC3D20 (quadratic acoustic brick) elements were em-
ployed to model the external/internal acoustic medi-
ums. As further checks for validity of the formulation,
we used our basic (original) codes (in two different lim-
iting situations) in order to calculate the first few natu-
ral frequencies for a piezo-coupled (PZT4-steel-PZT4)
circular plate (a = 0.6 m, 2h = 0.02 m, h1 = 0.002 m)
in the absence of fluid loading, as well as the resonance
frequencies for an elastic isotropic (single-layer) cavity-
backed (air-filled) circular (steel) panel (a = 1 m,
2h = 0.005 m, h1 ≈ 0 m, L = 6.72 m). The outcome, as
presented in Tables 2 and 3, show excellent agreements
with those presented in (Wang et al., 2001; Gorman
et al., 2008), respectively.

Table 2. Comparison of the calculated natural frequen-
cies of the piezo-coupled circular panel with those of Ref.

(Wang et al., 2001).

Mode Present Ref. (Wang et al., 2001)

1 902.478 902.479

2 1878.169 1878.17

3 3081.079 3081.08

4 3513.432 3513.43

Table 3. Comparison of the calculated natural frequencies
of the cavity-backed steel circular panel with those of Ref.

(Gorman et al., 2008).

Mode Present Ref. (Gorman et al., 2008)

1 3.279 3.279

2 6.296 6.297

3 9.450 9.426

Figures 3a and 3b display the controlled and un-
controlled cavity center-point sound pressure, pc = pin
(r = θ = 0, z = −L/2, t) (MPa) the on-axis ex-
ternal acoustic pressure, pr = pex (R = 5a, β =
θ = 0, t) (kPa) transverse panel center-point dis-
placement, wc = w(r = θ = 0, t) (m) and the ap-
plied control voltage, Φa (r = 0.25 m, θ = π/6,
z = 0.006 m, t) (Volt), due to an impulsive central
transverse point load (f = 4δ(r)δ(θ)δ(t) kPa), for se-
lected internal cavity fluids (air, water), and cavity
depth parameters (L/2a = 0.1, 1, 10). The key ob-
servations are as follows. The panel displacement and
acoustic pressure response curves associated with the
water-filled cavity have a noticeably higher primary
free oscillation frequency in comparison to those of the
air-filled cavity. This is directly linked to the higher
overall stiffness of the fully coupled water-filled sys-

tem in comparison to the air-filled system. Similarly,
the stronger fluid-coupling effect of the water-filled
cavity system leads to considerably lower panel dis-
placements (wc) and consequently radiated external
pressure (pr) amplitudes (see Eq. (28)) in compari-
son to the air-filled cavity system. Also, a substan-
tial increase in the height of water-filled cavity (i.e., to
L/2a = 10) leads to notable modification of the key
acousto-structural parameters (wc, pc, pr, Φa), which
can directly be linked to the increased liquid (wa-
ter) compressibility (wave field reverberation) effects
(also note the short time delay observed in the asso-
ciated pc subplot). On the other hand, the depth of
air-filled cavity is found to have no significant effect
on the panel displacement and the resulting on-axis
radiated external pressure (wc, pr), which can readily
be connected to the well-known “light fluid loading”
phenomenon (also note the relatively long time de-
lay observed in the associated pc subplot). Moreover,
the efficiency of adopted control configuration in ef-
fective suppression of panel center-point displacement,
wc, as well as the resulting radiated on-axis (exter-
nal) sound pressure, pr, almost regardless of inner fluid
type, especially for shorter cavities (L/2a = 0.1, 1),
is evident in the figure. The internal acoustic pres-
sure field, pc on the other hand, behaves somewhat
different. In particular, the control action becomes ef-
fective after about one full cycle of free panel oscil-
lations with the highest attenuation levels observed
for water-filled cavities of small to medium depths
(L/2a = 0.1, 1) in moderate to late-times. This can
evidently be linked to the increased level of control
authority over internal pressure field for cavities of
smaller depths, keeping in mind that maximum weight
was allocated to the panel displacement in our multi-
objective GA-based optimization scheme. The time
variations of controlled panel displacement appear to
roughly follow those of the associated applied control
voltage (i.e., relatively high voltage levels are required
in the early and moderate times, while lower actua-
tor voltage levels are applied in late-times, especially
for the water-filled cavity). Lastly, the effect of cavity
depth on the control voltage is not very prominent,
while the overall actuator voltage amplitude nearly
doubles as the internal cavity fluid is changed from
air to water. This is readily explained by the fact
that an increased actuation power is naturally re-
quired for countering the higher fluid loading effects
of the largely stiffer coupled water-filled cavity sys-
tem.
The two-dimensional time-domain snapshots

(0.01 ≤ t ≤ 18 ms) of Fig. 4 compare the controlled
and uncontrolled internal radiated sound pressure
fields, due to the impulsive central transverse point
load (f = 4δ(r)δ(θ)δ(t) kPa), for selected cavity
depths (L/2a = 0.1, 1, 10), and internal fluid (water).
Comments very similar to those made for Fig. 3 can
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a)

b)

Fig. 3. The uncontrolled and controlled time histories of transverse panel center-point displacement, cavity center-
point sound pressure, on-axis external radiated acoustic pressure, and applied control voltage, due to an impulsive
central transverse point load, for selected internal cavity fluids and depth parameters: a) air-filled cavity, b) water-

filled cavity.
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a)

b)

Fig. 4. Time-domain snapshots of the uncontrolled and controlled (water-filled) cavity sound pressure field, due to an
impulsive central transverse point load, for selected cavity depth parameters.
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readily be made. In particular, the overall effectiveness
of control action for short and medium size cavities in
moderate to late-times (as signified by larger dark ar-
eas) is evident in the 2D images. The most interesting
distinction is perhaps the effect of active damping con-
trol (ADC) action on the distribution (propagation) of
sound pressure energy within the piezo-panel-coupled
cylindrical enclosure. In particular, the radiated im-
pulsive wave fronts appear to travel horizontally (i.e.,
reverberate in the radial direction) within the short-
est cavity (L/2a = 0.1), while they nearly travel along
the cavity axis (i.e., towards the cavity bottom) in the
long cavity situation (L/2a = 10). For cavity of in-
termediate depth (L/2a = 1), the wave forms behave
somewhat in between the other two configuration (i.e.,
the spherical impulsive waves radiate from the lower
surface of composite panel into the cylindrical enclo-
sure).

4. Conclusions

The 3D non-axisymmetric non-stationary active
sound radiation and vibration control of a thin tri-
laminate piezo-composite circular panel coupled to
a backing hard-walled cylindrical enclosure of finite
depth, while driven by general distributed transverse
impulsive mechanical surface loads, has been inves-
tigated rigorously. The smart structure consisted of
a supporting core isotropic layer perfectly bonded to
transversely polarized lower/upper piezoelectric sen-
sor/actuator skin layers. Active damping is achieved
through a GA-tuned proportional control law with
a multi-objective cost function, where the induced sen-
sor voltage is directly fed back into the piezo-actuator
layer. Durbin’s numerical inverse Laplace transform
scheme is exploited to calculate the time evolutions
of key acousto-structural parameters and the actua-
tor (control) voltage. It is found that a substantial
increase in the water-filled cavity depth causes no-
table modification of the output acousto-structural
variables, while the depth of the air-filled cavity has
negligible effect on the panel displacement and the re-
sulting radiated external pressure field, largely due to
presence of light fluid loading. Also, effectiveness of
the adopted distributed active damping control con-
figuration in adequate mitigation of panel displace-
ment and external radiated sound pressure field is es-
tablished, especially for cylindrical enclosures of shal-
low and moderate depths, almost regardless of cav-
ity inner fluid type. In addition, control authority on
the internal sound field is seen to progressively de-
teriorate as the cavity depth increases, especially for
the water-filled cavity. Moreover, the effect of cav-
ity depth on the control voltage is not very promi-
nent, while the required actuator voltage levels nearly
double as the internal cavity fluid is changed from
air to water (i.e., higher actuation power required

for heavier fluid loading). The presented results can
be useful for analyses of the transient fluid-structure
interaction control of panel components coupled to
cylindrical enclosures, including a number of visu-
alization methods and computer programs. Further-
more, the offered set of precise space-time converged
solutions can provide expedient data for structural
acoustic designers/engineers, as a canonical bench-
mark for confirmation of other solutions attained
by largely restrictive asymptotic or numerical proce-
dures.

Appendix

This Appendix contains the definitions of some key
parameters used in the “Structural model” Subsec. 2.2.
In particular, the piezoelectric material constants (C11,
C12, e31) appearing in the stress-displacement relations
(7) are defined as:

C11 = c11 −
(
c11
c33

)2

,

C12 = c12 −
(
c13
c33

)2

,

e31 = e31 −
c13e33
c33

,

where cij are the elastic moduli, eij are the piezo-
electric constants, and E11 and E33 are the dielec-
tric constants of the piezoelectric (PZT4) material
(see Table 1). Also, the total electric field components
(Er, Eθ, Ez) appearing in the stress-displacement rela-
tions (7) are defined in terms of relevant electric po-
tentials as (Wang et al., 2001):

Er =− ∂Φ

∂r
= − 1

h3
1

(z−h−h1)(z
2−h2)

∂Φs

∂r

− 1

h3
1

(z+h+h1)(z
2−h2)

∂Φa

∂r
,

Eθ =− 1

r

∂Φ

∂θ
= − 1

h3
1

(z−h−h1)(z
2−h2)

1

r

∂Φs

∂θ

− 1

h3
1

(z+h+h1)(z
2−h2)

1

r

∂Φa

∂θ
,

Ez =− ∂Φ

∂z
= − 1

h3
1

[
(z2−h2) + 2z(z−h−h1)

]
Φs

− 1

h3
1

[
(z2−h2) + 2z(z+h+h1)

]
Φa.

(30)

Furthermore, the associated electric displacement com-
ponents (Dr, Dθ, Dz) that are substituted into the clas-
sical Maxwell equation (13) are written as:
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Dr = Ξ11Er = −Ξ11

h3
1

(z−h−h1)(z
2−h2)

∂Φs

∂r

−Ξ11

h3
1

(z+h+h1)(z
2−h2)

∂Φa

∂r
,

Dθ = Ξ11Eθ = −Ξ11

h3
1

(z−h−h1)(z
2−h2)

1

r

∂Φs

∂θ

−Ξ11

h3
1

(z+h+h1)(z
2−h2)

1

r

∂Φa

∂θ
, (31)

Dz = Ξ33Ez + e31

(
∂ur

∂r
+

∂uθ

r∂θ
+

ur

r

)

= −Ξ33

h3
1

[
(z2−h2) + 2z(z−h−h1)

]
Φs

−Ξ33

h3
1

[
(z2−h2) + 2z(z+h+h1)

]
Φa − e31z∆w,

where Ξ11 = E11, and Ξ33 = E33 + e233/c33. Moreover,
the resultant piezo-coupled moments (Mrr,Mθθ,Mrθ)
appearing in the shear force relations (9) are expressed
as (Wang et al., 2001):

Mrr =

h∫

−h

zσrr dz + 2

h+h1∫

h

zΣrr dz

= −
[
(D1 +D2)

∂2w

∂r2
+

(
νD1 +

C12

C11
D2

)

·
(
1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
−D3e31Φs −D4e31Φa

]
,

Mθθ =

h∫

−h

zσθθ dz + 2

h+h1∫

h

zΣθθ dz

= −
[(

νD1 +
C12

C11
D2

)
∂2w

∂r2
+ (D1 +D2) (32)

·
(
1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
−D3e31Φs −D4e31Φa

]
,

Mrθ =

h∫

−h

zσrθ dz + 2

h+h1∫

h

zΣrθ dz

= −
[
(1− ν)D1 +

(
1− C12

C11

)
D2

]

·
(
1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ

)
,

where

D1 =
2Eh3

3 (1− ν2)
,

D2 =
2

3
h1

(
3h2 + 3hh1 + h2

1

)
C11,

D3 =

(
2

3
h+

1

6
h1

)
,

D4 =
1

6h2
1

(
48h3 + 96h2h1 + 68hh2

1 + 17h3
1

)
.
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